ebook img

Detection of l=4 and l=5 modes in 12 years of solar VIRGO-SPM data --- Tests on Kepler observations of 16 Cyg A and B PDF

12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Detection of l=4 and l=5 modes in 12 years of solar VIRGO-SPM data --- Tests on Kepler observations of 16 Cyg A and B

DRAFTVERSIONJANUARY28,2014 PreprinttypesetusingLATEXstyleemulateapjv.12/16/11 DETECTIONOF(cid:96) =4AND(cid:96) =5MODESIN12YEARSOFSOLARVIRGO-SPMDATA —TESTSONKEPLEROBSERVATIONSOF16CYGAANDB— MIKKELNØRUPLUND1(cid:70),HANSKJELDSEN1,JØRGENCHRISTENSEN-DALSGAARD1, RASMUSHANDBERG2,1,ANDVICTORSILVAAGUIRRE1 1StellarAstrophysicsCentre,DepartmentofPhysicsandAstronomy,AarhusUniversity, NyMunkegade120,DK-8000AarhusC,Denmark 2SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbaston,Birmingham,B152TT,UK DraftversionJanuary28,2014 4 Abstract 1 We present the detection of (cid:96) = 4 and (cid:96) = 5 modes in power spectra of the Sun, constructed from 0 12 yr full-disk VIRGO-SPM data sets. A method for enhancing the detectability of these modes in as- 2 teroseismic targets is presented and applied to Kepler data of the two solar analogues 16 Cyg A and n B. For these targets we see indications of a signal from (cid:96) = 4 modes, while nothing is yet seen for a (cid:96) = 5 modes. We further simulate the power spectra of these stars and from this we estimate that J it should indeed be possible to see such indications of (cid:96) = 4 modes at the present length of the data 7 sets. In the simulation process we briefly look into the apparent misfit between observed and calculated 2 mode visibilities. We predict that firm detections of at least (cid:96) = 4 should be possible in any case at the end of the Kepler mission. For (cid:96) = 5 we do not predict any firm detections from Kepler data. ] R S Keywords: asteroseismology — methods: data analysis — stars: individual (16 Cyg A; 16 Cyg B) — stars: oscillations—stars: solar-type—Sun: oscillations . h p - 1. INTRODUCTION as experienced for distant stars. Owing to the difference in o thestellarnoisepropertiesbetweenvelocityandphotometric r Stars observed for the purpose of asteroseismology are t measured in full-disk integrated light. In such observations measurements,thehighest(cid:96)=4modes(hexadecapole)have s been seen in e.g. BiSON (Chaplin et al. 1996a) and GOLF a there will be an unavoidable geometrical cancellation effect [ between bright and dark patches on the stellar surface from data (Roca Corte´s et al. 1998) for a long time - with the de- tection of these already predicted by Christensen-Dalsgaard the standing harmonic oscillations excited in the star. The 1 & Gough (1989). In full irradiance observations of the Sun NASAKeplersatellite,dedicatedtofindingplanetsusingthe v on the other hand only modes up to (cid:96) = 3 have so far been transit method (Koch et al. 2010), delivers very high-quality 3 directlyobserved(see,e.g.,Garc´ıa2009). photometric data which are ideal for asteroseismic studies 0 Itisclearthatthedetectionofhigher-degreemodeswould 0 (Gilliland et al. 2010b). However, even with such exquisite beofgreatimportanceforstellarmodelingwiththeextracon- 7 data it has so far only been possible to detect modes of de- straintsadded.Itwouldtoagreaterextentbecomepossibleto . gree (cid:96) = 3 (octupole) in two main sequence (MS) stars, 1 performstellarstructureinversions(e.g.,Basuetal.1997),al- 16 Cyg A and B (Metcalfe et al. 2012), while detections in 0 beitnotwithveryhighprecision.Intheidealcasewherethese subgiants and red giants have been seen for some time (see, 4 higher degree modes could actually be resolved, a wealth of e.g., Bedding et al. 2010; Huber et al. 2010; Mosser et al. 1 information could be extracted on for instance the rotational 2012b). : propertiesofthestar(e.g.,Gizon&Solanki2004). v Turning to our own star, the Sun has been studied exten- Inthisstudy,wetakeacloserlookatthephotometricdata i sively using helioseismology. Here the surface can be re- X from VIRGO as these data sets hint at what might be possi- solvedwherebytheconcernofcancellationeffectsisavoided r and very high degree modes can be studied. As mentioned ble with long time series from the Kepler satellite, and the a results of this will be presented in Section 2. In Section 3, above, we do not have this luxury when studying other stars we describe the method we propose to use for other stars in usingasteroseismology; hereinsteadthegloballow-(cid:96)modes thesearchforthesehigherdegreemodes.WetestinSection4 can be studied. To learn about other stars from our Sun, the thismethodontwoofthemostpromisingtargetsintheKepler unresolved surface has been studied in so-called Sun-as-a- field,viz.16CygAandB,withresultspresentedinSection5. star observations, and this has been ongoing for more than Furthermore,wesimulatethepowerspectraofthesetwotar- a decade with velocity observations from ground (e.g., Bi- gets,describedinSection6,andpresenttheresultsfromthese SON1;seeChaplinetal.1996b),andspace(e.g.,GOLF2;see in Section 7. In Section 8, we test the signal from (cid:96) = 4 in Gabrieletal.1995)andspace-bornphotometricobservations the solar data when using data lengths corresponding to the (e.g.,VIRGO3;seeFro¨hlichetal.1995;Frohlichetal.1997). amountofdataavailablefor16CygAandB.Finally,wewill Theseobservations suffer fromthesame cancellationeffects discussourfindingsinSection9. (cid:70)[email protected] 1BirminghamSolarOscillationNetwork. 2GlobalOscillationsatLowFrequencies. 3VariabilityofSolarIrradianceandGravityOscillations. 2 LUNDETAL. and (cid:96) = 5 modes that is seen. The strong peak ∼2777µHz, whichcoincideswiththefrequencyofan(cid:96) = 5mode,isnot 0.07 ofstellarnaturebutisanartefact,havinghalfthefrequencyof thesignalfromtheDAS.Theobservedfrequenciesalsomatch 0.06 up with values reported from e.g. LOI5 (Appourchaux et al. 1995;Appourchaux&VirgoTeam1998),BiSON(Broomhall 0.05 etal.2009)(upto(cid:96) = 4), MDI6 (see, e.g.,Larson&Schou ] 2m 2008), BiSON+LOWL (Basu et al. 1997), and GONG7 (for pp0.04 (cid:96)=5)(see,e.g.,Kommetal.2000). SeeFigure3foranex- [er ample of the correspondence between the red SPM-VIRGO w o0.03 data and the frequency estimates from the above references P fortwoofthecentralorders(n = 19, 20). These(cid:96) = 4and 0.02 (cid:96) = 5modeshavenotpreviouslybeenreportedonthebasis of full-disk photometry data, and all of the comparison fre- 0.01 quency estimates stem from either observations done in ve- locity or from photometry where the solar surface is semi- 0.00 resolved. 1000 2000 3000 4000 5000 6000 Frequency [µHz] We can further visualize the power excess from the (cid:96) = 4 and (cid:96) = 5 modes in the well-known e´chelle diagram (Grec Figure1. PowerspectraofVIRGO-SPMdata, smoothedwitha1.8µHz etal.1983),wherethepowerspectrumisfirstdividedinseg- boxcarfilter. Thecoloroftherespectivepowerspectracorrespondstocolor oftheSPM-filterused.Asseenthepowerlevelsareclearlyhighestintheblue ments corresponding to the so-called large separation given band,followbythegreenbandandlastlytheredband.Inordertomakethe by the frequency difference between modes of same degree distinctionbetweenthepowerspectraeasiercircleshavebeenaddedonthe and consecutive radial order. Subsequently these segments peaksofthecentral(cid:96)=0,1modesfortheredandthegreenpowerspectra. SeealsoFigure12forthepositioninwavelengthofthedifferentfilters. arestackedontopofeachother. Inpractice,thefrequencyis plottedagainstitsmodulotothelargeseparation-wehaveon 2. SOLARANALYSIS the ordinate plotted the mid frequency of the respective seg- 2.1. Data ments. Inordertoobtainanicerepresentationoftheridges, itiscustomarytoaddanarbitraryvaluetothefrequenciesbe- ForthesolaranalysisweusedthedatafromFro¨hlich(2009) foretakingthemodulo,therebyallowingashiftoftheridges with the corrections described therein. More specifically we on the abscissa (see, e.g., Bedding 2011). In Figure 4, we use 12 yr data sets from the three Sun photometers (SPM) of the VIRGO instrument on-board the ESA/NASA SoHO4 showthee´chellediagramofthepowerspectrumfromthered band,herealsowiththeModelSfrequenciesover-plotted. In spacecraft. Themidwavelengthsofthesephotometersareat Figure5,wegivethesamee´chellediagram,thoughinanar- 402nm(blue),500nm(green),and862nm(red).Thepower rowerfrequency range. To makeclearer the excessfrom the spectra computed from the corrected time series are shown (cid:96) = 4 and (cid:96) = 5 modes, the power spectrum has been di- in Figure 1. These were calculated using a sine-wave fitting videdbyalinearrepresentationofthestellarbackground,and method(see,e.g.,Kjeldsen1992;Frandsenetal.1995), nor- thecolorshavebeentruncatedsuchthatthemaximumcorre- malized according to the amplitude-scaled version of Parse- spondsroughlytothehighest(cid:96)=3mode. val’s theorem (see Kjeldsen & Frandsen 1992), in which a sine wave of peak amplitude, A, will have a corresponding peakinthepowerspectrumofA2. 3. ENHANCINGTHEDETECTABILITY The peak seen at 5555µHz is an artefact and stems from Tomakeeasierthedetectionofthe(cid:96)=4and(cid:96)=5modes theDataAcquisitionSystem(DAS)ofVIRGOwhichhavea in stars other than the Sun, we propose here a simple three corresponding reference period of 3 minutes (Jime´nez et al. step method that should accomplish this. Firstly, the power 2005). spectrum is stretched, this is described in Sections 3.1-3.2. Secondly, the power spectrum is smoothed in Section 3.3. 2.2. (cid:96)=4and(cid:96)=5Modes Thirdly,thestretched,smoothedpowerspectrumiscollapsed in Section 3.4. The final spectrum we tentatively name the In Figure 2, we show a zoom-in around the frequency of SC-spectrum(Straightened-Collapsed). maximumpower,ν ,ofthepowerspectraaftera1.8µHz max binninghasbeenapplied. Inthisfigure,wehaveindicatedfrequenciescomputedfrom 3.1. ParameterizationofthePowerSpectrum the solar structure model Model S (Christensen-Dalsgaard Inthefirststep,weparameterizethepowerspectruminor- etal.1996). Thesefrequencieshavebeencorrectedfornear- dertoaccountforthepossibledeparturesfromtheasymptotic surfaceeffectsasdescribedbyChristensen-Dalsgaard(2012, descriptionoftheconstituentmodes. Themotivationforthis Equation(14)). stepis,thatintheendweneedtocorrectforsuchdeparturesin Fromamerevisualinspectionofthisfigure,itisquiteclear ordertofacilitatetheco-addition(collapsing)ofpowerfrom that the prominent peaks in the power spectrum agree with many radial orders of a specific degree . This is inspired by thefrequenciesfromModelS.Thisisofcoursetobeexpected astepintheOctavecode(Hekkeretal.2010),wherethefre- consideringthatModelSiscalibratedtomatchtheSun.How- quency scale of the power spectrum is modified to account ever, the match also includes many of the Model S (cid:96) = 4 for departures in the asymptotic description and thereby ob- (hexadecapole) and (cid:96) = 5 (dotriacontapole; Ellis & Gough 1988) modes, confirming that it is indeed signal from (cid:96) = 4 5TheLuminosityOscillationsImager(onSoHO). 6MichelsonDopplerImager(onSoHO). 4SolarandHeliosphericObservatory. 7GlobalOscillationNetworkGroup. SEARCHFOR(cid:96)=4AND(cid:96)=5MODES 3 ℓ=0 0.0007 ℓ=1 0.0006 ℓ=2 0.0005 ℓ=3 0.0004 ℓ=4 ℓ=5 0.0003 0.0002 RED SPM 0.0001 0.0025 ]0.0020 2m p p0.0015 [r e w0.0010 o P 0.0005 GREEN SPM 0.006 0.005 0.004 0.003 0.002 0.001 BLUE SPM 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 Frequency [µHz] Figure2. Zoom-inonthepowerspectraoftheVIRGO-SPMdata,binnedinsegmentscovering1.8µHz.Thecoloroftherespectivepowerspectracorresponds tocoloroftherespectivetheSPM-filterused. Notethedifferentverticalaxes. ThepositionsofsurfacecorrectedModelSfrequencieshavebeenindicatedby verticallines,showingaclearcorrespondencetotheobservedpeaksinthepowerspectra.Thelegendgivesthecolorsandlinestylesusedforthedifferentmode degrees. 1e−4 1e−4 ℓ=4 ℓ=4 2.6 ℓ=5 ℓ=5 2.4 2.4 ] ]2.2 2m 2m p p p p [er 2.2 [er 2.0 w w o o P P 2.0 1.8 1.8 1.6 2990 3000 3010 3020 3030 3040 3050 3060 3130 3140 3150 3160 3170 3180 3190 Frequency [µHz] Frequency [µHz] Figure3. Zoom-insontwocentralorders(n=19,20)ofthepowerspectrumfromVIRGOdataoftheredSPM-filter.A1.8µHzboxcarsmoothinghasbeen applied.Theverticallines(twodrawnforeachdegree)showtherangeinthemodefrequencyestimates(includingerrorbars)fromLOI(Appourchaux&Virgo Team1998),BiSON(Broomhalletal.2009)(only(cid:96)=4),MDI(Larson&Schou2008),BiSON+LOWL(Basuetal.1997),andGONG(only(cid:96)=5)(Komm etal.2000).Asseen,thecorrespondencebetweentheseestimatesandtheVIRGOdataisunequivocal. tainahighersignalinthepower-spectrum-of-power-spectrum Bedding&Kjeldsen2010). (PS⊗PS). It is well-known from both theory and observations (see, We start from the following version of the asymptotic fre- e.g., Mosser et al. 2011; Kallinger et al. 2012; Mosser et al. quencyrelation(Tassoul1980), whichtoagoodapproxima- 2013) that Equation 3.1 is in fact only an approximate de- tion is applicable to acoustic modes of high radial order n, scription as ∆ν, D , and (cid:15) all have small dependencies on 0 andlowangulardegree(cid:96): both frequency and degree. There exist departures from the asymptoticdescriptiononbothsmallandlargescales. Small- ν =∆ν(n+(cid:96)/2+(cid:15))−(cid:96)((cid:96)+1)D . (3.1) n(cid:96) 0 scaleoscillationsinthelargeseparationoriginate,e.g.,from Inthisequation,∆ν isthelargeseparation,(cid:15)isadimension- sharp changes in the sound-speed profile (one source being lessoffsetsensitivetothesurfacelayers,andD isaquantity theHe II ionizationzone;Houdek&Gough2007)-wewill 0 sensitivetothesound-speedgradientnearthecoreofthestar not account for this in the following. The larger scale de- (see, e.g.,Scherreretal.1983;Christensen-Dalsgaard1993; partures manifest themselves as overall curvatures or tilts of 4 LUNDETAL. asymptoticrelation(seealsoMosseretal.2011,2013): ℓ=4 ℓ=2 ℓ=0 ℓ=5 ℓ=3 ℓ=1 ν˜n(cid:96) =∆νpivot(n+(cid:96)/2+(cid:15))−(cid:96)((cid:96)+1)D0 (3.2) 4000 dD −(cid:96)((cid:96)+1) 0(n−n ) dn pivot 3500 Hz] +(n−n )2d∆ν/dn. [µcy 3000 pivot 2 uen We have denoted this model frequency by ν˜n(cid:96) to indicate q thatthisisapredictedvalueonly. ∆ν denotesthevalue e pivot Fr2500 of the large separation at n = n (various formulations pivot exist for finding ∆ν , see, e.g., Kallinger et al. 2012). Here 0 2000 npivot (which is not constrained to be of integer value) can be seenasthe pivotpoint forthe variationsin boththe large separationandD -thefrequencyatwhichn∼n isgen- 1500 0 pivot 0 20 Fr4e0quency6 0mod 13850.19 [µH1z0]0 120 erally coinciding with the frequency of maximum power of themodes,ν . InthedescriptionofEquation3.2,wehave max Figure4. E´chellediagramofthe1.8µHzsmoothedpowerspectrum, red assumedthatthevariousparametersarefrequency-dependent SPMband.TheModelSfrequenciesindicatedareofdegrees;(cid:96)=0(blue), ℓ=4 ℓ=2 ℓ=0 ℓ=5 ℓ=3 ℓ=1 onlyandneglectedanypotentialdependenciesonangularde- (cid:96) = 1(red),(cid:96) = 2(green),(cid:96) = 3(magenta),(cid:96) = 4(cyan),and(cid:96) = 5 (yellow).Thegrayscalegoesfromwhite(lowpower)toblack(highpower), gree. In the following, we will not touch upon the physical andisgivenonalogarithmicscale. meaning behind the frequency dependencies in ∆ν and D 0 but merely use them in our parameterization of the frequen- ciesinthepowerspectrum. The interested reader is referred for instance to Tassoul (1980), Houdek & Gough (2007), and most recently Mosser 3600 et al. (2013) and references therein for more on the physics behindthedepartures. Hz]3400 3.2. ModifyingtheFrequencyScale µ [y Themodificationorstraighteningofthefrequencyscalein c n3200 thepowerspectrumcomesdowntothreesteps: e u q e Fr 1. FittingoftheparameterizationgivenbyEquation3.2. 3000 Thefittingofthemodesisbestillustratedinthee´chelle diagram described in Section 2.2, and we will do so 2800 fromnowonward. 0 20 40 60 80 100 120 If only observed frequencies are available, e.g. Frequency mod 135.19 [µHz] from peak-bagging (e.g. Appourchaux 2003), Figure5. Zoom-inonthee´chellediagraminFigure4. Toenhancethevis- the above parameterization is simply fitted to ibilityofthe(cid:96)=4,and(cid:96)=5modesthepowerspectrumhasfirstbeendi- these frequencies, with the free parameters being videdbyalinearfunctionapproximatingthestellarbackground,furthermore Ψ={d∆ν/dn,D ,dD /dn,(cid:15),n }. Note that thecolorshavebeentruncatedsuchthatthemaximumpowerlevel(black) 0 0 pivot correspondsroughlytothehighest(cid:96)=3modes.Thepowerexcessfromthe even if the identification of the modes with respect to soughtformodesclearlylinesupwiththeModelSfrequencies-theconven- theradialorderiswrongagoodfitcanstillbeobtained tionrelatingcolortodegreeisthesameasadoptedinFigure4,asistheorder as n is a free parameter. The large separation pivot ofthedegreeoftheridges. ∆ν is not included in the optimization as this can be determined relatively easily, and any small deviations from∆ν atn canbeaccountedforby(cid:15). pivot pivot Ifontheotherhandastellarmodelwithcomputedfre- quencies is available, and which after applying a sur- facecorrection(e.g.,Kjeldsenetal.2008a)matchesthe the ridges in the e´chelle diagram. With the larger scale de- observed data well, one can apply the fitting to these partures in mind, Hekker et al. (2010) described one way modeled frequencies. Here it is then possible to use to find the variation in the large separation as a function of alsothemodelcalculatedfrequenciesforthe(cid:96)=4and the radial order, d∆ν/dn (see also Mosser & Appourchaux (cid:96)=5modesinthefitting. 2009; Roxburgh 2009). This variation in the large separa- tion was used in Campante et al. (2010), where it was intro- Withthisfirststep,weobtainestimatesfortheparame- ducedintheasymptoticrelationasatermquadraticinn-we tersenteringEquation3.2. willfollowthesameprocedureforthisterm. Thesmallsep- 2. Estimatefrequenciesforatargeteddegree. aration δν ≡ν −ν =6D , and in turn D , is 02 n(cid:96)=0 n−1(cid:96)=2 0 0 fortheSunfoundtodecreasealmostlinearlywithfrequency The reason for selecting a specific degree (the ”tar- (Elsworthetal.1990). Withthisinmind,weintroducetoour geted” degree) is that as we have included a variation modified asymptotic relation a term dD/dn which is linear in D in our parameterization, we cannot modify the 0 in n. We end up with the following modified version of the frequencyscale(asinHekkeretal.2010)suchthatall SEARCHFOR(cid:96)=4AND(cid:96)=5MODES 5 degrees fulfil Equation 3.1. The reason for this is the factor of (cid:96)((cid:96)+1) on the term describing the variation dependingonD0,makingthisterm(cid:96)-dependent. νnℓ - Measured From the estimated parameters (Ψ) found above one ˜νnℓ - Estimated from fit can now use Equation 3.2 to estimate the frequencies Interpolation "I" of ˜νnℓ νs˜tna(cid:96)ncoefabesptheceifi(cid:96)c=or4taorgre(cid:96)te=dd5egmreoed.eTs.hiOsnceouslhdofuoldribne- ∆ν0ν)old d I( awarethatsmallerrorsin(cid:15)andD cancauseabigoff- o 0 m set in the estimate of, e.g., the (cid:96) = 4 or (cid:96) = 5 mode y δν frequencies.ThebiggestissueisD0duetothefactorof enc | | (cid:96)((cid:96)+1)onthisparameter;furthermore,thisvalueisone u q ooffdthifefemreonsttddeigffireceulatroenneesetdoedc.onInstcraoinntraasstm,(cid:15)an(aynmdo∆dνes FreI(ν)0 0 forthatmatter)canbefairlywellconstrainedbymodes of the same degree. This issue is mainly a concern if thefitoftheparameterizationinstep(1)ismadetoob- servedfrequenciesonly,e.g.,ofpeak-baggedmodesup ν0 νold to(cid:96)=2,andthedesireistoidentifypowerfrommodes Frequency ofahigherdegree,e.g. (cid:96) = 4or(cid:96) = 5. Theconcern Figure6. Illustrationoftheconceptatthebaseofthestraighteningproce- becomesirrelevantifawell-matchingmodelexists. dure.Thefigurecanbeseenasaflippede´chellediagram,withthefrequency astheindependentvariableandthemoduloofthefrequencywiththelarge 3. Correct for deviation from Equation 3.1 for a specific separationasthedependentvariable.Theopenthick-edgecirclesgive”mea- sured”frequencies,meaningfrequenciesobtainedfromeitherpeak-bagging degree. orfromastellarmodel. Equation3.2isfittedtothese. Openthin-edgecir- Wenowwishtotakeoutthedependenciesonfrequency clesgivethe”estimated”frequencies,i.e.,theonesfoundwiththebestfitof Equation3.2foragivendegree. Thesolidblacklinegivestheinterpolation in the modes spacings. This is to get a power spec- betweentheseestimatedfrequencies.Thereferencefrequencyν0definesthe trum that for modes of a targeted degree follow Equa- correction,δν,thatshouldbeappliedtoavalueνoldonthefrequencyscale tion 3.1 more strictly, i.e. with equidistance between inordertoobtainapowerspectrumthatforaspecifictargeteddegreefollows modefrequencies-equivalenttoastraightridgeinthe Equation3.1moreclosely. e´chellediagram. Thisisaccomplishedbychangingthe the interpolation to the frequencies estimated from the ob- frequency scale in the power spectrum using frequen- tained fit of Equation 3.2. The dashed black lines give the ciescomputedinstep(2)forthemodesofthetargeted behaviorofthefitafterthestraighteningprocedure, withthe degree. straightened Model S frequencies now given as circles. The straightening is targeted at the (cid:96) = 4 modes, and they now An interpolation is made between the computed mode forma verticalline. Asseen, the positiononthe abscissa of frequencies from step (2) as the independent variable thisverticallineisgivenbythevalueofthefitatthechosen and their modulo with the large separation as the de- referencefrequencyν . Thereferencefrequencyisgivenby pendent variable - this would correspond to a flipped 0 the horizontal dashed black line, and were here set equal to e´chellediagram,seeFigure6. Wedenotetheobtained ν =3150µHz. Intherightpanelthesameprocedureis interpolationby”I”. max,(cid:12) followed,buthereonlythemodeshaving(cid:96)=0−2wereused. Thisinterpolationnowfollowstheridgeinthee´chelle Theuseoflessmodesleadstoafit(step1)withapoorlyde- diagramfromthecomputedfrequenciesofthetargeted terminedvalueofD (mainly),whichinturnresultsinabad 0 degree. We can now for every frequency (νold) in the estimationof(cid:96)=3−5modes(step2). Whenusingthebadly frequencyscaleofthepowerspectrumcomputeanew estimatedvaluesof(cid:96)=4modesinthestraightening(step3), modifiedfrequency(νnew)byaddingavalueδν: an offset between the actual (straightened Model S frequen- cies)andpredicted(straightenedestimatedfrequencies)value ν =ν +δν. (3.3) new old ontheabscissaofthestraightened(cid:96)=4modesisseen. This added value is obtained from the interpolation as (seeFigure6) 3.3. Smoothing For every mode of degree (cid:96), there are 2(cid:96) + 1 degenerate δν =I(ν )−I(ν ). (3.4) 0 old m-componentsranginginvaluefrom−(cid:96)to+(cid:96),withmbeing With this value of δν the reference frequency sets the theso-calledazimuthalorder.Thedegeneracyofthesemodes position on the abscissa of the targeted ridge in the is lifted when the star rotates, with the m-components being e´chelle diagram - by choice we set the reference fre- spreadoutinfrequencyandtherebytakingawaypowerfrom quency equal to the value of ν . As we wish to co- the central frequency at m = 0. In the straightening proce- max addthesegmentedpowerspectrum,weneedintheend dure, itisthepositionofthiscentralm = 0componentthat tomapthemodifiedpowerspectrumontoafrequency isfound. scalewitharegularstepsize. For this reason, we apply a smoothing to the straightened powerspectruminordertoboostthedetectability,asitisde- InFigure7,themethodofstraighteninghasbeenappliedto sirabletomergethepowercontainedintherotationallysplit ModelSfrequencies. IntheleftpanelthefitofEquation3.2 m-components. Theeffectfromthismergingofpowertothe ismadetoModelSfrequencies(squares)withdegrees(cid:96)=0 central frequency will depend on the size of the rotational (blue), (cid:96) = 1 (red), (cid:96) = 2 (green), (cid:96) = 3 (magenta), (cid:96) = 4 splitting compared to the mean mode width. If the splitting (cyan), and (cid:96) = 5 (yellow). The solid black lines illustrate isverylargecomparedtothemodewidththesmoothingwill 6 LUNDETAL. 4500 4500 4000 4000 Hz] Hz] µ µ [y 3500 [y 3500 c c n n e e u u q q e3000 e3000 r r F F 2500 2500 2000 ℓ=5 ℓ=3 ℓ=1 ℓ=4 ℓ=2ℓ=0 2000 ℓ=5 ℓ=3 ℓ=1 ℓ=4 ℓ=2ℓ=0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 Frequency mod 135.19 [µHz] Frequency mod 135.19 [µHz] Figure7. MethodofstraighteningappliedtoModelSfrequencies,targetingmodeswith(cid:96) = 4. IntheleftpanelthefitofEquation3.2ismadetoModelS frequencies (squares) with degrees (cid:96) = 0 (blue), (cid:96) = 1 (red), (cid:96) = 2 (green), (cid:96) = 3 (magenta), (cid:96) = 4 (cyan), and (cid:96) = 5 (yellow). The solid black lines following these frequencies illustrate the interpolation of the obtained fit. The dashed black lines give the behavior of the fit after the straightening procedure,withthestraightenedModelSfrequenciesnowgivenascircles. Notethatthefrequenciesofthetargeted(cid:96) = 4modesformaverticalline. The valueofν0 isindicatedbythedashedhorizontalblackline. Therightpanelshowsthesamefit,buthereonlymodesofdegree(cid:96) = 0−2wereincludedin thefitofEquation3.2.Asseen,thefitisnownoticeablyworseandthepositionofthestraighteningridgenolongeragreeswiththepredictedposition(dashedline). notmergemuchofthepowerfromdifferentm-components. 3.4. CollapsingthePowerSpectrum However, the smoothing will in any case decrease the point- Prior to this final step in the construction of the SC- to-pointscatterinthepowerspectrumfromtheχ2 noise, al- spectrum, we assume that the stellar noise background has lowinganyunderlyingstructurestostandoutmoreclearly. In beenfittedandcorrectedfor. addition,thesmoothingtakesouttheimpactofsmallwiggles Whencollapsingthepowerspectrum,wewillbeco-adding that unavoidably will be present in the ridge for the degree the segmented power spectrum. As the modes in the power of interest, even after the straightening procedure. The wig- spectrumhaveadecreasingsignal-to-backgroundratio(SBR) glesfromforinstancetheHeIIionizationzonewillalsostill awayfromthepeakatν ,weweightthepowerasafunc- bepresentinthestraightenedridgeaswedidnotaccountfor max tionofthedistancefromthisfrequency. Thisisdoneinorder these. Itisdifficulttodeterminethesmoothinglevelthatop- tonotsimplyaddnoisetothecollapsedspectrumwhenusing timizesavisualdetection,asthisindeedisaveryqualitative frequenciesfarawayfromν . measure, and the impact of a given smoothing level will de- max The envelope of the p-modes is most often described by a pend on the rotational splitting, mode width and inclination Gaussianfunction, andwechosethisasourweightingfunc- angle of the specific star. Also, a ”too high” smoothing can tion resultinasignificantmergingofpowerfromcomponentsof (cid:18) (ν−ν )2(cid:19) different degrees, which is undesirable. To visualize the im- G(ν)=exp − max . (3.6) pact of the rotational splitting we can look at the visibility 2σ2 env within a multiplet, which depends on the stellar inclination Mosser et al. (2012a) give the following relationship be- throughthevisibilityfunctionE (i)givenby(Dziembowski (cid:96)m 1977;Gizon&Solanki2003) tweenνmaxandthefullwidthathalf-maximum(FWHM),and therebythespreadoftheGaussianenvelope: ((cid:96)−|m|)!(cid:104) (cid:105)2 E(cid:96)m(i)= ((cid:96)+|m|)! P(cid:96)|m|(cosi) , (3.5) FWHM ≈0.66νm0.a8x8 ⇒ (3.7) 0.66ν0.88 σ ≈ max . (3.8) env (cid:112) where P|m| is the associated Legendre function, and i is the 2 2ln(2) (cid:96) stellar inclination, giving the angle between the stellar ro- Withthis,wecanconstructthenewweightedpowerspectrum tation axis and the line of sight, such that a pole-on view tocollapse: corresponds to an inclination of i = 0◦. See, e.g., Ap- pendix A of Handberg & Campante (2011) for the E(cid:96)m(i) Pnew(ν)=Pold(ν)G(ν). (3.9) factorsupto(cid:96)=4. The power spectrum which now has a modified frequency The behavior of E (i) for (cid:96) = 4 and (cid:96) = 5 modes is (cid:96)m scale and weighted power values is then collapsed to form illustrated in the top panel of Figure 8 as a function of the the SC-spectrum, and the steps taken should ensure that the stellarinclination.Anequivalentrepresentationisgiveninthe signalfromthedegreeofinterestshouldbebetterdefinedin lowerpanelofFigure8, wherethevisibilitiesinrotationally frequency and easier to identify in power. Notice, that the splitmultiplesof(cid:96) = 4(left)and(cid:96) = 5(right)areplottedin applicationofEquation3.3onthepowerspectrumresultsas grayscaleasafunctionofinclination(see Gizon&Solanki wanted in frequency equidistance of the modes for the tar- 2003). Herethespreadofpowerinfrequencyfromm = 0is geted degree, but for modes of another degree it will gener- quiteclear,especiallyathighinclinationangles. ally have the opposite effect; equivalently, when the power spectrumiscollapsedingeneralonlythetargeteddegreewill SEARCHFOR(cid:96)=4AND(cid:96)=5MODES 7 0.40 m=0 modes experiencing the largest effect of the mode bumping 0.35 m=1 shouldbeleftout. (i)m00..3205 mmm===234 froAmnoththeemr aosdpeesct(cid:96)to=b0e−aw5arweiollftiossthoamtetheextceonldlapbseedcopnotawmer- =4,0.20 inated with power from even higher degree modes. As also ℓE0.15 mentionedin,e.g.,Appourchaux&VirgoTeam(1998)(cid:96)=1 0.10 modesarepollutedby(cid:96) = 6and(cid:96) = 9modes, while(cid:96) = 7 0.05 modes fall in the proximity of the (cid:96) = 4 modes, (cid:96) = 8 near 0.00 m=0 0.35 m=1 the(cid:96)=5modes,andsoforth. Forthisreason,itwillfurther- 0.30 m=2 more be very unlikely to pick up isolated signals from, e.g., (i)=5,m00..2205 mmm===345 (cid:96)=If6hy−po8thmeosidseste.sting is desired on the collapsed spectrum, ℓE0.15 intheformofforinstanceanH0 test,thelaststepofweight- 0.10 ing could be left out, and a binning of points rather than a 0.05 smoothingwouldbemoresuitable. 0.00 0 10 20 30 40 50 60 70 80 90 Inclination [◦] 4. ANALYSISOF16CYGAANDB We will now apply the method of the SC-spectrum to the 90 90 twosolaranalogues16CygA8(G1.5V)andB9(G3V).These 80 80 two very similar stars are in fact part of a hierarchal triple system(16Cygni),withafaintMdwarfasthethirdcompo- 70 70 nent. The most striking difference between the two stars is thatmeasurementsinradialvelocityshow16CygBtohosta 60 60 ] ] Jupiter-massplanetinahighlyellipticalorbit(Cochranetal. ◦ ◦ on [50 on [50 1997). Thesecondmajordifferencebetweenthetwostarsis ati ati theLi-abundance,whichforsomereasonseemstobereduced clin40 clin40 in the A-component by a factor of ≥ 4.5 relative to the B- n n I I component(see,e.g.,Frieletal.1993). Becauseofthesolar 30 30 similarityandchemicalpeculiaritiesofthetwomaincompo- 20 20 nentsthissystemhasbeenstudiedbynumerousgroups, see, e.g., Schuler et al. (2011), and references therein for exam- 10 10 plesofthechemicalabundanceanalysis. Withitspositionin the sky (Cygnus - The Swan), the system is fortuitously ob- 0 0 −2 Fr−e1quen0cy [µH1z] 2 −2 Fr−e1quen0cy [µH1z] 2 served by the Kepler satellite. The Kepler magnitudes10 of these stars, 5.864 (16 Cyg A) and 6.095 (16 Cyg B), make Figure8. ToptwopanelsgivethefunctionalformofE(cid:96)=4,m(i)(first)and them some of the very brightest stars in the Kepler field-of- E(cid:96)=5,m(i)(second). Them = 0component(blue)goestoavalueof1at view, and ideal for asteroseismic studies. Such an astero- i = 0◦. Bottomtwopanelsrenderthesameinformation,onlyhereatop viewoftherotationallysplitmultiplets(νs =0.37µHz)isshown,withthe seismicstudyhasrecentlybeenconductedbyMetcalfeetal. visibilitiesofdifferentazimuthalcomponentsgivenbythegrayscale,ranging (2012, hereafter MC12), where both stars were peak-bagged fromblack(highvisibility)towhite(lowvisibility)(Gizon&Solanki2003). andsubsequentlymodeled-wewilluseresultsanddatafrom Theverticaldashedlinesshowthepositionsofthesplitm-components. thisstudyinouranalysis. haveamorewell-definedsignalpeakwhilethepeaksofother Thereasonforchoosingthesestarsasastartingcaseforthe degreeswilltendtobesmearedouttosomeextend. search of (cid:96) = 4 and (cid:96) = 5 modes is that both of them have Evenwiththeaboveweightening,modesfarfromνmaxwill alreadyshownclearlydetectableoctupole(cid:96) = 3modes. The mainly contribute noise to the SC-spectrum. Therefore, one prospectsofhavingdetectablemodeswith(cid:96)>3yieldssome should preferably only include a relatively small number of very strong constraints on the stellar models. This comes in centralorders. Theoptimumnumberofovertonestoaddfor addition to the constraint on the allowed model differences aspecifictargetwilldependonthe SBR asafunctionoffre- fromthebinarityofthesystem. quencyforthatspecifictarget,inadditiontothelargesepara- As of now, it has not been possible to constrain the incli- tion,andisthereforenoteasilygeneralized. nation angles of the stars using asteroseismology, but work iscurrentlybeingdonetoresolvethisissue(G.Davies2013, 3.5. Remarks privatecommunication). ThechoiceofmodesinthefittingofEquation3.2isimpor- 4.1. KeplerData tant. As seen in the e´chelle diagram of the Sun in Figure 4 theridgeshaveingeneralan”S”-shapefromthevariationin For both stars, we used short cadence (SC, ∆t = 58.85s; thelargeseparation.Thesectionoftheridgethatiswellfitted Gilliland et al. 2010b) data from quarters Q7-Q13, corre- by a quadratic term in n is only the top part of this ”S” (or, sponding in the end to ∼643 days, all downloaded from the equivalently,onlythelowerpart),i.e.,fromabout2400µHz KASOC webpage11. The stars were not observed in SC in and up. As seen the curvature of this upper part of the ”S” 8KIC12069424,HR7503,HD186408. is quite well centred around ν at around 3150µHz. So, max 9KIC12069449,HR7504,HD186427. usingmodesthatliefarawayfromν canresultinabadfit max 10 KeplermagnitudesarenearlyequivalenttoRbandmagnitudes(Koch ofEquation3.2. etal.2010). Formoreevolvedstars,mixedmodesshouldasfaraspos- 11KeplerAsteroseismicScienceOperationsCenter:kasoc.phys.au. sible be excluded from the fit to the modes - so, e.g., (cid:96) = 1 dk. 8 LUNDETAL. Q0-Q5. Asbothstarsarehighlysaturated12 Thesedatahave 5. RESULTSONDETECTABILITYFROMBONAFIDEDATA therefore not been included in our data sets. The data type WeappliedthemethodpresentedinSection3totheKepler used is the uncorrected simple aperture photometry (SAP). dataof16CygAandB.Figure10givesthee´chellediagrams Thecorrectionofthetimeserieswasdonebyhigh-passfilter- of the two stars, with the same color convention for the dif- ingindividualsub-quarters(∼1month)byaonedaymoving ferentdegreesasusedinFigure7fortheSun. Inthefigure, medianfilter.Baddatapoints(oroutliers)werethenremoved, observed mode frequencies are given as white stars with as- with a bad datum being identified as one having a point-to- sociated errorbars. Model frequencies (see Section 6.1) are pointfluxdifferencefallingoutside3σ -withσ foundasthe given as circles, with the distinction that filled circles were standarddeviationofthepoint-to-pointfluxdifferencesofthe used in the fitting of Equation 3.2, while white circles were entire time series (Garc´ıa et al. 2011). We did not estimate left out - see Section 3.5 for the considerations made in the this standard deviation (STD) directly but used instead the selection of modes to include in the fit. In the plot, we have morerobustmedian-absolute-deviation(MAD),andfromthis indicated the radial order n of the (cid:96) = 0 modes. The fit to estimatedtheSTDviathescalingSTD=1.4826×MAD13. themodelfrequencieswasmadewiththestraighteningofthe Thefilteringofbaddatapointswasperformediterativelyfour (cid:96)=4ridgeinmind,andtheblacklinedepictstheobtainedfit times. Inaddition,weusedthe”Quality”14 entryintheFITS (similarcurvesofcourseexistfortheotherdegrees,seeFig- filesfortheSAPtoremovepointswithknownartefacts. The ure7).Thedashedcyanlinegivesthepositionoftheridgeaf- finaltimeserieshaddutycycles15 of85.7%(16CygA)and terthestraightening,withthereferencefrequencyν (dashed 0 82.2%(16CygB).Withthesedutycyclesinmindthespec- blackline)setequaltothevalueofν obtainedfromfitting max tral windows for the two stars were checked, and we found Equation 4.1 to the power spectra, viz., 2101µHz (16 Cyg no significant leakage of power into side-lobes. In any case, A) and 2552µHz (16 Cyg B). The regions between the two thesmoothingofthepowerspectrumshouldensurethanany thin horizontal lines give the range chosen in the collapsing potentiallyleakedpowerisstillaccountedfor. ofthestraightenedpowerspectra, i.e., the∼7ordersclosest The power spectra (see Figure 9) were calculated in the toν .Thisregionlargelycoincideswiththeregionwherein max samemannerasforthesolardata,exceptfortheuseofstatis- (cid:96)=3modesarereadilyobserved. ticalweightsinthecomputation. Weightswerecomputedas In Figure 11 the SC-spectra are shown, and rendered in a wi = 1/σi2, withσi foundfroma3daywindowedMADof multitudeofdifferentamountsofappliedsmoothing. Thetop thecorrectedtimeseries. twopanelsgivethefullSC-spectra,whilethebottomtwopan- For the modeling of the stellar background signal, we use elsshowzoom-inversions. Thedashedcyanlineindicateas asumofpowerlaws(Harvey1985),hereintheversionpro- inFigure10thepositionofthestraightened(cid:96) = 4ridge,and posed by Karoff (2008) (see also Huber et al. 2009), and in therebygivetheexpectedpositionofthepossibleexcessfrom addition, we add a Gaussian function to account for the ex- (cid:96) = 4 modes. The horizontal lines give the median value of cessp-modepower: the SC-spectrum in the minimum and maximum smoothing cases. Thesehavebeenaddedsimplytoestablishareference B(ν)=(cid:88)3 4σi2τi (4.1) levelinthespectrum. Forbothstarsweseeariseinthecol- 1+(2πντ )2+(2πντ )4 lapsedpowerattheexpectedpositionofthe(cid:96)=4ridge,while i i i=0 noclearexcesspowerisseendirectlyinthepowerspectrafor +A exp(cid:18)−(ν−νmax)2(cid:19)+B , theexpectedfrequenciesofindividualmodes. 2σ2 N We also applied the method targeting the (cid:96) = 5 ridge, but g herenonoticeablerisewasseeninthecollapsedpower. The where BN is the white shot-noise component, σi is the rms (cid:96) = 5ridgeisinanycasemoredifficulttocaptureduetoits intensityofthe ithnoisecomponent, τi isthecorresponding closeproximitytothestrong(cid:96)=0modes. timescaleofthenoisecomponent,Aandσgaretheamplitude Modelfrequencieswereobtainedfromthestellarmodelde- and spread, respectively, of the p-mode envelope. The three scribed in Section 6.1 below, and no other model was tested backgroundcomponentsincluded,andshowninFigure9,ac- for the straightening. However, we note that the small sep- countfortheactivity(magenta),granulation(green),andfac- aration δν seems to be correctly reproduced as the model 02 ulae (blue) signals, respectively. When correcting the power frequenciesmatchwellwiththeobservedvaluesforboththe spectrum for the stellar background, we of course leave out (cid:96) = 0and(cid:96) = 2ridges. Fromthedefinitionofδν as6D 02 0 the Gaussian p-mode envelope (dashed white) from the full (seeSection3.1)thismeansthatD isapproximatelycorrect 0 fit(thickred). andthe(cid:96) = 4ridgeshouldthereforebelocatedatnearlythe sameplaceinthee´chellediagramsforallthemodelsthatcor- rectlyreproduceδν . 02 12 ThesaturationlimitforKepler isaboutKp ∼ 11.5(Gillilandetal. 6. SIMULATEDPOWERSPECTRA 2010a)largecustomaperturemasksareneededinordertocaptureasmuch In order to check if a potential excess power in the SC- fluxaspossible. However,theSCobservationsmadeinpartsofQ6didnot spectrum is in line with what can be expected for (cid:96) = 4 or makeuseofcustommasksontheCCDwhichresultedinaratherpoordata quality. (cid:96)=5fromthecurrentamountofobserveddata,wesimulated 13Themultiplicativefactorof1.4826converts(approximately)theMAD thepowerspectraof16CygAandB.Thisalsoenablesatest foranormaldistributiontoaconsistentmeasureoftheSTD,andcanbefound on the impact of longer observing times on the detectability as1/Φ−1(3/4),withΦ−1representingtheinversecumulativedistribution ofthe(cid:96)=4and(cid:96)=5modes,andtherebyhinttotheneeded functionorquantilefunction. amountofdataforasoliddetection. Furthermore,wecanin- 14ThebitvaluesofvariousknownartefactscanbefoundinFraquelli& Thompson(2012). vestigatetheroleofthecurrentlyunknownstellarinclination 15 Percentageoffinalnumberofpointstothetotalexpectednumberof angles, and test the effect of applying different amounts of pointsgiventhelengthandcadenceofthetimeseries. smoothing. In the following, the various aspects underlying SEARCHFOR(cid:96)=4AND(cid:96)=5MODES 9 PA PA 2m]10-1 PG 2m]10-1 PG p p p p [r [r e e w w PF o o P PF P 10-2 10-2 PS PS 101 102 103 101 102 103 Frequency [µHz] Frequency [µHz] Figure9. Powerspectra(black)of16CygA(left)andB(right)fromQ7-Q13data,smoothedwitha1.8µHzboxcarfilter.Theoptimumfittothebackground (red) includes, besides the Gaussian envelope from p-modes, the signature from activity (PA; magenta), granulation (PG; green), faculae (PB; blue), and white/shotnoise(PS;black).ThedashedwhitelineshowsthebackgroundfitwithouttheGaussianenvelope. 3000 ℓ=3 ℓ=1 ℓ=4 ℓ=2 ℓ=0 ℓ=5 3500 ℓ=3 ℓ=1 ℓ=4 ℓ=2 ℓ=0 ℓ=5 26 25 26 24 25 Hz]2500 2223 Hz]3000 2234 [µcy 2210 [µcy 2221 en 19 en2500 20 qu2000 18 qu 19 e 17 e 18 r r F 16 F 17 15 2000 16 14 15 1500 1500 0 20 40 60 80 100 0 20 40 60 80 100 Frequency mod 103.40 [µHz] Frequency mod 116.97 [µHz] Figure10. MethodfromSection3appliedtoKeplerdataof16CygA(left)andB(right). Thegrayscaleinthesee´chellediagramsrangefromwhiteatlow powertoblackathighpower. Observedmodefrequenciesaregivenaswhitestarswithassociatederrorbars. Modelfrequencies(seeSection6.1)aregivenas circles,withfilledcirclesusedinthefittingofEquation3.2,whilewhitecircleswereleftout.Theblacklinefollowingthe(cid:96)=4ridgeillustratetheobtainedfit toestimatedfrequencies. Theradialorder,n,ofthe(cid:96)=0modesisindicatedbythenumbers. Thetwohorizontalblacklinesgivetherangeinfrequencythat wascollapsedinmakingtheSC-spectrum,whiletheblackdashedlineindicatethefrequencyofνmax. Theverticaldashedcyanlinegivesthepositionsofthe (cid:96)=4ridgeafterthestraightening. thesimulationswillbedescribed,towit,thestellarmodeling, and specific details of the modeling. Notice, that the final the synthetic power spectrum, visibilities, and noise proper- AMP parameters quoted in MC12 were found after using a ties. localized Levenberg-Marquardt optimization algorithm (uti- lizing singular-value-decomposition) to adjust the stellar pa- 6.1. StellarModeling rameters from the values found by the GA, viz., the values given in Table 1. For this reason the values in Table 1 will Forthestellarmodelsneededtocalculatethepulsationfre- differ slightly from the ones given in MC12. With the best- quencies we use pre-existing models16 from the asteroseis- fitting AMP models, we use the ”Aarhus adiabatic pulsation mic modeling portal (AMP; Metcalfe et al. 2009; Woitaszek package”(ADIPLS;Christensen-Dalsgaard2008)tocompute et al. 2010) - see Table 1 for the parameters of the adopted theoscillationfrequenciesincluding(cid:96) = 4and(cid:96) = 5modes. models. ThemodelswereinAMPfoundbyoptimizing(us- Finally, we apply an empirical correction for surface effects ing a parallel genetic algorithm (GA), see Metcalfe & Char- inordertohavemodelfrequenciesthatresembletheobserved bonneau2003)thefitoftheobservedoscillationfrequencies frequenciesof16CygAandBascloselyaspossible.Follow- (published in MC12) and observational constraints to mod- ingtheprescriptionbyKjeldsenetal.(2008a),thefrequency eled oscillation frequencies. The spectroscopic constraints correctionappliedtothemodelfrequenciesisgivenby listedinTable1arefromRam´ırezetal.(2009). Wereferthe reader to MC12 and references therein for the input physics 1616CygA:amp.phys.au.dk//browse/simulation/191 (cid:18)ν (n)(cid:19)b 16CygB:amp.phys.au.dk//browse/simulation/189. δν ≡ν (n)−ν (n)=a obs , (6.1) obs model ν 0 10 LUNDETAL. 5.00 5.00 4.75 4.75 12 4.51 4.51 4.26 10 4.26 4.01 4.01 10 3.76 3.76 Collapsed power 68 12222333........7025702583837272µmoothing window [Hz] Collapsed power 468 12222333........7025702583837272µmoothing window [Hz] 4 1.54S 1.54S 1.29 1.29 2 01..7094 2 01..7094 0.55 0.55 0.30 0.30 0 20 40 60 80 100 20 40 60 80 100 120 Frequency mod 103.40 [µHz] Frequency mod 116.97 [µHz] 5.00 5.00 4.75 1.4 4.75 4.51 4.51 1.4 4.26 4.26 4.01 4.01 3.76 1.2 3.76 Collapsed power11..02 12222333........7025702583837272µmoothing window [Hz] Collapsed power01..80 12222333........7025702583837272µmoothing window [Hz] 0.8 S S 1.54 1.54 1.29 1.29 1.04 0.6 1.04 0.6 0.79 0.79 0.55 0.55 0.30 0.30 0 20 40 60 80 100 20 40 60 80 100 Frequency mod 103.40 [µHz] Frequency mod 116.97 [µHz] Figure11. SC-spectrafor16CygA(left)andB(right)withdifferentamountsofappliedsmoothing. ThetoptwopanelsgivethefullSC-spectra,whilethe bottomtwopanelsshowzoom-inversions. ThedashedcyanlineindicateasinFigure10thepositionofthestraightened(cid:96) = 4ridgeandhencetheexpected positionofapossibleexcessfrom(cid:96)=4modes.ThehorizontallinesgivethemedianvaluesoftheSC-spectraintheminimumandmaximumsmoothingcases. where ν is a reference frequency which we set equal to the 0 Table1 mean of the observed radial modes; b is set to the solar cal- AMPModeling ibrated value of 4.823 (Mathur et al. 2012). The value of a isfoundusingEquation1017 inKjeldsenetal.(2008a). Note Parameter ModelA ModelB that when using Equation 6.1 to correct model frequencies Results outside the range of observed modes one should be aware thatthisparameterizationofthesurfacecorrectionisnotsuit- M(M(cid:12)) 1.10 1.07 R(R(cid:12)) 1.2361 1.1256 able at frequencies far from the observed values due to a L(L(cid:12)) 1.5669 1.2616 frequency-range dependence in the exponent b as the fre- τ(Gyr) 6.5425 5.8162 quencydifferencedoesnotexactlyfollowasimplepowerlaw αML 2.06 2.00 (Kjeldsenetal.2008a). Y0 0.2510 0.2430 Z 0.02239 0.02032 6.2. TheSyntheticLimitSpectrum Teff(K) 5814.01 5771.32 ConstraintsinOptimization Even though it has not yet been possible to extract mean rotation periods from the power spectra of 16 Cyg A and B, Teff(K) 5825±50 5750±50 [Fe/H] 0.096±0.026 0.052±0.021 we can with gyrochronology make a rough estimate for the logg 4.33±0.07 4.34±0.07 rotationperiod. Themeanrotationperiodisfoundusingthe expressionofBarnes(2007): L(L(cid:12))a 1.56±0.05 1.27±0.04 No.offittedmodes 46 41 P =tna[(B−V) −c]b, (6.2) SurfaceCorrectionParameters rot 0 a(µHz) -3.100 -4.927 with parameters n = 0.519, a = 0.773, b = 0.601, and ν0(µHz) 2215.812 2569.344 c = 0.4. Here t is the stellar age in Myr, for which we use aSeeMC12andreferencesthereinforthecalculationoftheluminosity. themodelvaluesgiveninTable1. Thevaluesfor(B−V) 0 are0.64(16CygA)and0.66(16CygB),bothadoptedfrom 17Usingr=1. Johnson&Morgan(1953). UsingEquation6.2onthemodel

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.