ebook img

Detailed spectral and morphological analysis of the shell type SNR RCW 86 PDF

0.67 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Detailed spectral and morphological analysis of the shell type SNR RCW 86

Astronomy&Astrophysicsmanuscriptno.RCW86˙archive (cid:13)c ESO2016 January19,2016 Detailed spectral and morphological analysis of the shell type SNR RCW 86 H.E.S.S.Collaboration,A.Abramowski1,F.Aharonian2,3,4,F.AitBenkhali2,A.G.Akhperjanian5,4,E.O.Angu¨ner6, M.Backes7,A.Balzer8,Y.Becherini9,J.BeckerTjus10,D.Berge11,S.Bernhard12,K.Bernlo¨hr2,E.Birsin6, R.Blackwell13,M.Bo¨ttcher14,C.Boisson15,J.Bolmont16,P.Bordas2,J.Bregeon17,F.Brun18,P.Brun18,M.Bryan8, T.Bulik19,J.Carr20,S.Casanova21,2,N.Chakraborty2,R.Chalme-Calvet16,R.C.G.Chaves17,22,A,Chen23, J.Chevalier24,M.Chre´tien16,S.Colafrancesco23,G.Cologna25,B.Condon26,J.Conrad27,28,C.Couturier16,Y.Cui29, I.D.Davids14,7,B.Degrange30,C.Deil2,P.deWilt13,A.Djannati-Ata¨ı31,W.Domainko2,A.Donath2,L.O’C.Drury3, G.Dubus32,K.Dutson33,J.Dyks34,M.Dyrda21,T.Edwards2,K.Egberts35,P.Eger2,J.-P.Ernenwein20,P.Espigat31, 6 C.Farnier27,S.Fegan30,F.Feinstein17,M.V.Fernandes1,D.Fernandez17,A.Fiasson24,G.Fontaine30,A.Fo¨rster2, 1 M.Fu¨ßling36,S.Gabici31,M.Gajdus6,Y.A.Gallant17,T.Garrigoux16,G.Giavitto36,B.Giebels30,J.F.Glicenstein18, 0 D.Gottschall29,A.Goyal37,M.-H.Grondin26,M.Grudzin´ska19,D.Hadasch12,S.Ha¨ffner38,J.Hahn2,J.Hawkes13, 2 G.Heinzelmann1,G.Henri32,G.Hermann2,O.Hervet15,A.Hillert2,J.A.Hinton2,33,W.Hofmann2,P.Hofverberg2, n C.Hoischen35,M.Holler30,D.Horns1,A.Ivascenko14,A.Jacholkowska16,M.Jamrozy37,M.Janiak34, a J F.Jankowsky25,I.Jung-Richardt38,M.A.Kastendieck1,K.Katarzyn´ski39,U.Katz38,D.Kerszberg16,B.Khe´lifi31, 8 M.Kieffer16,S.Klepser36,D.Klochkov29,W.Kluz´niak34,D.Kolitzus12,Nu.Komin23,K.Kosack18,S.Krakau10, 1 F.Krayzel24,P.P.Kru¨ger14,H.Laffon26,G.Lamanna24,J.Lau13,J.Lefaucheur31,V.Lefranc18,A.Lemie`re31, M.Lemoine-Goumard26,J.-P.Lenain16,T.Lohse6,A.Lopatin38,M.Lorentz18,C.-C.Lu2,R.Lui2,V.Marandon2, ] E A.Marcowith17,C.Mariaud30,R.Marx2,G.Maurin24,N.Maxted17,M.Mayer6,P.J.Meintjes40,U.Menzler10, H M.Meyer27,A.M.W.Mitchell2,R.Moderski34,M.Mohamed25,K.Morå27,E.Moulin18,T.Murach6,M.deNaurois30, . J.Niemiec21,L.Oakes6,H.Odaka2,S.O¨ttl12,S.Ohm36,B.Opitz1,M.Ostrowski37,I.Oya36,M.Panter2, h R.D.Parsons2,M.PazArribas6,N.W.Pekeur14,G.Pelletier32,P.-O.Petrucci32,B.Peyaud18,S.Pita31,H.Poon2, p - D.Prokhorov9,H.Prokoph9,G.Pu¨hlhofer29,M.Punch31,A.Quirrenbach25,S.Raab38,I.Reichardt31,A.Reimer12, o O.Reimer12,M.Renaud17,R.delosReyes2,F.Rieger2,41,C.Romoli3,S.Rosier-Lees24,G.Rowell13,B.Rudak34, r t C.B.Rulten15,V.Sahakian5,4,D.Salek42,D.A.Sanchez24,A.Santangelo29,M.Sasaki29,R.Schlickeiser10, s a F.Schu¨ssler18,A.Schulz36,U.Schwanke6,S.Schwemmer25,A.S.Seyffert14,R.Simoni8,H.Sol15,F.Spanier14, [ G.Spengler27,F.Spies1,Ł.Stawarz37,R.Steenkamp7,C.Stegmann35,36,F.Stinzing38,K.Stycz36,I.Sushch14, 1 J.-P.Tavernet16,T.Tavernier31,A.M.Taylor3,R.Terrier31,M.Tluczykont1,C.Trichard24,R.Tuffs2,K.Valerius38, v J.vanderWalt14,C.vanEldik38,B.vanSoelen40,G.Vasileiadis17,J.Veh38,C.Venter14,A.Viana2,P.Vincent16, 1 J.Vink8,F.Voisin13,H.J.Vo¨lk2,T.Vuillaume32,S.J.Wagner25,P.Wagner6,R.M.Wagner27,M.Weidinger10, 6 R.White33,2,A.Wierzcholska25,21,P.Willmann38,A.Wo¨rnlein38,D.Wouters18,R.Yang2,V.Zabalza33,D.Zaborov30, 4 4 M.Zacharias25,A.A.Zdziarski34,A.Zech15,F.Zefi30,andN.Z˙ywucka37 0 (Affiliationscanbefoundafterthereferences) . 1 0 AcceptedNovember11,2015 6 1 : ABSTRACT v i X Aims. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the productionmechanismleadingtotheRCW86veryhigh-energyγ-rayemission. r a Methods.WeanalyzedHighEnergySpectroscopicSystem(H.E.S.S.)datathathadincreasedsensitivitycomparedtotheobservationspresented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5 – 1 keV X-ray band, the 2 – 5 keV X-rayband,radio,andγ-rayemissionshavebeenperformedaswellasbroadbandmodelingofthespectralenergydistributionwithtwodifferent emissionmodels. Results. We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparisonwith2–5keVX-raydatarevealsacorrelationwiththe0.4–50TeVγ-rayemission.ThespectrumofRCW86isbestdescribed byapowerlawwithanexponentialcutoffatE = (3.5±1.2 )TeVandaspectralindexofΓ ≈ 1.6±0.2.Astaticleptonicone-zonemodel cut stat adequatelydescribesthemeasuredspectralenergydistributionofRCW86,withtheresultanttotalkineticenergyoftheelectronsabove1GeV beingequivalentto∼0.1%oftheinitialkineticenergyofaTypeIasupernovaexplosion(1051 erg).Whenusingahadronicmodel,amagnetic field of B ≈ 100 µG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2 spectrumfortheprotondistributioncannotdescribetheγ-raydata.Instead,aspectralindexofΓ ≈ 1.7wouldberequired,whichimpliesthat p ∼ 7×1049/ncm−3erghasbeentransferredintohigh-energyprotonswiththeeffectivedensityncm−3 = n/1cm−3.Thisisabout10%ofthekinetic energyofatypicalTypeIasupernovaundertheassumptionofadensityof1cm−3. Keywords.γ-rays:observations;individual(RCW86,G315.4-2.3);supernovaremnants 1 1. Introduction Supernova remnants (SNR) are prime candidates to be sources ofGalacticcosmicrays.Thedetectionofvery-high-energyγ-ray (VHE;E>100GeV)andnonthermalX-rayemissionfromSNRs has shown that they do in fact accelerate particles to energies above100TeV(see,e.g.,Hinton&Hofmann2009;Aharonian 2013). RCW 86 (also known as G315.4-2.3 or MSH 14-63) is lo- cated at a distance of (2.5 ± 0.5) kpc (Helder et al. 2013). It isalmostcircularinshapewithadiameterofabout40’clearly showingashell-likestructureintheoptical(Smith1997),radio (Kesteven&Caswell1987),infrared(Williamsetal.2011)and X-ray (Pisarski et al. 1984) regimes. The source has been de- tectedinγ-rays(Aharonianetal.2009;Yuanetal.2014),buta shell-likestructurewasnotresolved.RCW86isayoungSNR, which is about 1800 years old, based on the probable connec- tiontothehistoricalsupernovaSN185recordedbyChineseas- tronomersin185AD(Stephenson&Green2002;Smith1997; Dickeletal.2001;Vinketal.2006).ThenatureoftheRCW86 supernova (SN) progenitor was under intense discussion in the context of its young age and its unusually large size with a ra- dius of R ≈ 15d2.5 pc (d2.5: the distance to RCW 86 in units Fig.1. VHE γ−ray emission of RCW 86. The sky map is ex- of 2.5 kpc). Williams et al. (2011) comprehensively studied all tracted with faint analysis cuts and smoothed with a Gaussian argumentsaboutthetypeoftheprogenitorofRCW86andcon- filterwithσ =0◦.06toreducetheeffectofstatisticalfluctu- smooth ductedhydrodynamicsimulationstoexplaintheobservedchar- ations.Blackcontourscorrespondto3,5,7σsignificance.The acteristics. They concluded that RCW 86 is likely the remnant whitedottedcircledepictstheintegrationregionchosenforthe of a Type Ia supernova. The explosion was off-center in a low- spectralanalysis.Thedashedcyansectorshowsthepositionan- density cavity carved by the progenitor system (see also Vink gle range of the radial profile in Fig. 3. The two green sectors etal.1997;Broersenetal.2014). (solid lines) give the extraction regions for spectra of the SW ThephysicalconditionsvarywithinthevolumeofRCW86. andNEregionsdiscussedinSect.3. While slow shocks have been measured (∼600 – 800kms−1; Long & Blair 1990; Ghavamian et al. 2001) in the southwest (SW) and northwest (NW) regions along with relatively high post-shock gas densities (∼2 cm−3; Williams et al. 2011), X- ray measurements by Helder et al. (2009) indicate high veloc- ities of 6000 ± 2800kms−1 in the northeast (NE) whereas op- Initsfirstphase,thesystemconsistedoffouridenticalimaging tical measurements of specific knots in this region by Helder Cherenkovtelescopes,eachwithamirrorareaof107m2 anda et al. (2013) show large variations in proper motions between large field of view of 5◦ (Bernlo¨hr et al. 2003). The data pre- 700 – 2000kms−1 and low densities of ∼0.1 – 0.3 cm−3 (see sentedinthispaperweretakenduringthisphase. Yamaguchietal.2011).IntheSW,NE,andtoalesserextentin In 2009 the H.E.S.S. Collaboration announced the discov- theNWregion,nonthermalX-rayemissionisdetected(Bamba eryofRCW86intheVHEregime(Aharonianetal.2009).The etal.2000;Vinketal.1997,2006;Williamsetal.2011).Near sourcemorphologyofRCW86wasthoroughlystudied,butthe a region of Fe-K-line emission in the SW, there is nonthermal existingdatadidnotsufficetosettlethequestionofwhetherthe emissionpossiblysynchrotronradiationfromelectronsacceler- VHEemissionoriginatesfromashellorfromasphericalregion. atedatthereverseshock(Rhoetal.2002). Between2007and2011,observationsoftheneighboringsource Here, we present a new analysis of very high-energy γ- HESS J1458−608 (de Los Reyes Lopez 2011) and the scan of ray data of RCW 86 taken with the High Energy Stereoscopic theGalacticplanehaveaddedadditionalobservationtimetothe System (H.E.S.S.). When the discovery of RCW 86 was pub- data set, which now amounts to ∼ 57 h. The zenith angles of lishedbytheH.E.S.S.collaboration,themorphologyintheTeV theseobservationsrangefrom36◦to53◦andhaveameanvalue γ−ray regime could not be resolved owing to limited statistics of 40◦. The data were recorded with pointing offsets between (Aharonian et al. 2009). The new analysis benefits from sig- 0.5◦and2.5◦,average1.1◦,fromtheRCW86position.Thesen- nificantly improved statistics and addresses whether RCW 86 sitivity and angular resolution were improved compared to the has a shell structure in the VHE γ-ray regime. In addition, the former publication (Aharonian et al. 2009), using an advanced larger data set allows for a broadband modeling of the spectral analysis method (for further detail, see de Naurois & Rolland energy distribution with both a leptonic and an hadronic one- 2009) instead of the formerly used standard Hillas-parameter- zonemodel.Werestrictedourselvestotwosimplemodelssince basedanalysis.Standardcutswereusedforspectralanalysisand it is unreasonable to use more intricate models with additional faint source cuts for morphological analysis. The faint source parametersthatcannotbedeterminedowingtolimitedstatistics. cutshaveanimprovedangularresolutionattheexpenseoflower statisticsandahigherenergythresholdofabout100GeV(forthe cut definition, see de Naurois & Rolland 2009). The results we 2. H.E.S.S.observationsandanalysismethod presentareconsistentwiththeresultsofamultivariateanalysis TheHighEnergyStereoscopicSystemislocatedintheKhomas technique (Ohm et al. 2009), using an independent calibration HighlandofNamibiaataheightofabout1800mabovesealevel. scheme. H.E.S.S.Collaborationetal.:DetailedanalysisoftheshelltypeSNRRCW86 10−12cm−2s−1TeV−1 (Log(likelihood) = −54; see Fig. 2). We True energy (TeV) 1 10 102 tested if a power law with an exponential cutoff dN/dE = -1)V Φ0(E/1TeV)−Γexp(−E/Ecut) describes the data better than a e10-11 simplepowerlaw.ThefitgaveΦ(1TeV)=(3.0±0.2 ±0.6 )× T stat sys -2-1 sm10-12 1er0g−y12Ecmcut−=2s−(13T.5eV±−11.2wstiatth±Γ2=.21sy.6s)±Te0V.2s(tLato±g0(.l2iksyesliahnodoad)cu=to−ff4e7n.7- ux (c10-13 )o,fw3h.5icσh,iascfcaovrodriendgotvoeartlhoeg-sliimkeplliehopoodwreartiloawtewst.itThhaessigpnecifitrcaalnrcee- Fl10-14 sultofthepower-lawfitiscompatiblewithapreviousH.E.S.S. publication(Aharonianetal.2009). 10-15 10-16 3.2. Morphology To settle the question of whether the TeV γ-ray emission is 10-17 shell-likeasfoundintheoptical,radio,andX-raybands,atwo- dimensional log-likelihood fit was applied to the uncorrelated 10-18 sky maps taking the morphological model and instrument re- sponse into account. To distinguish between different morpho- 10-19 logicalstructures,weusedtwoalternativemodels:asphereand )10-204 ashellmodel.Themodelsareobtainedbyline-of-sightintegrals c 3 of a three-dimensional emitting sphere or shell. In the case of Ds ( 2 theshellmodel,thefreeparametersarethecenterpositionand al theinnerandouterradius.Thespheremodelisderivedfromthe u 1 d shellmodelbyfixingtheinnerradiustozero.Bothmodelshave si 0 e uniformemissivity.Table1summarizesthefitresults.Theshell R -1 structureisfavoredoverthespherestructurewithasignificance -2 ofabout8σ.InFig.3(leftpanel),theradialprofileoftheTeV -3 emissionitselfisgiventogetherwiththefitresultsofbothmod- -4 1 10 102 els. Reconstructed energy (TeV) To facilitate the comparison, radial excess profiles of VHE Fig.2. In the upper panel, the differential energy spectrum of γ-ray,X-ray,andradioemissionarepresentedinthecenterand RCW86withthebest-fitexponentialcutoffpower-lawmodelis right panels of Fig. 3. The X-ray data is split into two energy bands: 0.5 – 1 keV and 2 – 5 keV. The latter exhibits a higher shown. The error bars denote 1σ statistical errors. The shaded amountofnonthermalemissionincomparisontothelow-energy arearepresentsthe1σconfidencelevelofthefittedspectrum.In band. The nonthermal emission in RCW 86 is not evenly dis- thebottompanel,thecorrespondingresidualsaregiven. tributed. Broersen et al. (2014) have shown that the NE region isdominatedbynonthermalemission,whiletheSWregionex- hibitssimilaramountsofhotthermalandnonthermalemission. 3. Results IntheNWandSEregions,however,thermalemissionprevails. InFig.3,thecentralpaneldepictstheradialprofileofthewhole The γ-ray excess map, using the ring background subtraction SNR, whereas in the right panel only the data of the SW re- technique(Bergeetal.2007),isshowninFig.1.Themapwas smoothed with a Gaussian filter to reduce the effect of statis- gionwithinthepositionanglerange1 of190◦ to230◦ wereused tical fluctuations. The 68% containment radius of 0◦.061 of the to determine the profiles. The radio data are from Molonglo Observatory Synthesis Telescope (MOST; Whiteoak & Green H.E.S.S. point spread function (PSF) was chosen as smoothing 1996) and the X-ray data are taken with the XMM–Newton X- radius. ray telescope (Broersen et al. 2014). The radial profile of the Sincethisislargerthanthebinsize(0◦.02),thepixelsarecor- wholeremnant(Fig.3,centerpanel)clearlyshowsthattheTeV relatedwitheachother.Thisisaccountedforinthespatial-fitting andtheX-rayemissionoftheenergyrangebetween2–5keV process that we present. Extended γ-ray emission was found. arecorrelated,whereasinthecaseoflowenergeticX-rayemis- We detected 1220 ± 87 excess γ-rays within a circular region sion (0.5 – 1 keV) and radio emission a weaker luminosity is centered at α = 14h43m2.16s, δ = −62◦26(cid:48)56(cid:48)(cid:48) with a J2000 J2000 found in the central region and the shell-like emission is more radius of 0◦.41 (see Fig. 1) and a source detection at a statisti- pronounced.TheradialprofilesoftheSWregionofTeVγ-ray calsignificanceof18.3σ.Thecenterisgivenbythefluxaver- emission, low- and high-energy X-ray radiation (Fig. 3, right agedcentroid,whichwasdeterminedwiththespectralresultsof panel)againseemtorevealacorrelationbetweenthe2–5keV thepreviousH.E.S.S.publicationofRCW86(Aharonianetal. X-rayemissionandtheTeV-emission.Inaddition,itseemsthat 2009).Theradiuswasadjustedtotheimprovedanalysismethod themaximumofthe2–5keVX-rayemissionisslightlymore andbetterangularresolution. off-center than the maximum of the TeV emission, but this is notsignificantbecauseofthelowstatisticsoftheTeVdata.The 3.1. Spectralanalysis maximaofthelow-energyX-ray(0.5–1keV)andradioemis- sion are at larger radii. In summary, the TeV emission and the A fit of a power-law function dN/dE = Φ0(E/1TeV)−Γ to high-energyX-rayemission(2–5keV)arecorrelatedthrough- the spectral data analyzed with the standard analysis cuts outtheremnant,whereasradioandlow-energyX-rayemission yields Γ = 2.3 ± 0.1 ± 0.2 , and the differential flux stat sys normalization at 1 TeV of Φ0 = (2.9 ± 0.2stat ± 0.6sys) × 1 Positionangle0◦correspondstonorthand90◦toeast 3 H.E.S.S.Collaborationetal.:DetailedanalysisoftheshelltypeSNRRCW86 excess/area (a.u)00..0034..5545 0gSS(cid:176)-ph r<ahe yleFl rdme <a om t3ado6e0dl(cid:176)e l excess/area (a.u)000...345 0gRXX-(cid:176)--ar rr<adaa yiyyoF d20 a<-.55t a3- k16e 0kV(cid:176)e V excess/area (a.u)00..45 1gRXX-9--arrr0adaa(cid:176)yiyy o< d20 aF-.55t a- <k1 e 2kV3e0V(cid:176) 0.3 0.3 0.25 0.2 0.2 0.2 0.15 0.1 0.1 0.1 0.05 0 0 00 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 r ((cid:176)) r ((cid:176)) r ((cid:176)) Fig.3.Radialprofiles:Theshellmodel’sbest-fitcenterpointposition(seeTabel1)servesasacommoncenterfortheradialprofiles of the γ-ray, X-ray, and radio data. In left panel: The radial profile of the spatial distribution of the TeV γ-ray emission is shown asblackcrosses,whichdepictthemeasuredTeVdatapointsandtheirerrors.Thedashedredlinecorrespondstotheradialprofile ofthespheremorphologyandthegreenlinetotheshellmodel.Incenterandrightpanel:RadialprofilesintheTeVγ-ray,radio, 0.5 – 1 keV, and 2 – 5 keV X-ray regimes for different regions of RCW 86 are shown. While the center panel covers the entire position angle range, the right panel only shows the SW region with position angles between 190◦ and 230◦ (position angle 0◦ corresponds to north and 90◦ to east; see Fig. 1). Black crosses are measured VHE excess points. The low-energy (0.5 – 1 keV, dashed cyan line) and high-energy ( 2 – 5 keV, dotted brown line) X-ray band data and the radio data (solid magenta line) were smoothedwiththeH.E.S.S.-PSFtoaccountforthedifferentangularresolutionofthedifferentinstruments.Theradiodataarefrom MolongloObservatorySynthesisTelescope(MOST;seeWhiteoak&Green1996)andtheX-raydataarefromtheXMM-Newton X-raytelescope(Broersenetal.2014).Theγ-rayandX-raydataarenormalizedsothattheareaunderneaththecurveisequalto one;theradiodataarescaledsuchthattheareaunderneaththedatapointsisequalto0.5. Table1.Resultsofthetwo-dimensionallog-likelihoodfitofmorphologicalmodelstotheH.E.S.S.data.(α ,δ ) center,J2000 center,J2000 givesthecenterofthesphereandshellmodels.Theparametersr andr standfortheinnerandouterradiusofthesphere.Inthe in out caseofthesphere,r iskeptatzeropc. in Model α δ r [pc] r [pc] Log(likelihood) center,J2000 center,J2000 in out sphere 14h42m58s±0h0m9s −62◦25(cid:48)48(cid:48)(cid:48)±0◦1(cid:48)1(cid:48)(cid:48) – 15.9±0.6 −4093.35 shell 14h42m53s±0h0m7s −62◦25(cid:48)48(cid:48)(cid:48)±0◦1(cid:48)48(cid:48)(cid:48) 9.5±1.4 14.8±1.0 −4046.82 regionsarefurtherawayfromthecenterandshowlowerlevels 4. Discussion ofemissioninthecentralregionoftheremnant. SNRs are thought to be the primary sources for the bulk of Galacticcosmic-rayprotonswithenergiesupto∼3PeV,butthe finalproofisstilllacking.Thebroadband,nonthermalemission of these sources is produced by accelerated particles through To study the influence of the different physical conditions several channels, e.g., synchrotron, inverse Compton, nonther- like shock speeds and densities on the γ-ray emission, spec- malBremsstrahlung,andneutralpiondecay.Toachieveinsights tra of two different subregions (SW and NE) were extracted. intotheγ-rayproductiontakingplaceinSNRs,thedifferentpro- Figure 1 shows the regions, their position, and their size. They cesses have to be disentangled and analyzed. We present the are both centered around the best-fit position of the 3D-shell results of the broadband data of RCW 86 in two different sce- model. A Gaussian function was fitted to the radial profile of narios for radiation mechanism for the γ-ray emission: inverse the γ-ray data and the 1σ interval around the mean of the fit Compton (IC) scattering of electrons off ambient photons (lep- was then taken as the minimal and maximal radii of the re- tonic scenario) or proton-proton interaction with the ambient gions. In both regions, a detection significance of about 10 σ medium (hadronic scenario). For both cases, we have modeled has been achieved. The resulting spectrum is well described the broadband emission of RCW 86 with a simple static one- by a power-law model, which was fitted to the data up to an zone model (presented in Acero et al. 2010), where the radi- energy of 20 TeV. It is not possible to distinguish between a ation of the different wavebands is produced within the same simple power-law spectrum and one with an exponential cut- regionwithaconstantmagneticfield.Thecurrentenergydistri- off because of the lower statistics of the quadrant data. We ob- butionsoftheparticles(electronsand/orprotons)aregivenbya tained spectral indices of Γ = (2.5 ± 0.2stat ± 0.2sys) and of powerlawwithanexponentialcutoff.Synchrotronradiationand Γ=(2.2±0.1 ±0.2 )aswellasadifferentialfluxnormaliza- stat sys IC scattering on the cosmic microwave background and the lo- tionat1TeVofΦ0 =(0.7±0.1stat±0.1sys)×10−12cm−2s−1TeV−1 calinterstellar(opticalandinfrared)radiationfields(seePorter andΦ =(0.7±0.1 ±0.1 )×10−12cm−2s−1TeV−1intheNE &Strong2005)weretakenintoaccountwithenergydensitiesof 0 stat sys andSWregions,respectively.Thus,thereisnosignificantspec- 0.66eVcm−3(dust)and0.94eVcm−3(stars).Inthecaseofthe tral difference between both regions. The results are consistent hadronicscenario,theγ-rayproductionwascalculatedfollowing withthespectrumofthewholeremnant. Kelner et al. (2006). Nonthermal Bremsstrahlung is neglected 4 H.E.S.S.Collaborationetal.:DetailedanalysisoftheshelltypeSNRRCW86 becauseofthelowambientdensity≤1cm−3.Themodelingwas the expectation that electrons and protons exhibit the same dy- doneundertheassumptionthatthedistanceofRCW86is2500 namics at relativistic energies up to an energy where electron pc,theouterradiusis15pc,andtheshellthicknessis5pc.The synchrotronlossesbecomeimportant. emissionatallwavelengthswascalculatedfortheshellregion. Lemoine-Goumard et al. (2012) applied a two-zone model Thestationaryone-zonemodelishoweveranoversimplification to the data to overcome this problem. They introduced a sep- because the radio morphology and the nonthermal X-ray mor- arate second leptonic population to explain the radio emission phologydiffer,whichcannotbeexplainedbythiskindofmodel. withtheconsequencethatthelowerlimitonthemagneticfield ThespectralenergydistributionpresentedinFig.4iscomposed was 50 µG. The X-ray emission was reproduced with an in- of the VHE γ-ray spectra presented in Sect. 3, the Fermi-LAT jection spectrum with a power-law index of Γ = 1.8, a break data points (Yuan et al. 2014), the X-ray spectra of ASCA and at 3 TeV, caused by synchrotron cooling, and an exponen- RXTE(Lemoine-Goumardetal.2012),andtheradiodatafrom tial cut-off at 20 TeV. The energy injected into hadrons was the Molonglo at 408 MHz and Parkes at 5 GHz (Caswell et al. ∼7×1049/n erg.Theseresultsfulfilltheobservationalcon- cm−3 1975;Lemoine-Goumardetal.2012). straints,buttheproblemremainsthattheprotonspectrumispar- Intheleptoniccase,thebroadbanddatacanbedescribedby ticularlyhard. aone-zonemodelusinganelectronspectrumwithaspectralin- Whenwecomparethemodelingresultsofboththeleptonic dex of Γ ≈ 2.3, an exponential cutoff at E ≈ 19 TeV, and a andhadronicmodels,wefindthatneithercanberuledout.The e cut magneticfieldofB≈22µG(seeFig.4).Theseresultsarecom- hadronicmodelencountersproblemsbydescribingthedataina parable to those of Lemoine-Goumard et al. (2012) and Yuan self-consistent way, i.e., it is not possible to describe the radio et al. (2014) and the magnetic field is comparable to estimates datawithelectronandprotonspectrawiththesamespectralin- by Vink et al. (2006). The total kinetic energy of all electrons dex,whichwouldbeexpectedforrelativisticparticlesunderthe above1GeVamountsto∼1048 erg,whichisabout0.1%ofthe assumptionofdiffuseshockaccelerationtheory.Betterstatistics totalenergyofatypicalTypeIasupernova(1051erg).Weobtain andpossiblymoredetailedmodelsareneededtosolvethisques- anupperlimitfortheenergyinjectedintoacceleratedprotonsof tion. ∼1049/n ergwiththeeffectivedensityn =n/1cm−3also Our study of the morphological correlation between radio, cm−3 cm−3 takingintoaccountprotonswiththesamespectralindexasthe X-rays,andγ-rayshasshown(seeSect.3)thatradioandtheX- electronsandaconservativechosenenergycutoffof100TeV.A rayemissionintheenergyrangebetween0.5and1keVdonot higheramountofenergyisnotcompatiblewiththeFermi-LAT coincidewiththeγ-rayemission,whiletheemissionintheX-ray upperlimits(seeFig.4).Thisenergylimitimpliesanelectron- regime2–5keVshowsacorrelationwiththeTeVγ-rayemis- to-protonratioabove1GeVofK ≥ 10−1.Theseresultsarein sion.ThisX-rayemission(2–5keV)isspatiallyneartoaFe- ep goodagreementwiththoseobtainedbyLemoine-Goumardetal. K-line.Rhoetal.(2002)arguedthatthehardX-raycontinuum (2012). issynchrotronradiationproducedbyelectrons,whichareaccel- Inthecaseofthehadronicscenario,theγ-raysareproduced eratedinthereverseshock.Itisthereforepossiblethatsomeof via proton-proton interactions and subsequent neutral pion de- the VHE gamma-ray emission comes from the region shocked caywhereastheX-raysarestillproducedviasynchrotronradi- bythereverseshock.Apossiblehintforthisisprovidedbythe ation of high-energetic electrons. Therefore, the electron frac- morecentrallyfilledmorphologyoftheVHEgamma-rayemis- tion has to be lower and the magnetic field stronger. A stan- sionwithrespecttotheradioemission,however,thesensitivity dard proton spectrum with Γ = 2 and a total energy in accel- ofthegamma-rayisnotsufficienttodrawanyfirmconclusions p erated protons at emission time of W ≈ 2.1×1050/n erg aboutthis. p cm−3 woulddescribetheH.E.S.S.measurements,butisincompatible withtheFermi-LATresults(seeFig.5blackdashedline).This 5. Conclusion wasalreadypointedoutbyLemoine-Goumardetal.(2012).The proton spectrum, which reproduces the γ-ray data, has a spec- Inthiswork,wepresentedthefirststrongevidencethatRCW86 tral index of Γp ≈ 1.7 and a cutoff energy of Ecut = 35 TeV. showsashell-typemorphologyinTeVγ−rays.TheTeVγ−ray The index lies between the spectral index of the test particle spectrum favors an exponential cutoff power law with Γ = approach and the spectral index with strong modified shocks 1.59±0.22 ±0.2 andacutoffenergyE =3.47±1.23 ± stat sys cut stat (Malkov1999;Berezhko&Ellison1999).ThebluelineinFig.5 2.2 TeVratherthanapurepowerlaw. sys presents this hadronic model. The total energy of all protons ThebroadbandSEDcanbewelldescribedbyasimplelep- above 1 GeV is Wp ≈ 9×1049/ncm−3 erg, which means that a tonic one-zone model with a magnetic field strength of B ≈ fractionof0.1/ncm−3 ofthesupernova(TypeIa)energyhastobe 22µGandaΓ≈2.3power-lawelectronspectrumwithanexpo- convertedintohigh-energyprotons.Theelectron-to-protonratio nential cutoff at E ≈ 19 TeV. The kinetic energy of all elec- is Kep = 10−3. To model the radio and X-ray data, an electron trons above 1 GeVcutis about 0.1% of the kinetic energy of the spectrumwithspectralindexofΓe ≈ 2.3andacutoffenergyof supernovaexplosionof1051erg. E =9TeVisneededandamagneticfieldstrengthof100µG. cut Modeling the broadband data using a hadronic one-zone Thisiscomparabletotwodifferentestimates:onebyVo¨lketal. model requires a hard proton spectrum with index Γ ≈ 1.7. (2005) of 99+−4266µG, which was deduced from the thickness of Thismodelisincompatiblewithaconventional∝ E−2pacceler- the filaments in the SW region, and another one calculated by ationspectrum,butliesbetweenthespectralindexvalueofthe Arbutina et al. (2012) of a volume-averaged magnetic field of test particle approach and the one with strong modified shocks ∼ 70 µG. The total kinetic energy of the protons above 1 GeV (Malkov 1999; Berezhko & Ellison 1999). The total energy of was found to be W ≈ 9×1049/n erg, which means that p cm−3 all protons above 1 GeV is W ≈ 9 × 1049/n erg, when a about 10%/n of the supernova (Type Ia) energy has to be p cm−3 cm−3 distanceof2.5kpcareassumed.Asaresultoflimitedstatistics convertedintohigh-energyprotons. neithertheleptonicnorthehadronicmodelcanberuledout. Asalreadymentioned,thehadronicmodelcannotreproducethe radio data with an electron spectrum that has the same spectral Acknowledgements. The support of the Namibian authorities and of the indexastheprotonspectrum(Γp =1.7).Thisisinconflictwith UniversityofNamibiainfacilitatingtheconstructionandoperationofH.E.S.S. 5 H.E.S.S.Collaborationetal.:DetailedanalysisoftheshelltypeSNRRCW86 eV] 102 MOST Leptonic Model -1 s ATCA IC -2 m ASCA IC CMB c IC dust x [ RXTE IC stars u 10 Fl Fermi/LAT p0 decay 2 E H.E.S.S. 1 10-1 10-6 10-4 10-2 1 102 104 106 108 1010 1012 1014 E [eV] Fig.4.SpectralenergydistributionofRCW86foraleptonicscenario.Theredsolidlinesdenotethetotalbroadbandemissionfrom theone-zonemodelingdiscussedinSect.4ThedottedlinesshowtheIC-contributionsandthedashedlineisthatoftheπ0-decay contribution.TheradiodatapointsarefromMolongloat408MHzandParkesat5GHz(Caswelletal.1975;Lemoine-Goumard et al. 2012). X-ray data are from ASCA and RXTE from Lemoine-Goumard et al. (2012). The Fermi-LAT data points are taken fromYuanetal.(2014)andtheH.E.S.S.dataarefromthisanalysis. eV] 102 MOST Hadronic Model -1 s ATCA IC -2 m ASCA p0 decay x [c RXTE G p = -2 u 10 Fl Fermi/LAT 2 E H.E.S.S. 1 10-1 10-6 10-4 10-2 1 102 104 106 108 1010 1012 1014 E [eV] Fig.5. Spectral energy distribution of RCW 86 for a hadronic scenario. The solid blue lines denote the total broadband emission fromtheone-zonemodelingdiscussedinSect.4ThedottedlinesshowtheIC-contributionsandthedashedlineisthatoftheπ0- decay contribution. The black dashed dotted line shows the results for a proton spectrum with Γ = 2. The radio data points are p fromMolongloat408MHzandParkesat5GHz(Caswelletal.1975;Lemoine-Goumardetal.2012).X-raydataarefromASCA and RXTEfrom Lemoine-Goumardet al.(2012). The Fermi-LATdata points aretaken fromYuan etal. (2014) andthe H.E.S.S. dataarefromthisanalysis. is gratefully acknowledged, as is the support by the German Ministry for fromtheAustralianResearchCouncilandtheScienceFoundationforPhysics EducationandResearch(BMBF),theMaxPlanckSociety,theGermanResearch withinTheUniversityofSydney. Foundation(DFG),theFrenchMinistryforResearch,theCNRS-IN2P3andthe AstroparticleInterdisciplinaryProgrammeoftheCNRS,theU.K.Scienceand TechnologyFacilitiesCouncil(STFC),theIPNPoftheCharlesUniversity,the CzechScienceFoundation,thePolishMinistryofScienceandHigherEducation, References theSouthAfricanDepartmentofScienceandTechnologyandNationalResearch Foundation, and by the University of Namibia. We appreciate the excellent Acero, F., Aharonian, F., Akhperjanian, a. G., et al. 2010, Astronomy & work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Astrophysics,516,7 Palaiseau,Paris,Saclay,andinNamibiaintheconstructionandoperationofthe Aharonian, F., Akhperjanian, A. G., de Almeida, U. B., et al. 2009, The equipment.TheMOSTisoperatedbyTheUniversityofSydneywithsupport AstrophysicalJournal,692,1500 Aharonian,F.A.2013,AstroparticlePhysics,43,71 6 H.E.S.S.Collaborationetal.:DetailedanalysisoftheshelltypeSNRRCW86 Arbutina, B., Urosˇevic´, D., Andjelic´, M. M., Pavlovic´, M. Z., & Vukotic´, B. 2012,TheAstrophysicalJournal,746,79 1 Universita¨t Hamburg, Institut fu¨r Experimentalphysik, Luruper Bamba,A.,Koyama,K.,&Tomida,H.2000,PublicationsoftheAstronomical Chaussee149,D22761Hamburg,Germany SocietyofJapan,52,1157 Berezhko,E.G.&Ellison,D.C.1999,TheAstrophysicalJournal,526,385 2 Max-Planck-Institut fu¨r Kernphysik, P.O. Box 103980, D 69029 Berge,D.,Funk,S.,&Hinton,J.2007,AstronomyandAstrophysics,466,1219 Heidelberg,Germany Bernlo¨hr,K.,Carrol,O.,Cornils,R.,etal.2003,AstroparticlePhysics,20,111 3 DublinInstituteforAdvancedStudies,31FitzwilliamPlace,Dublin Broersen,S.,Chiotellis,A.,Vink,J.,&Bamba,A.2014,MonthlyNoticesofthe 2,Ireland RoyalAstronomicalSociety,441,3040 4 National Academy of Sciences of the Republic of Armenia, Caswell,J.L.,Clark,D.H.,&Crawford,D.F.1975,Aust.J.Phys.,37,39 Marshall Baghramian Avenue, 24, 0019 Yerevan, Republic of deLosReyesLopez,R.2011,inProceedingsofthe32ndInternationalCosmic Armenia RayConference(ICRC2011),216 5 Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 deNaurois,M.&Rolland,L.2009,AstroparticlePhysics,32,231 Yerevan,Armenia Dickel,J.R.,Strom,R.G.,&Milne,D.K.2001,TheAstrophysicalJournal, 546,447 6 Institutfu¨rPhysik,Humboldt-Universita¨tzuBerlin,Newtonstr.15, Ghavamian, P., Raymond, J., Smith, R. C., & Hartigan, P. 2001, The D12489Berlin,Germany AstrophysicalJournal,547,995 7 UniversityofNamibia,DepartmentofPhysics,PrivateBag13301, Helder,E.A.,Vink,J.,Bamba,A.,etal.2013,MonthlyNoticesoftheRoyal Windhoek,Namibia AstronomicalSociety,435,910 8 GRAPPA, Anton Pannekoek Institute for Astronomy, University Helder,E.A.,Vink,J.,Bassa,C.G.,etal.2009,Science,325,719 of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Hinton, J. A. & Hofmann, W. 2009, Annual Review of Astronomy & Netherlands Astrophysics,47,523 9 Department of Physics and Electrical Engineering, Linnaeus Kelner,S.R.,Aharonian,F.A.,&Bugayov,V.V.2006,PhysicalReviewD,74, University,35195Va¨xjo¨,Sweden 034018 Kesteven,M.J.&Caswell,J.L.1987,AstronomyandAstrophysics(ISSN0004- 10 Institut fu¨r Theoretische Physik, Lehrstuhl IV: Weltraum und 6361),183,118 Astrophysik, Ruhr-Universita¨t Bochum, D 44780 Bochum, Lemoine-Goumard, M., Renaud, M., Vink, J., et al. 2012, Astronomy and Germany Astrophysics,545,28 11 GRAPPA,AntonPannekoekInstituteforAstronomyandInstituteof Long,K.S.&Blair,W.P.1990,AstrophysicalJournal,358,L13 High-EnergyPhysics,UniversityofAmsterdam,SciencePark904, Malkov,M.A.1999,TheAstrophysicalJournal,511,L53 1098XHAmsterdam,TheNetherlands Ohm,S.,vanEldik,C.,&Egberts,K.2009,AstroparticlePhysics,31,383 12 Institut fu¨r Astro- und Teilchenphysik, Leopold-Franzens- Pisarski,R.L.,Helfand,D.J.,&Kahn,S.M.1984,AstrophysicalJournal,277, Universita¨tInnsbruck,A-6020Innsbruck,Austria 710 13 School of Chemistry & Physics, University of Adelaide, Adelaide Porter,T.A.&Strong,A.W.2005,Proc.29thICRC,4,77 Rho, J., Dyer, K. K., Borkowski, K. J., & Reynolds, S. P. 2002, The 5005,Australia AstrophysicalJournal,581,1116 14 Centre for Space Research, North-West University, Potchefstroom Smith,R.C.1997,AstronomicalJournalv.114,114,2664 2520,SouthAfrica Stephenson,F.R.&Green,D.A.2002,Historicalsupernovaeandtheirrem- 15 LUTH, Observatoire de Paris, CNRS, Universite´ Paris Diderot, 5 nants,5 PlaceJulesJanssen,92190Meudon,France Vink,J.,Bleeker,J.,vanderHeyden,K.,etal.2006,TheAstrophysicalJournal, 16 LPNHE,Universite´ PierreetMarieCurieParis6,Universite´ Denis 648,L33 Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Vink,J.,Kaastra,J.S.,&Bleeker,J.A.M.1997,AstronomyandAstrophysics, Cedex5,France 328,628 17 Laboratoire Univers et Particules de Montpellier, Universite´ Vo¨lk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, Astronomy and Astrophysics,433,229 Montpellier 2, CNRS/IN2P3, CC 72, Place Euge`ne Bataillon, F- Whiteoak, J. B. Z. & Green, A. J. 1996, Astronomy and Astrophysics 34095MontpellierCedex5,France Supplement,118,329 18 DSM/Irfu,CEASaclay,F-91191Gif-Sur-YvetteCedex,France Williams, B. J., Blair, W. P., Blondin, J. M., et al. 2011, The Astrophysical 19 Astronomical Observatory, The University of Warsaw, Al. Journal,741,96 Ujazdowskie4,00-478Warsaw,Poland Yamaguchi, H., Koyama, K., & Uchida, H. 2011, Publications of the 20 AixMarseilleUniversie´,CNRS/IN2P3,CPPMUMR7346,13288 AstronomicalSocietyofJapan,63,837 Marseille,France Yuan, Q., Huang, X., Liu, S., & Zhang, B. 2014, The Astrophysical Journal 21 Instytut Fizyki Ja¸drowej PAN, ul. Radzikowskiego 152, 31-342 Letters,785,L22 Krako´w,Poland 22 Funded by EU FP7 Marie Curie, grant agreement No. PIEF-GA- 2012-332350, 23 School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue,Braamfontein,Johannesburg,2050SouthAfrica 24 Laboratoire d’Annecy-le-Vieux de Physique des Particules, Universite´ SavoieMont-Blanc,CNRS/IN2P3,F-74941Annecy-le- Vieux,France 25 Landessternwarte, Universita¨t Heidelberg, Ko¨nigstuhl, D 69117 Heidelberg,Germany 26 Universite´Bordeaux,CNRS/IN2P3,Centred’E´tudesNucle´airesde BordeauxGradignan,33175Gradignan,France 27 OskarKleinCentre,DepartmentofPhysics,StockholmUniversity, AlbanovaUniversityCenter,SE-10691Stockholm,Sweden 28 WallenbergAcademyFellow, 29 Institut fu¨r Astronomie und Astrophysik, Universita¨t Tu¨bingen, Sand1,D72076Tu¨bingen,Germany 30 LaboratoireLeprince-Ringuet,EcolePolytechnique,CNRS/IN2P3, F-91128Palaiseau,France 31 APC, AstroParticule et Cosmologie, Universite´ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris 7 H.E.S.S.Collaborationetal.:DetailedanalysisoftheshelltypeSNRRCW86 Cite´, 10, rue Alice Domon et Le´onie Duquet, 75205 Paris Cedex 13,France 32 Univ.GrenobleAlpes,IPAG,F-38000Grenoble,France CNRS,IPAG,F-38000Grenoble,France 33 DepartmentofPhysicsandAstronomy,TheUniversityofLeicester, UniversityRoad,Leicester,LE17RH,UnitedKingdom 34 NicolausCopernicusAstronomicalCenter,ul.Bartycka18,00-716 Warsaw,Poland 35 Institut fu¨r Physik und Astronomie, Universita¨t Potsdam, Karl- Liebknecht-Strasse24/25,D14476Potsdam,Germany 36 DESY,D-15738Zeuthen,Germany 37 Obserwatorium Astronomiczne, Uniwersytet Jagiellon´ski, ul. Orla 171,30-244Krako´w,Poland 38 Universita¨t Erlangen-Nu¨rnberg, Physikalisches Institut, Erwin- Rommel-Str.1,D91058Erlangen,Germany 39 Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87- 100Torun,Poland 40 DepartmentofPhysics,UniversityoftheFreeState,POBox339, Bloemfontein9300,SouthAfrica 41 HeisenbergFellow(DFG),ITAUniversittHeidelberg,Germany, 42 GRAPPA, Institute of High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands e-mail:[email protected] 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.