ebook img

Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity PDF

13 Pages·2016·0.96 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity

agriculture Article Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity Damage Using a Hyperspectral Sensing Technique JaafarAbdulridha,RezaEhsani*andAnadeCastro CitrusResearchandEducationCenter,UniversityofFlorida,700ExperimentStationRd.,LakeAlfred, FL33850,USA;[email protected](J.A.);[email protected](A.d.C.) * Correspondence:ehsani@ufl.edu;Tel.:+1-863-956-8770;Fax:+1-863-956-4631 AcademicEditor:RitabanDutta Received:1August2016;Accepted:9October2016;Published:27October2016 Abstract: Laurelwilt(Lw)isafataldisease. Itisavascularpathogenandisconsideredamajorthreat totheavocadoindustryinFlorida. ManyofthesymptomsofLwresemblethosethatarecaused byotherdiseasesorstressfactors. Inthisstudy,thebestwavelengthswithwhichtodiscriminate plants affected by Lw from stress factors were determined and classified. Visible-near infrared (400–950nm)spectraldatafromhealthytreesandthosewithLw,Phytophthora,orsalinitydamage werecollectedusingahandheldspectroradiometer. Thetotalnumberofwavelengthswasaveraged intworanges: 10nmand40nm. Threeclassificationmethods,stepwisediscriminant(STEPDISC) analysis,multilayerperceptron(MLP),andradialbasisfunction(RBF),wereappliedintheearlystage ofLwinfestation. TheclassificationresultsobtainedforMLP,withpercentaccuracyofclassification as high as 98% were better than STEPDISC and RBF. The MLP neural network selected certain wavelengthsthatwerecrucialforcorrectlyclassifyinghealthytreesfromthosewithstresstrees. The resultsshowedthatthereweresufficientspectraldifferencesbetweenlaurelwilt,healthytrees,and treesthathaveotherdiseases;therefore,aremotesensingtechniquecoulddiagnoseLwintheearly stageofinfestation. Keywords: Laurel wilt; spectroradiometer; hyperspectral classification; remote sensing; multilayerperceptron 1. Introduction Avocado is the second most important tropical fruit crop in Florida after citrus [1] valued at tens of millions of dollars per year [2,3]. The avocado crop is valuable to the state economy, and the avocado industry brings in a substantial amount of “new dollars” to the state, resulting in an overalleconomicimpactofcloseto$100millionperannum[3]. However,therevenuefromavocado inFloridahasbeengreatlyreduced(by50%)duetotheeffectsoflaurelwilt(Lw)disease[3,4]. Lw diseasehascausedseriouslossesinfruitqualityandquantity,resultinginreducedsales,aswellas anincreaseinagro-industrialwaste,pesticidecosts,andmanagementexpenses[4]. Lwdiseasehas beenreportedasamajorthreattothecommercialproductionofavocadoinFlorida[5,6]. Onevector ofLwdiseaseistheredbayambrosiabeetle[3,4,7,8]. Theredbayambrosiabeetle,Xyleborusglabratus Eichhoff (Coleoptera,Curculionidae,Scolytinae)isassociatedwithfungalsymbiontssuchasRaffaelea lauricola[9,10],afungusthatkillsthetreebyblockingwaterflowtothecanopy[11]. ThesecretionofredbayambrosiabeetlesalivahelpstospreadR.lauricolafromtreetotree[12]. Inaddition, R.lauricolagrowsrapidlyinsidethewoodenstems[5,13]. Thefungireducethetree’s abilitytotransfernutrientsandwatertothebranchesandleaves. Generally,thediseasecausesseveral changes to the plant, such as the change in color of the leaves from green to a red-purple brown, Agriculture2016,6,56;doi:10.3390/agriculture6040056 www.mdpi.com/journal/agriculture Agriculture2016,6,56 2of13 theundersideofthebarkbecomesblack,andsmallporesandholesforminsidetheoutermostlayer ofbark[14]. Allofthesesymptomsmayindicatethepresenceoftheredbayambrosiabeetleinthe tree [9,14]. Many of the disease symptoms are similar to those caused by other diseases such as Phytophthorarootrot(Phytophthoracinnamomi)orfactorssuchaslightningdamage,freezedamage,or droughtstress[15],makingvisualdetectionofLwdifficult. Moreover,thedevelopmentofexternal symptomssignifiescolonizationofthehost[16]. Itmaynotbepossibletomanagethediseaseonce plantsdisplayexternalsymptoms[17]. Therefore,anadvancedandrapidmethodfordetectingLw thatcandistinguishthesebioticandabioticstressesisneeded[18]. Currently, theonlymethodto reducetheeffectofLwisbycompleteremovaloftheinfectedtree,includingtheroot,sothatvectors cannot transfer the disease to healthy trees [2,10,15]. Lw disease has spread very quickly in just a fewyearsthroughFloridaandotherstates[16], soitisnecessarytofindarapidmethodtodetect thediseaseinatimelymannertoatleastreducethespreadoftheredbayambrosiabeetle. Thereare severalmethodsthatcandetectthedisease,suchasscoutingandpolymerasechainreaction(PCR)[19], buttheyarecostlyandtimeconsuming;therefore,itwouldbehelpfultodevelopafasterandmore rapidmethodofdetectingLwdisease[20]. Spectralreflectanceisamethodthatisconsideredtobe rapidandnon-destructive[21]. Spectralreflectancemethodsdependonreflectedoremittedradiation fromdifferentbodies,soeachmaterialhasadifferentspectralsignature[22,23]. Forplantsignatures, thespectralreflectanceeitherincreasesordecreasesdependingonphysical(external)factorssuchas chlorophyllandpigmentconcentrationwhichareusedasindicatorsoftheplantconditioninthevisible range(450–760nm)[24–26]. Therearealsootherfactorssuchasphysiologicalstructure,conditionof thecellwall,watercontent,surfaceroughness,andstomaactivitywhichwillaffectlightpenetration throughtheleafstructure,sothespectralsignatureinthenearinfrared(NIR)rangeof760to2500nm isusedtoindicatethesefactors[27,28]. ItispossibletouseVisible-NearInfrared(V-NIR)techniquestodistinguishhealthyfromunhealthy leaves[26,29–31]. Maetal.[32]usedavisibleremotesensorwithdifferentmulti-spectralwavelengths to detect citrus greening. Some studies confirmed that spectrometric methods are more effective, moreaccurate,lesstime-consuming,andnondestructivecomparedtoDNAanalysismethods[33,34]. FrankandMenz[35]utilizedspectraldataatdifferentwavelengthstomonitorthepowderymildew diseaseofleafrustatdifferentstagesofdevelopment. Fungicidetreatmentwasthenappliedusing precisionagriculturetodeterminetheinteractionofthecropwiththefungicide.Resultswerecompared withchemicalanalysisandshowedanincreaseinearlydiseasedetectionfrom56%to88.6%,which was considered an acceptable result for early disease detection. The goals of the present study were to: (i) determine the hyperspectral mean reflectance curves of Lw infested trees at different stagesofdevelopment;(ii)selecttheoptimalspectralbandsfordiscriminationofdamageduetoLw, Phytophthorarootrot,andsalinity. 2. ExperimentalSection 2.1. HostPlantsandInoculationinGreenhouse ExperimentswereconductedinMiami-DadeCountyunderanindoorcontrolledenvironmentat theUniversityofFlorida’sTropicalResearchandEducationCenter(TREC)inHomestead,FL.Avocado leaveswereobtainedfromthe“Simmonds”varietyofavocadotreeswhichweregrowninpotsin greenhousetrialswheredifferenttreatmentswereusedtoinducethecertainsymptomsandproduce certainfactors. Avocadotreeswereoneyearoldandalmost1mtall. Thepre-experimentmethodologyforeach treatmentisexplainedasfollows: Laurelwilt(Lw): TenplantswereinoculatedwithLwatapproximately5cmabovethesoillevel by drilling four small holes around the circumference of the trunk. Each hole received 25 µL of a R.lauricolasporedilutionataconcentrationof30,000colonyformingunits(CFU)/mLforatotalof 3000CFU/plant. Holesweresealedwithparaffinwrap. FortheearlyinoculatedstageofLw,new Agriculture 2016, 6, 56 3 of 14 Agriculture2016,6,56 3of13 shoots were wilted and the leaf color changed from a dark oily green to light green on most leaves 14 days after inoculation (DAI), while others turned fully yellow. In that way, leaves were obtained s1h4o DotAsIw foerr eeawrliylt esdtaagne danthde 4l5e aDfAcoI lfoorr clahtaen sgtaegdef.r omadarkoilygreentolightgreenonmostleaves 14daSyaslianftiteyr i(nSolnc)u: lOatnioen li(tDerA oI)f, swahlti lseooluthtieorns twuarns eadppfulilelyd ytoel leoawch. Itnrethe.a Ttwhea ys,allet asvoelustwioenr,e aotb 3ta6i nge/Ld, 1w4aDs AsiImfoilraer airnl ycostnacgeenatrnadtio4n5 DtoA tIhfaotr olfa ttehest asegae .water from the east coast of Florida. Leaves showed someS ablrinoiwtyn(inSlgn )s:yOmnpetolimtesr oafftsearl tsesovleunt idonayws,a asnadp pwlieerde ttoaekaecnh ftorre ee.aTrlhye sstaalgtes.o Tluhteionn, ,aanto3t6hegr/ lLit,ewr aosf stihme islaera inwcaotenrc elintetrra wtioans taoptphliaetdo fotnh eexspeaerwimateenrtafrl odmayth 1e7e. aFsutrctohaesrt, obfroFwlonriidnag. sLyemavpetsomshso wweedres foumlley bdreovwelnoipnegds, ysmimpitloamr tsoa lfetaervesse vaefnfecdtaeyds ,bayn Ldww aefrteerta 2k1e ndafoyrs.e Tarhleyns,t alegaef. sTahmepnl,easn roetphreersleintetirnogf sthaleinsietay wlaatete srtaligteer wwearse aspelpelciteeddo. nexperimentalday17. Further,browningsymptomswerefullydeveloped, similaPrhtyotolpeahvtheosraaf freocotet drobty (PLrwr): aTfteenr p21ladntasy sw.eTreh einno,cluealaftseadm bpyl eisnfreecptirnegse 1n0ti npgotssa wlinitihty 6l agtreamstas goef wwehreeaste sleecetde dc.olonized with Phytophthora cinnamomi. After 30 days, very few early symptoms of Prr appePahreydto ipnh tthheo rfaorrmoo torf otth(eP yrre)l:loTweninpgl aonf tssowmeer eleianvoecsu, laatnedd tbhyosine fleecatvinegs 1re0ppreostesnwtiinthg 6eagrrlyam stsaogfe wwheerea ttasekeedn.c Aolfotenri zseixd mwoitnhthPsh, yltaotpeh stthaograe cwinans acmoonmsiid.eAreftde rfo3r0 Pdhayytso,pvhetrhyofreaw roeoatr lryots yanmdp lteoamvseso wfPerrre aopbptaeianreedd. in theformoftheyellowingofsomeleaves,andthoseleavesrepresentingearlystagewere takenH. Aeaftlethrys i(xHm):o Tnhthess,e lpatleansttsa gweewrea susceodn saids ethreed cfoonrtrPohly atnodph wtheorera grrooowtnro itna fnudlll seuavne. swereobtained. HDeuarlitnhgy t(hHe) :eTahrelys egprloawnttsh wsteargeeu, stehdea psltahnetsc osnhtorowleadn dfewwe rseygmropwtonmisn ofuf llLswu na.nd Prr, so some leaveDs udriindg ntohte teuarrnly tgortoawllyth ysetlalgowe,,t heesppelcainatlslys htohwoseed ifnefwecsteydm pwtiotmh sPorrf. LHwoawnedvPerr,r ,dsuorsionmg ethleea vlaetse dgirdownotht tsutrangeto tthaell yplyaenltlso wsh,oewspeedc imallaynyth soysmeipntfoemctes dofw Litwh Panrrd. HSlonw, seuvcehr, adsu driinscgotlhoeraltaitoeng arnodw tnhecsrtaogtiec tlheeavpelas ndtespshenodwiendg monan tyhes ysmevpetroimtys ooff tLhwe satnrdesSsl nfa,cstuocrh. Fasigduirseco 1lo srhaotiwons atensdtende carvooticcaldeaov leesavdeesp ednudriinngg othnetshee tsweov esrtiatgyeosf. thestressfactor. Figure1showstestedavocadoleavesduringthesetwostages. FFiigguurree 11.. AAvvooccaaddoo lleeaavveess iinn ddiiffffeerreenntt ssttrreessss ssttaaggeess:: hheeaalltthhyy,, llaauurreell wwiilltt ((LLww)),, PPhhyyttoopphhtthhoorraa rroooott rroott ((PPrrrr)),, aanndd SSaalliinniittyy ((SSllnn)).. Agriculture2016,6,56 4of13 Agriculture 2016, 6, 56 5 of 14 2.22..S2.p SecptercatlraDl aDtaatCa oClolellcetcitoinon FoFrtoyrtlye alevaevsews wereeres asmamppleleddf rforomme eaacchh ooff tthhee ccoonnttrrooll aanndd ttrreeaatteedd pplalanntst.s .MMulutilstcisacnasn wsewree rteaktaekn en at different positions in order to reduce the variability of the spectral device and the leaves. Five at different positions in order to reduce the variability of the spectral device and the leaves. Five reflectance spectra per each leaf were collected at two stages of symptom development: early and reflectancespectrapereachleafwerecollectedattwostagesofsymptomdevelopment: earlyandlate, late, depending on the symptomatic appearance. A handheld spectroradiometer (SVC HR-1024i™) dependingonthesymptomaticappearance. Ahandheldspectroradiometer(SVCHR-1024i™)(Spectra Vis(tSapCecotorap eVraisttiao nC,oPoopuegrhaktieoenp, sPieo,uNgYh,kUeeSpAsi)ew, NithY,a U4◦SAfie) ldw-iothf- vai e4w° ofipetlidc-aolfl-evnieswa nodpaticsaple cletnrasl aranndg ea of spectral range of 350 to 2500 nm was used. Two portable halogen work lamps (500 W) were used as 350to2500nmwasused. Twoportablehalogenworklamps(500W)wereusedasthelightsource,and the light source, and the reference reflectance spectra were acquired using a white reflectance thereferencereflectancespectrawereacquiredusingawhitereflectancereferencepanel(Spectralon reference panel (Spectralon Reflectance Target, CSTM-STR-99-100; Spectra Vista Cooperation) [1] ReflectanceTarget,CSTM-STR-99-100;SpectraVistaCooperation)[1](Figure2). Spectraldatawere (Figure 2). Spectral data were selected in the visible and near infrared domain from 350 to 950 nm. selectedinthevisibleandnearinfrareddomainfrom350to950nm. Spectraldatawereaveraged Spectral data were averaged for both stages to 10 nm and 40 nm based on previous studies for both stages to 10 nm and 40 nm based on previous studies [36,37]. The purpose of averaging [36,37]The purpose of averaging data to 10 and 40 nm is to reduce the numerous wavelengths and datato10and40nmistoreducethenumerouswavelengthsandalsoreducenoiseandinterference also reduce noise and interference between wavebands. Additionally, waveband filters for 10 and bet4w0 enemn waraev eabvaanildabs.leA idn dtihtieo nmaallryk,ewt aavnedb aanred rfielatseornsafbolry1 p0raicnedd 4f0orn mfutaurree asveanisloarb ledeivnetlohpemmeanrtk. et andThaerreefroeraes,o tnhaeb nluympbriecre odf fworavfuelteunrgetshesn fsoor r4d56e vnemlo wpmase dnrto.pTpheedr etfoo 4r9e ,atnhde 1n5u wmabveerleonfgwthasv feolre n10g tahnsdf or 45640n mnmw, arsesdpreocptpiveedlyt.o S4a9mapnlde 1s5izwe afovre lsepnegctthraslf orerf1le0catanndce4 0dnamta ,wreesrpee actpivpelileyd. Sbaemtwpeleens iz1e96f–o2r0s0p efoctrr al refleeacctha ncacteegdoartya. wereappliedbetween196–200foreachcategory. FiFgiugruer2e .2L. aLbaobroartaotoryrys seet-tu-uppi inncclluuddiinngg ssppeeccttrroorraaddiioommeetteerr aanndd hhaalologgene nliglihgth stosuorucrecse. s. 2.3. Data Analysis and Classification 2.3. DataAnalysisandClassification SPSS software (SPSS Statistics ver.13.0, IBM Corporation, Aramonk, NY, USA) was utilized in SPSSsoftware(SPSSStatisticsver.13.0,IBMCorporation,Aramonk,NY,USA)wasutilizedinthis this study for spectral analysis. The classifications were between H, LW, Prr, and Sln based on the studyforspectralanalysis. TheclassificationswerebetweenH,LW,Prr,andSlnbasedonthe10nm 10 nm and 40 nm averaged reflectance data. The classifications were conducted in two stages of and 40 nm averaged reflectance data. The classifications were conducted in two stages of disease disease development: early and late. The analyses were performed independently for the early and development: earlyandlate. Theanalyseswereperformedindependentlyfortheearlyandlatestage late stage spectral data, as well as in a data set composed of all of the reflectance data in order to spectraldata,aswellasinadatasetcomposedofallofthereflectancedatainordertoselectthebest select the best bands for each development stage. bandsforeachdevelopmentstage. 2.3.1. Stepwise Discriminant Analysis 2.3.1. StepwiseDiscriminantAnalysis Discriminant analysis permits the setting up of a predictive model of group membership based Discriminantanalysispermitsthesettingupofapredictivemodelofgroupmembershipbased on characteristics observed in each case [35]. This method determines significant differences oncharacteristicsobservedineachcase[35]. Thismethoddeterminessignificantdifferencesbetween between variables so that repetitive variables can be eliminated [38]. The stepwise discriminant varainaabllyessiss o(StThEaPtDreISpCe)t itpivroecvedauriraeb lceosmcbainnebse feolriwmairnda tseedle[c3ti8o]n. Tanhde sbtaecpkwwiasredd eislicmriimnaintiaonnt oafn athlyes is (STvEaPriDabISleCs); fporrowceadrdu rseelceocmtiobnin ise semfoprwloayredds feolre cthtieo ninacnludsiboanc kofw aa vrdareialibmlei,n aantido nbaocfktwhearvda reilaimbliensa;tfioornw isa rd seluecsteido nfoisr etmhep loreymedovfoalr tohfe vinarcilaubslieosn noof alovnagriearb lsei,gannifdicbanact kiwn atrhdee lmimodineal ti[o3n8]i.s Aus eWdiflkosr’sth elarmembdoav al ofdviasrtiraibbuletisonn owlaosn gpeerrfsoirgmneifid ctaon dteintertmheinme othdee lsi[g3n8i]f.icAanWcei lokfs ’esaclahm dbisdcarimdiisntarnibt uftuinocntiwona;s thpee rlfoowrmere d totdheet eWrmilkins’es tlhamesbidgan ivfiacluane,c tehoe fgeraecahterd tihscer simpeicntaranlt dfuifnfecrteinotnia;ttihoen lboewtwereethne gWrouilpkss ’[s3l9a]m. Tbhduas,v aatl euaec,ht he gresatetepr, tthhee svpaerciatrbalel dthifafet rmenintiiamtiioznedb tehtwe oeevnergarllo uWpislk[s3’9s ]l.aTmhbudsa, avtaeluaceh wsatesp e,nttheerevda r[3ia5b].l eTthhea dtamtain wimerize ed theraonvdeoramllizWedil kasn’ds lsaempabrdaatevda ilnuteo wtwaso einndteerpeedn[d3e5n].t Tpharetsd: aotnaew weares ruasneddo tmo idzeevdelaonpd asnedp acroantsetdruicntt othtew o independentparts: onewasusedtodevelopandconstructthemodelandthesecondwasusedto validatetheaccuracy. Thedatasetwasdividedintotwoparts: 30%fortrainingand70%forvalidation. Agriculture 2016, 6, 56 6 of 14 model and the second was used to validate the accuracy. The data set was divided into two parts: Agri3c0u%ltu rfeo2r0 t1r6a,i6n,i5n6g and 70% for validation. 5of13 2.3.2. Neural Networks 2.3.2. NeuralNetworks Artificial neural networks operate by machine learning, in that inputs and outputs are given to Artificial neural networks operate by machine learning, in that inputs and outputs are given the network one at a time and the network incrementally improves a model to approximate the tothenetworkoneatatimeandthenetworkincrementallyimprovesamodeltoapproximatethe input/output function [40]. Once the neural network has learned to carry out the desired function, input/outputfunction[40]. Oncetheneuralnetworkhaslearnedtocarryoutthedesiredfunction, the input values can be entered and the neural network will calculate the output [35]. Two neural thenientwpuotrkvsa wlueerse cuasnedb: emeunltteilraeydera pnedrctehpetrnoenu (rMalLnPe) tawnodr rkadwiailll bcaaslicsu fluantectitohne (oRuBtFp)u. t[35]. Twoneural networkTshwe eMreLuPs ende:umraul lmtiloadyeelr pise rac efputlrlyo nc(oMnnLePc)teadn dmrualdtiilaalybera sfiesefdu-nfocrtiwoanr(dR BsuFp).ervised learning neTtwheorMk LtrPainneeudr ablym a obdaeclki-spraofpualglyatcioonnn aelcgtoerdithmmu lwtilhaiycehr rfeedeudc-efos rtwhea rqdusaudpraetrivc ieserrdorle satrannidnagrdn e[t3w5]o. rk traiInne tdheb yMaLPb,a ncko- pvarolupeasg aarteio fneda lbgaocrki tthom eawrlhieirc hlaryeedrsu caensdt thhee qduimadernastiiocnesr roofr thstea MndLaPr dar[e3 5d]e.sIcnritbheedM asL P, nosvizaelu oefs ianrpeufte ldaybearc ×k stiozee aorfl iheirdldaeyne rlasyaenrd × tshizeed oimf oeuntspiuotn lsaoyfert h[4e1M,42L]P. Ianr ethdise sstcuridbye,d thaes isnipzeuto lfaiynepr ut laywera×s tshiez espoefchtirdald denatlaa yoef rH×, Lswiz,e Porfro, uantpdu Stllna yleearv[e4s1., 4T2h]e. IRnBtFh iiss satlusdo ya, tfhuellyin cpountnleacyteerdw feaesdt-hfoerswpaecrdtr al datnaeoufraHl ,nLewtw,Porrkr, wanitdhS alnn lienapvuets l.aTyheer, RaB hFidisdaenls olaayefur,l layncdo annn eocutetpdufte elady-efor r[w35a]r. dTnheeu vraarlianbeltews oorfk twhei th aniinnppuutt alanyde ro,uatphuidt dlaeynelrasy were,raen tdhea nsaomuetp aust tlhayoseer [u3s5e]d. Tinh ethvea rMiaLbPle smoefththoed.i nTphue tmanadin oduitfpfeuretnlacyese rs webreettwheeesna mtheesaes twthoo sneeuursaeld nientwthoerkMs aLrPe mtheatt hiond R.BTFh, ethme aaisnsodciiaffteerse bnectewsebeent wtheee ninpthuets aentdw oountpeuutr al layers are not weighted and the transfer purposes on the hidden layer nodes are radially symmetric networksarethatinRBF,theassociatesbetweentheinputandoutputlayersarenotweightedand [43]. The capability of MLP and RBF for every classification model was determined by a hold-out thetransferpurposesonthehiddenlayernodesareradiallysymmetric[43]. ThecapabilityofMLP cross-validation method. Cross validation consecutively classified all variables, but the first one to andRBFforeveryclassificationmodelwasdeterminedbyahold-outcross-validationmethod. Cross develop a classification function and then classify the variable was left out [44]. The full dataset was validationconsecutivelyclassifiedallvariables,butthefirstonetodevelopaclassificationfunction randomly split into three datasets by partitioning the active dataset into training 60%, testing 20%, andthenclassifythevariablewasleftout[44]. Thefulldatasetwasrandomlysplitintothreedatasets and holdout 20% samples. bypartitioningtheactivedatasetintotraining60%,testing20%,andholdout20%samples. 3. Results 3. Results Figure 3a–c show the spectral signature of the early and late stage disease development of Lw, Figure3a–cshowthespectralsignatureoftheearlyandlatestagediseasedevelopmentofLw,Prr, Prr, and Sln as well as H, respectively. There are apparent reflectance differences in the red-edge andSlnaswellasH,respectively. Thereareapparentreflectancedifferencesinthered-edgeandNIR and NIR regions for early and late stage development for all treatments. Higher differences are regionsforearlyandlatestagedevelopmentforalltreatments. Higherdifferencesarefoundbetween found between the late stage of each treatment and the control, suggesting the potential to thelatestageofeachtreatmentandthecontrol,suggestingthepotentialtodiscriminatediseaseor discriminate disease or damage at that level of infection. Spectral signatures at the early stage are damageatthatlevelofinfection. Spectralsignaturesattheearlystageareverysimilartothoseofthe very similar to those of the control and doing more difficult to discriminate at that stage of condterovlealonpdmdeonitn. gInm thoere ladtief fisctauglte,t oexdtiesrcnraiml siynmatpetaotmths ahtasdt adgeevoelfodpeevde, lloepamveesn wt.eIrne twheiltleadte osrt adgees,icecxatteerdn al symanpdto wmesrhe aad dduellv eglroapye-gdr,eleena voers bwroewrenw cioltloedr worhdilee sliecacvaetesd ina nthdew eaerrleya sdtauglel gwrearye- gsrtielel ngroerebnr aonwdn jucostl or whbileeglienanvinegs itno tlohseee taurrlgyidstiatyg.e werestillgreenandjustbeginningtoloseturgidity. (a) Figure3.Cont. Agriculture 2016, 6, 56 7 of 14 Agriculture2016,6,56 6of13 Figure 3. Cont. (b) (c) Figure 3. Spectral signature for laurel wilt disease (a); Phytophthora root rot (b); and salinity Figure3.Spectralsignatureforlaurelwiltdisease(a);Phytophthorarootrot(b);andsalinitydamage damage (c) in early and advanced stages vs. control. (c)inearlyandadvancedstagesvs.control. 3.1. Early Stage 3.1. EarlyStage In Figure 3c, the early stage of the Sln treatment shows higher reflectance values in the near In Figure 3c, the early stage of the Sln treatment shows higher reflectance values in the near infrared domain than for the late stage, which is typical for green vegetation. The same trend infrareddomainthanforthelatestage,whichistypicalforgreenvegetation. Thesametrendoccurred occurred for Lw and Prr diseases (Figure 3a, b). Figure 3b shows a similar spectral signature for H forLwandPrrdiseases(Figure3a,b). Figure3bshowsasimilarspectralsignatureforHandPrrat and Prr at the early stage, since after 14 days very few early symptoms of Prr appeared. Figure 3 theearlystage,sinceafter14daysveryfewearlysymptomsofPrrappeared. Figure3alsoshowsthe also shows the reflectance of different bands for control, Lw, and Prr where it does not show a reflectanceofdifferentbandsforcontrol,Lw,andPrrwhereitdoesnotshowasignificantdifference significant difference for spectral reflectance in the blue bands. On the other hand, Lw disease for spectral reflectance in the blue bands. On the other hand, Lw disease always exhibited lower always exhibited lower reflectance in the NIR domain (750–950 nm) than H, Prr, and Sln. reflectanceintheNIRdomain(750–950nm)thanH,Prr,andSln. Table 1 shows the classification results obtained from MLP and RBF for 10 nm and 40 nm Table 1 shows the classification results obtained from MLP and RBF for 10 nm and 40 nm bandwidth data, as well as the set of suitable wavelengths for that damaged and control leaf bandwidth data, as well as the set of suitable wavelengths for that damaged and control leaf discrimination. The results obtained with MLP were better than those achieved with RBF where discrimination. The results obtained with MLP were better than those achieved with RBF where correct classification percentages ranged from 96% to 99% in all stages and comparisons (Table 1). correct classification percentages ranged from 96% to 99% in all stages and comparisons (Table 1). RBF obtained the lowest classification rate (65%) for 10 nm at the early stage between H, Lw, and RBFobtainedthelowestclassificationrate(65%)for10nmattheearlystagebetweenH,Lw,andSal. Sal. Table 2 lists the percentage of correct classifications for every class in the MLP model at both Agriculture2016,6,56 7of13 Table2liststhepercentageofcorrectclassificationsforeveryclassintheMLPmodelatboththeearly andlatestagesforbothstudiedbandwidths,10and40nm. Inmostofthecases,theobtainedperclass accuracyisaround100%,withthelowestvalueof89%obtainedforSlnclasswhentheearlystage datasetwasusedintheMLPanalysisforthe40nmbandwidth. TheseresultsprovethatMLPallows fortheclassificationthatdisease,sincetheprobabilitythataclassifiedpixelactuallyrepresentsthat categoryinrealityishighenough. TheconfusionmatrixanalysistodeterminetheaccuracyoftheMLP methodbycomparingthepercentageofclassifiedpixelsofH,LwandPrratearlystage-10nmwiththe verifiedgroundtruthclass,subsequentlyindicatingthecorrectassessment,isshownintheTable3. Table1. Hyperspectralclassificationofhealthy(H),laurelwilt(Lw)disease,Phytophthorarootrot (Prr),andsalinitydamage(Sln)inavocadoandbestwavebandsselectionusingmultilayerperceptron (MLP)andradialbasisfunction(RBF)classificationfordifferentgrowthstages. StageandParameterSetting ImportanceVariable(nm) OverallClassification(%) Earlystage10nm MLP:H,Lw,Sln 717,750,739,526,952,772 96 MLP:H,Lw,Prr 750,739,952,728,717,772 96 RBF:H,Lw,Sln 615,627,649,660,671,681 65 RBF:H,Lw,Prr 794,806,783,817,705,693 71 Earlystage40nm MLP:H,Lw,Sln 738,780,944,615,697,656 97 MLP:H,Lw,Prr 491,780,697,944,615,862 97 RBF:H,Lw,Sln 944,697,903,615,738,862 73 RBF:H,Lw,Prr 409,421,433,445,457,469 60 Latestage10nm MLP:H,Lw,Sln 885,874,952,852,841,761 99 MLP:H,Lw,Prr 491,780,697,944,615,862 99 RBF:H,Lw,Sal 761,874,885,728,952,739 77 RBF:H,Lw,Prr 409,421,433,445,457,469 97 Latestage40nm MLP:H,Lw,Sln 862,780,738,944,410,903 98 MLP:H,Lw,Prr 862,738,410,944,697,903 97 RBF:H,Lw,Sln 738,944,903,410,862,697 77 RBF:H,Lw,Prr 410,532,450,574,862,697 93 Thevaluesgiveninboldrepresenttheoverallaccuracybestperformance. Table2. Percentageofcorrectclassificationofearlyandlatestageofhealthy(H),laurelwilt(Lw), Phytophthorarootrot(Prr)andsalinitydamage(Sln)using10and40nmbandwidthintheinthe multilayerperceptron(MLP)model. PerClassAccuracy(%) Overall DataSet Classes H Lw Prr Sln Classification(%) H,Lw,Prr 99 91 96 - 96 Earlystage10nm H,Lw,Sln 100 91 - 97 96 H,Lw,Prr 95 98 98 - 97 Earlystage40nm H,Lw,Sln 100 100 - 89 97 H,Lw,Prr 99 99 99 - 99 LateStage10nm H,Lw,Sln 100 100 - 98 99 H,Lw,Prr 98 96 98 - 97 Latestage40nm H,Lw,Sln 99 97 - 98 98 Agriculture2016,6,56 8of13 Table3.Classificationmatrixobtainedfromthemultilayerperceptron(MLP)neuralnetwork(for2010) using10bandwidthdataandhealthy(H),laurelwilt(Lw),Phytophthorarootrot(Prr)earlystage. PredictedSpectra ObservedSpectra PerClassAccuracy H Lw Sln H 30 3 0 99.1% Lw 0 39 0 90.9% Sln 0 2 44 100% Overallclassification 95.8% Table4showstheclassificationresultsforSTEPDISCanalysisandthebandsthatwerechosenon thebasisoftheirorderofentryintotheSTEPDISCprocedureselectiontodiscriminatebetweenH,Lw, Sln,andPrrleavesatearlyandlatestages. Themostfrequentlyselectedwavelengthswerefoundin thered-edgerange(717–750nm)forthe10nmbandwidthandinthered-edgeandbluerangesfor 40nm. Ineachofthecasesstudied,asmallWilks’slambda(0.0–0.2)wasobtainedindicatingthehigh discriminatorypowerofeverysetofselectedwavebands. Table4. Hyperspectralclassificationoflaurelwilt(Lw), Healthy(H),Phytophthorarootrot(Prr), andsalinitydamage(Sln)andthebestwavebandsselectionusingstepwisediscriminant(STEPDISC) analysisfordifferentgrowthstages. Stage-Waveband Wilks’s Cross BestBandsSelected InputData Lambda Validation Earlystage-10nm H,Lw,Prr 806,761,548,638,885,941,537 0.2 82% H,Lw,Sln 908,745,852,504,445,638,604 0.2 86% Earlystage-40nm H,Lw,Prr 618,781,822,904,657,575,410,740,451,945,493 0.2 83% H,Lw,Sln 595,904,781,410,534,740,698,657,616,493 0.2 82% Latestage-10nm H,Lw,Prr 817,829,761,409,941,548,560,421 0.0 98% H,Lw,Sln 560,761,806,750,885,829,409,421,504,593,515 0.05 92% Latestage-40nm H,Lw,Prr 817,829,761,409,941,548,560,421 0.0 98% H,Lw,Sln 560,761,806,750,885,829,409,421,504,593,515 0.05 92% 3.2. LateStage ThedevelopmentstagesofLwdiseasevariedinthevisibleandNIRranges. Thelatestageshad highreflectanceinthe1300–2500nmrange. Thelatedevelopmentalstageshowedalowerreflectance intheNIRrangeof700–950nm. ReflectancecurvesforplantsaffectedbySlnvariedfromstagetostage dependingonsalinityconcentration. Figure3ashowsLw’sspectralreflectanceinthevisiblerange from550to700nmincreasedduringthelatestage. Lw’slatestageshowedasignificantdifference inspectralreflectancespectraforhealthyplants. ThePrrlatestagedisplayedlowerreflectancethan thatofthehealthyplants(Figure3b). Thespectralsignaturecurveshowedvariationinreflectance values, especially for Prr late stages in the NIR domain. The overall classification percentage was 92%–99%forallMLP.STEPDISCwasthesecond-bestmethodwithRBFbeingtheworstofthethree classificationmethods. 3.3. CombinationofEarlyandLateStages Table5showstheMLPandRBFclassificationresultsforthecombinationoftheearlyandlate growth stages for the 10 and 40 nm bandwidths. RBF produced a low value and a high value of Agriculture2016,6,56 9of13 classificationforthecombinationofH,Lw, andPrrfor40and10nm(65%and71%, respectively). MLP resulted in a high classification value for the combination of H, Lw, and Prr at 10 nm, while the combinations of H, Lw, and Sal at 40 nm and H, Lw, and Prr at 40 nm had the lowest value. NIR(700–900nm)wasthemostfrequentrange, especiallythered-edge, withtheexceptionofthe combinationofH,Lw, andPrrat10nmunderMLPforwhichtheblueandgreenbandswerethe mostcommon(445,515,504,433nm). StepwiseclassificationvaluesareshowninTable6. Thelowest classificationinTable6isthatofthecombinationofH,Lw,andSalat40nmhavingacrossvalidation value of 80%. The average of all categories at 10 nm had a higher value than the average of the categoriesat40nm. Thewavebandsbetween700–800nmwerethemostcommonforallcategories. Thecorrectclassificationpercentagewas92%–98%forallMLP.STEPDISCwasthesecondbestmethod, withRBFbeingtheworstofthethreeclassificationmethods. Table5. ReflectanceclassificationusingMLPandRBFmethodsforlaurelwilt(Lw), Healthy(H), Phytophthorarootrot(Prr),andsalinitydamage(Sal)inearlyandlatestagecombined. Stageand Neural Overall ImportanceWavebands(nm) ParameterSettings Network Classification H,Lw,Sal,10nm MLP 750,717,433,705,772,693,604 94% H,Lw,Sal,10nm RBF 705,537,548,409,717,560,526,941,952,433,615 67% 445,515,504,433,638,705,750,817,421,739,952, H,Lw,Prr,10nm MLP 98% 493,615,761,604 H,Lw,Prr,10nm RBF 671,681,660,649,638,693,627 71% H,Lw,Sal,40nm MLP 738,780,944,862,903,450 93% 944,903,862,738,656,532,450,820,491,615,574, H,Lw,Sal,40nm RBF 70% 410,780,697 H,Lw,Prr,40nm MLP 944,821,656,862 93% H,Lw,Prr,40nm RBF 944,697,903,532,738,656,574,615,862,780,821,410 65% Table6.ClassificationreflectanceresultusingSTEPDISCforH,Lw,salinity,andPrrinearlyandlate stagecombined. Wilk’s Cross InputData BestBandsSelected(nm) Lambda Validation H,Lw,Sln:10nm 772,794,504,548,705,638,693,681,604,717,615,445 0.0 87% H,Lw,Prr:10nm 750,885,829,952,548,649,693,638,705,537,515,681 0.06 89% H,Lw,Sln:40nm 780,820,491,532,944,410,574,697,450,656 0.05 80% H,Lw,Prr:40nm 780,862,944,532,574,738,697,656,410,450,615 0.03 81% 4. Discussion In the early stage for Lw and all other stress factors, the spectral reflectance showed varying reflectancesignatures,forexample,inthevisiblerangethespectralsignatureincreasedintheblue andredrangewhileinthegreenrange,itshowedeitheranincreaseoradecreaseofreflectancevalue. Althoughwewereabletoobservethechangingofthecolorsoftheleavesformanyofthecategories, notallhadthesamelevelofchange. Thechallengewasfortreesthatwereintheveryearlystage “asymptomatic”. At this stage, it was not easy to differentiate between healthy and infected trees. The chlorophyll and pigment in leaves strongly absorb blue and red light in order to conduct the photosynthesisthatisnecessaryforplantmetabolism,meaningthatanychangeinconcentrationofthe chlorophyllwillleadtochangesinspectralreflectancedependingonthepigmentratio[45,46]. NIR domainreflectancecanprovidegoodindicatorsofcellstructuredamagetoleavescausedbydisease, drought,andnutrientdeficiency. Anyoverallchangeintheleafwillimpactthespectralreflectance Agriculture2016,6,56 10of13 which therefore makes it a good indicator to use in hyperspectral detection methods [25,47]. The spectralsignatureforhealthyplantshadhighabsorptioninredandblue,withagreenpeakat550nm. Eachdiseasedevelopmentstagehaduniquespectralreflectancesignatures,indicatingarelationship betweenspectralsignatureandtheappearanceofdiseasesymptoms[27,28]. IntheNIRdomain,thereflectanceincreasedordecreaseddependingonthediseasesymptom stage,thusleafcelldamageforLw,Sln,andPrrshoweddifferentreflectancecurvesthanforthehealthy plant. Watercontentisanotherfactorthatmighthaveaneffectonreflectance. Watercontentcould affecttheabsorbanceorreflectanceoflightdependingonthewaterquantityintheleaf[48–51]. The ambrosiabeetleblockstheflowofwaterinthexylemtosupportitsgrowth,andthereforewaterflow orwatercontentisaveryimportantindicatorforthisdisease. Allofthesefactors(e.g.,chlorophyll concentration,watercontent,wallcelldamage,andseverityofdisease)couldaffectspectralsignature andshoweddifferentcurvesignatures. Eachaffectingfactorhasadifferentcurvesignatureforall categories[24–26]. ThemainpurposeofthisstudywastoselectspectralbandsintheVIS-NIRrangethatcanbeused todifferentiatebetweenhealthy,laurelwiltdiseased,salinitydamaged,andPhytophthorarootrot infestedtrees. Severalwavebandswereselectedforclassifyingtreeswithdifferentstagesandtypesof diseaseandstressfactors. Therearemanystudiesonbandselectiontoobtainthebestbandsinthe VIS-NIRrangetoreducethehugenumberofnarrowbands,minimizeredundancy,andtoobtaina statisticalmodelwithoutalongprocess(i.e.,smallernumberofspectralbandsaremoreconvenient andmoreefficientinhyperspectralanalysis)[48,52–55]. TheMLPclassificationmethodresultedin classificationvaluesforallofthesetreatments. Thisisrelatedtotheprogressivenatureofdisease development,whichmakesiteasiertodifferentiatethelatestagethantheearlystage. Bydetecting diseaseattheearlystage,particularlyatasymptomaticstage,growerscansprayorremovetheaffected treeandmanagethediseasemorecosteffectivelybeforethediseasespreadstotherestofthegrove[36]. Usingsmallernumberofspectralbandsitispossibletouseinexpensiveremotesensingtoolssuchas smalldronestodetecttheLWinfectedtrees[36]. Theresultsofthisstudyagreewiththeresultsof otherstudiesusingclassificationmethods[35],sotheclassificationaccuracywerehigherinlatestage ofinfectioncomparetotheotherstageofthedisease. Thepurposeofcombiningtheearlystageand latestagedatatoobtainwavebandscouldbeusedintheearlyandlatestageatthesametimebecause notalltreeleavesshowalotofsymptomsatthesametime. Diseaseistransmitteddependingon severityofdiseaseanddiseasedevelopmentstage[24,37].Environmentalfactorsandthepopulationof thevectorsalsoaffectthedynamicdiseasetransmissioninplants[14,56,57]. Sometimesthesymptoms wouldbeobviousinthecrownanddonotappearonthebottomsideofthetree. Fastdecision-making andtime-effectivesprayingatspecificlocationswillleadtolesspollutionoftheenvironment.Accurate bandselectionandclassificationareimportanttoencouragethegrowertousethesemethodsfortimely andappropriatedecision-making. Thisisthefirstinstanceinwhichthespectralsignaturesofleaves fromavocadotreeshavebeenusedtodeterminespectralreflectanceandtorecommendappropriate bandstodetectLwdiseaseandotherfactors. 5. Conclusions The results of this study showed that it is possible to classify Lw-, Phytophthora root rot-, and salinity-damaged leaves of avocado trees from healthy leaves using visible and near-infrared (400–950nm)spectralbandsforthedatacollectedunderlaboratoryconditions. Theclassificationof differentdiseasesandstressfactorsstudiedinthisworkcanbedoneatboththeearlyandthelate stageofdiseaseinfection;however,developingaclassificationtechniquethatworksforbothearly andlatestageofdifferentdiseasesandstressfactorswillresultinlowerdetectionaccuracy. Since forpracticalpurposes,itismoredesirabletodetectthediseaseattheearlystageofdiseaseorstress infection,itisbettertouseaclassificationmodelthatisdevelopedforearlystage. Comparingthe classification results for 10-nm and 40-nm bandwidths showed similar results, indicating that the narrowerbandwidthdoesnotproducebetterresultsandthatthe40nmwidebandscanbeasgoodas

Description:
It is possible to use Visible-Near Infrared (V-NIR) techniques to distinguish healthy .. Eickwort, J.M.; Miller, D.R. A fungal symbiont of the redbay ambrosia beetle In Proceedings of the 2015 ASABE Annual International Meeting,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.