RESEARCHARTICLE Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass JessicaS.VeyseyPowell*,KimberlyJ.Babbitt DepartmentofNaturalResourcesandtheEnvironment,UniversityofNewHampshire,Durham,New Hampshire,UnitedStatesofAmerica *[email protected] Abstract Forestbuffersareaprimarytoolusedtoprotectwetland-dependentwildlife.Thoughimple- mentedwidely,bufferefficacyisuntestedformostamphibianspecies.Consequently,it OPENACCESS remainsunclearwhetherbuffersaresufficientformaintainingamphibianpopulationsandif so,howwidebuffersshouldbe.Wepresentevidencefromasix-year,landscape-scale Citation:VeyseyPowellJS,BabbittKJ(2015) DespiteBuffers,ExperimentalForestClearcuts experimenttestingtheimpactsofclearcutting,bufferwidth,andhydroperiodonbodysize ImpactAmphibianBodySizeandBiomass.PLoS andconditionandbiomassofbreedingadultsfortwoamphibianspeciesat11vernalpools ONE10(11):e0143505.doi:10.1371/journal. inthenortheasternUnitedStates.Werandomlyassignedtreatments(i.e.,reference,100m pone.0143505 buffer,30mbuffer)acrosspools,clearcuttocreatebuffers,andcapturedallspottedsala- Editor:ChristineCooper,CurtinUniversity, mandersandwoodfrogs.Clearcutsstronglyandnegativelyimpactedsize,condition,and AUSTRALIA biomass,butwiderbuffersmitigatedeffectmagnitudeandduration.Amongrecapturedindi- Received:July13,2015 viduals,forexample,30m-treatmentsalamanderswerepredictedtobeabout9.5mm Accepted:November5,2015 shorterthan,while100m-treatmentsalamandersdidnotdifferinlengthfrom,reference- Published:November23,2015 treatmentsalamanders.Similarly,amongrecapturedfrogs,meanlengthinthe30mtreat- mentwaspredictedtodecreasebyabout1mm/year,whileinthe100mandreferencetreat- Copyright:©2015VeyseyPowell,Babbitt.Thisis anopenaccessarticledistributedunderthetermsof ments,lengthwastime-invariant.Some,butnotall,metricsrecoveredwithtime.For theCreativeCommonsAttributionLicense,which example,femalenew-capturedandrecapturedsalamanderswerepredicted,respectively permitsunrestricteduse,distribution,and andonaverage,toweigh4.5and7glessinthe30mversusreferencetreatmentrightafter reproductioninanymedium,providedtheoriginal thecut.Whilerecaptured-femalemasswaspredictedtorecoverby9.5yearspost-cut,new- authorandsourcearecredited. captured-femalemassdidnotrecover.Hydroperiodwasanimportantmediator:inthe DataAvailabilityStatement:Thedatausedinthis 100mtreatment,cuttingpredominatelyaffectedpoolsthatwerestressedhydrologically. studyareavailablefromtheDryaddatabase(http:// dx.doi.org/10.5061/dryad.62ks6). Overall,salamandersandfemalefrogswereimpactedmorethanmalefrogs.Ourresults highlighttheimportanceofindividualizedmetricslikebodysize,whichcanrevealsublethal Funding:Theprojectwassupportedbygrantsto KJBfrom:theNationalResearchInitiativeofthe effectsandilluminatemechanismsbywhichhabitatdisturbanceimpactswildlifepopula- USDACooperativeStateResearch,Education,and tions.Individualizedmetricsthusprovidecriticalinsightsthatcomplementspeciesoccur- ExtensionService(http://www.csrees.usda.gov/ renceandabundance-basedpopulationassessments. funding/rfas/nri_rfa.html),grantnumbers:2003- 35101-12922and2007-35101-18281;andthe NortheasternStatesResearchCooperative(http:// nsrcforest.org/).Theprojectwasalsosupportedby fellowshipstoJSVPfrom:theRobertandPatricia SwitzerFoundation(http://www.switzernetwork.org/), PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 1/31 ForestBuffersandAmphibianSizeandBiomass theUniversityofNewHampshireGraduateSchool Introduction (http://www.gradschool.unh.edu/),andtheUniversity Globally,forestecosystemsareexperiencingintensifyingstressasgrowinghumanpopulations ofNewHampshireCooperativeExtension(http:// extension.unh.edu/).Partialfundingwasprovidedby demandmoredevelopedandagriculturallandandlargervolumesofforestproducts[1,2]. agranttoKJBfromtheNewHampshireAgricultural Whetherownersdevelop,harvest,orconservetheirforestsisacomplexdecisiondrivenby ExperimentStation(http://www.colsa.unh.edu/aes). globaleconomictrends[1,3].Overthelasttwodecades,increasingawarenessthatforestspro- ThisisScientificContributionnumber:2614.This videcriticalecosystemservicescatalyzedinterestinsustainablemanagementprogramsthat workwassupportedbytheUSDANationalInstituteof allowforestownerstoharvesttimberwhilemaintainingecosystemfunctionsandbiodiversity FoodandAgricultureMcIntire-StennisProject, accessionnumber:0226124.Thesefundershadno [4–6].Developingsustainableforest-managementplanscanbedifficultevenforcommonspe- roleinstudydesign,datacollectionandanalysis, cies,however,givenoursometimesrudimentaryunderstandingofthecomplexinteractions decisiontopublish,orpreparationofthemanuscript. betweenforestcomponentsandabilitytopredictspecies’responsestodisturbance[7]. CompetingInterests:Theauthorshavedeclared Amphibianscanbeparticularlychallengingtoaccommodategiventheircomplexlifecycles thatnocompetinginterestsexist. anddiversehabitatneeds[8].Intemperateforests,manyamphibianspeciesoccupywetlands duringtheireggandlarvalstages,butmigratehundredsofmetersintoadjacentforestasjuve- nilesandadults(e.g.,[9–11]).Forestharvestingcanalterboththewetlandanduplandhabitat ofthesespecies,withpotentiallynegativeconsequencesforpopulationpersistence[8].Ingen- eral,timberharvesting,especiallyclearcuts,islocallyassociatedwithreducedabundanceand survivalofnumerousamphibianspeciesacrossvariousforesttypes(e.g.,[12–14]).Responding tosuchscientificevidence,publicpressure,economicincentive,andpersonalecologicalethic, someforestmanagersintemperateecosystemshaveindicatedwillingnesstointegrateamphib- ianhabitatneedsintoforestmanagementplans[15–17]. Forestedbuffersareaprimarytoolusedtoprotectamphibiansinsuchplans.Thoughbuff- ersareimplementedwidely,theirefficacyisuntestedformostamphibianspecies.Thus,it remainsunclearwhetherbuffersaresufficientformaintainingviableamphibianpopulations inworkingforestsandifso,howwidebuffersshouldbe.Moststudiesthatrecommend amphibianbuffersarebasedonobservationaldatafromunbufferedlandscapes(e.g.,[18–20]). Afterreviewingthemovementcharacteristicsof32speciesacrosssuchlandscapes,Semlitsch andBodie[9]suggestedthata290-mlifezone,centeredlikeabufferaroundawetland,isnec- essarytoprotectthecorehabitatofmostwetland-dependentamphibianspecies.Scientistsand conservationplannersfrequentlyreferencetheneedforaprotective290-mlifezone,butpol- icy-makersareslowtoembracesuchlargeconstraintsonlanduse[21–23].Comparedtodevel- opmentandintensiveagriculture,however,forestrycanbeatemporarydisturbance.Because foreststypicallyregenerateforseveraldecadespost-cut,habitatconditionsaredynamicand amphibiansmaybeabletopersistevenifbuffersconsiderablysmallerthan290mareused[14, 21,24]. Onlyahandfulofstudieshaveintentionallytestedtheimpactsofbuffer-mediatedforest cuttingonamphibians,however,andthesehavelimitedinference.Mostwererestrictedto stream-sidehabitats(e.g.,[25,26]),usednarrowbuffers(i.e.,<35m;e.g.,[27–29]),andwere conductedinnorthwesternNorthAmerica.Forsome,forestryimpactswereconfoundedby othermanagementtreatmentsortimeofharvest[30,31].Somefocusedsolelyorpartlyon terrestrialspecies[29,32]oronlysampledinorextremelyclosetostreams[33,34].SSSuch studieshavelimitedapplicabilityforamphibiansthatbreedinlentichabitats,especiallysince post-breedingmigrationsforsuchspeciesoftenextendfarbeyond35m. Tostrengthenthescientificbasisformakingdecisionsaboutbufferwidth,wepresentevi- dencefromasix-year,landscape-scaleexperimenttestingtheinteractiveimpactsofclearcut- tingandbufferwidthonbreeding-adultdemographyfortwoamphibianspeciesatnatural vernalpoolsinanindustrialforestinthenortheasternUnitedStates.Toourknowledge,thisis thefirstexperimenttoevaluatebufferefficacyforpool-breedingamphibians.Inaprevious paperissuingfromthisexperiment[35],weshowedthatnarrowbuffersresultinreduced PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 2/31 ForestBuffersandAmphibianSizeandBiomass recapturesofmaturespottedsalamanders(Ambystomamaculatum)andwoodfrogs(Litho- batessylvaticus)andalteredsexratiosforspottedsalamanders.Here,weassesshowbodysize andconditionandpopulationbiomassvaryinresponsetobufferwidthforbreedingadultsof bothspecies.Notethatcompetitiveandpredaceousinteractionsbetweenlarvaeofthesetwo speciescaninfluenceindividualbodysizeandconditionandpopulationbiomass[36–38],but weassumedsuchinfluencewascomparableacrosspools(becausebothspecieswereabundant atallpools)anddidnotassessinterspeciesinteractionsinthisstudy. Amphibianbodysizeandconditionarecorrelatedwithandcanbeproxiesformultiplefit- nessmeasuresincludingfecundity[39,40],survival[41,42],endurance[43,44],andimmunity [45,46].Biomassmeasuresproductivityandindexesenergeticcontributionsofamphibian populationstoaquaticandterrestrialcomponentsofforestecosystems[47,48].Understanding howbufferwidthrelatestobodysizeandconditioncanprovideimportantinsightsintothe indirectpathwaysbywhichforestryaffectsamphibianpopulations[49].Similarly,knowing howadultbiomasschangesinresponsetobufferwidthcanhelpclarifyhowcuttinginfluences ecosystemenergyflows.Previousresearchsuggeststhatforestcuttingisassociatedwith reducedamphibiansizeandbodycondition,butstudiesexaminingsuchindirectforestry effectsarerelativelyrare,werenotconductedinbufferedlandscapes,andproducedresultsthat wereinconsistentacrossspeciesandageclasses(e.g.,[50–52]).Nonetheless,weexpectedthat clearcuttingwouldexertnegativeeffectsonamphibianbodysizeandconditionandadultbio- massinourlandscape,butthatbufferswouldmitigatetheseeffects.Becausenarrowbuffers providelessforesthabitatthanwidebuffers,wespecificallypredictedthatasbufferwidth decreasedacrossexperimentaltreatments,thefollowingcharacteristicsofspotted-salamander andwood-frogbreedingpopulationswouldalsodecrease: 1. individual-adultlength,mass,andbodycondition;and 2. totalbreeding-adultbiomass. Methods StudySite,Treatments,andSampling Weconductedthisresearchina700km2areaofHancockandWashingtoncounties,Maine, USA(45°0’52”N,44°48”32”N;68°28’11”W,67°53’10”W).Ourentirestudysitewaslocatedin anindustrialforestinMaine’snorthern-interiorclimatezoneandatthenorthernlimitofthe DowneastEcoregion[53].Whilemicro-climateandmicro-topographicalconditionsvaried slightlyacrossthesite,allofourstudypoolsweresubjectedtosimilaroverallclimaticand land-useconditions.Fordetaileddescriptionsofthesite,experimentaldesign,andsampling methods,see[35]. Allpoolswerefish-free.Amphibianspeciescompositionwassimilaracrosspools,withthe followingspeciesoccurringatallpools:Ambystomamaculatum,Lithobatessylvaticus,Noto- phathalmusviridescens,Lithobatesclamitans,Pseudacriscrucifer,Lithobatescatesbeianus,and Lithobatespalustris.AmbystomalateraleandAnaxyrusamericanuswerepresentatallbuttwo andoneofthepools,respectively.Threeadditionalspecieswererarelytrappedduringthe experiment;theseincluded:Desmognathusfuscus(astreamsalamander;oneindividual),Hyla versicolor(23individualsacrosssevenwetlands),andLithobatesseptentrionalis(11individuals acrosssixwetlands).Abioticconditionswerealsosimilaracrosspoolsandcomparedtoother woodlandpoolsintheregion(Table1;[54,55]).Inparticular,specificconductancevalues wererelativelylowandpHlevelsweresomewhatacidic. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 3/31 ForestBuffersandAmphibianSizeandBiomass Table1. Mean(±SE)ofvernalpoolabioticcharacteristicsbyforestrytreatmenta. Treatment pHb SpecificConductance(μS) WaterTemperature(°C) Depth(m)c Reference 5.60±0.10 18.74±1.40 14.12±0.74 0.94±0.18 100m 5.92±0.14 31.34±5.65 15.39±1.25 1.14±0.12 30m 5.92±0.06 23.32±1.05 16.27±0.87 1.12±0.19 aForestrytreatmentswere:reference(i.e.,uncut),100mbuffer,and30mbuffer.SeeFig1. bpH,specificconductance,andwatertemperatureweremeasuredateachpoolinMayof2007,2008,and2009,usinganOrionmodel230ApHmeter andaYSImodel85conductivitymeter. cMeasuredasthesinglegreatestdepthineachpoolacrossMay2007,2008,and2009. doi:10.1371/journal.pone.0143505.t001 Betweenfall2003andspring2004,thelandownercreatedexperimentalbuffersbyclearcut- tingforestaroundthestudypools.Werandomlyassignedeachofthe11poolstooneofthree treatments:reference(i.e.,uncut;N=3),100mbuffer(N=4),or30mbuffer(N=4).Poolsin thetwobuffertreatmentshad,respectively,a100-mor30-m-wideuplandbufferencirclingthe poolanda100-m-wideconcentricclearcutaroundthebuffer(Fig1). Insummerandfall2003,wesurroundedeachofthe11poolswithadriftfence/pitfalltrap array[56].From2004to2009,weopenedtrapsinthespringafterice-outandclosedtraps whenapoolwasdryforatleastsevenconsecutivedaysorinthefallwhenhardfrostscurbed amphibianmovement.Wecheckedpitfalltrapsdailyduringperiodsoffrequentamphibian movement(i.e.,April-MayandJuly-September)andeveryonetofivedaysduringperiods whenamphibianswerelessactive(i.e.,JuneandOctober-earlyNovember).For2009,wedid notopentrapsatone30m-bufferpoolbecausethepoolwasinaccessible.Ouranalysisisrobust tothismissingdata,however[57]. Usingthepitfalltraps,wecaptured,counted,andsexedalladultspottedsalamandersand woodfrogsexitingthepools.Foreachindividual,wealsomeasuredsnout-ventorsnout-uro- stylelength(hereafterSVL)andmass.Todistinguishrecapturesfromnew-capturesandmini- mizethechancesofcountingthesameindividualmorethanonceayear,wemarkedallexiting adultswithapool-specifictoe-clip[58].Foranyindividualthatreturnedtoapoolthesame yearitwastoe-clipped,weonlyanalyzeddatafromitsfirstvisit.Formoreinformationonthe rationalebehind,andpotentiallimitationsof,thismarkingmethod,see[35].Post-processing, wereleasedeachanimalontheoppositesideofthefencefromwhichwecapturedit. Wemeasuredhydroperiodforeachpoolineachyearasthenumberofdaysthepoolheld waterbetweenice-out(i.e.,<75%ofthepoolwascoveredinice)andthedaythepooldried completely.Tofacilitateanalyses,weassignedahydroperiodenddateofOctober28thtopools thatdidnotdryinagivenyear.Weusedthisdatebecausethesepoolsstillheldwateronthis date,butitwaslateenoughintheyearthatmostamphibiansatourstudypoolswereinactive. StatisticalAnalyses Totesttherelativeimpactsofbuffertreatmentandhydroperiodonseveralmeasuresofbreed- ing-amphibianbodyconditionandbiomass,weconductedlinearmixedeffectsregressions (LME)usingthe“lme”functioninS-Plus8.0(InsightfulCorporation,Seattle,WA,USA).We definedourstudypopulationasalladultsthatmigratedtoapoolandattemptedtobreedina givenyear.Ourresultsthusapplytoasubsetofeachspecies’totallocalpopulationanddonot accountforadultsalamandersthatskippedbreedinginagivenyearorjuveniles.Fortherestof thispaper,werefertoourstudypopulationasthe“breeding”population. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 4/31 ForestBuffersandAmphibianSizeandBiomass Fig1.Experimentaldesignimplementedat11naturalvernalpoolsineast-centralMaine,USA.Undisturbedbuffersofeither100m(left;n=4)or30m (right;n=4)wereleftadjacenttopoolsand100mwideclearcutswerecreatedaroundthebuffers.Forestbeyondtheclearcutwasundisturbed.Nocutting occurredatreferencevernalpools(notshown;n=3). doi:10.1371/journal.pone.0143505.g001 Weassessedbodyconditionusingthreesizemetrics:SVL,mass,andabody-condition index(BCI).WeusedtheBCIasarelativemeasureofenergyreserves.WecalculatedtheBCI astheresidualsofanordinaryleast-squaresregressionofmassonSVL.Toobtainnormal residualsfortheBCI,wesquare-roottransformedthemassandSVLdataforsalamandersand log-transformedmassandSVLforfrogs.WecalculatedseparateBCIsforeachsexwithineach species.Residual-basedconditionindicesareanappropriatetoolforourstudyforthefollowing reasons.First,bycalculatingseparateBCIsforeachsexwithineachspecies,weavoidedthe scalingissuesthatresultwhencomparingBCIsacrossgroupsknowntodifferinsizedueto heterauxesisandallomorphosis[59].Second,aftertransformation,ourdatadidnotviolatethe critical,testableassumptionsinherenttoBCIanalysis,namely:massandSVLwerelinearly related,BCIwasindependentofSVL,andSVLisareliableindicatorofstructuralsize[60–62]. Finally,residual-basedconditionindicesoutperformsimilarmeasuresofconditionandaccu- ratelyparallelenergyreservesinavarietyofspecies[61–63]. Wecalculatedbiomassasthesumofthemassofallindividuals,withseparatebiomasses calculatedforeachspeciesandeachsexateachwetlandineachyear.Foreachindividual counted,butnotweighed(N=328and748[or9%and11%],forspottedsalamandersand woodfrogs,respectively),weassignedamassequivalenttotheimputedmeanmassforits respectivecategory.Wecouldnotdeterminethesexof22spottedsalamandersand27wood frogsthatwefounddeadintraps.Wedidnotusedeadindividualsinthebiomassanalysis.To meettheassumptionsofLME,weusedln(biomass+0.5)astheyvariableinallbiomassanaly- ses,exceptforrecapturedmalespottedsalamanders,forwhichweusedtheuntransformed biomass. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 5/31 ForestBuffersandAmphibianSizeandBiomass Ourpredictorvariableswere:buffertreatment,mean-poolhydroperiod(i.e.,themean hydroperiodforeachpoolacrossthesixstudyyears),standarddeviationofpoolhydroperiod (calculatedforeachpoolacrossthesixstudyyears),aninteractionbetweentreatmentand mean-poolhydroperiod,andapairofnumericdummyvariablesrepresentinganinteraction betweentreatmentandstudyyear.Weusedthefirstdummyvariable(cut.year)todistinguish whetherapoolwasclearcutornot.Weusedtheseconddummyvariable(30m.year)toindicate marginalimpactsto30mbufferpools.ThistreatmentXyearinteractionallowedustoevaluate whetherimpactstothecuttreatmentsrecoveredwithtime.Wedefined‘recover’as:being restoredtovaluessimilartothoseinthereferencetreatment,afterdeviatingfromreference- treatmentvaluesatsomepriortime. Weperformedseparateregressionsforeachcombinationofcapturestatus(i.e.,new-capture orrecapture)andsex,withineachspecies,foratotalofeightregressionmodelspersizemetric. WetreatedyearandpoolIDascrossedrandomeffects[57]inallmodels,exceptwhenthe modelwouldnotconvergewithcrossedeffects,inwhichcasewesimplifiedthemodelto includeeitherarandominterceptforyearorforwetland,whicheverprovidedabettermodel fit,asdeterminedbylikelihoodratiotests(LRTs).Amongthesimplifiedmodels,weusedyear randominterceptsfortheSVLofnew-capturedandrecapturedmalewoodfrogs,theBCIof recapturedfemalewoodfrogs,andtheBCIofmaleandfemalerecapturedspottedsalamanders. Similarly,weusedwetlandrandominterceptsfortheBCIofnew-capturedmalewoodfrogs. Wealsomodeledthevariance-covariancestructureforeachregressiontoaccountforheteroge- neousvarianceacrossgroupsandcorrelationamongindividualsfromthesamewetland(S1 Appendix).WeusedLRTstooptimizethevariance-covariancestructureofeachmodel,ANO- VAstoassesstheoverallsignificanceofeachfixedeffect,andtteststodeterminethesignifi- canceofdifferenttreatmentlevels(α=0.05).Weusedtreatmentcontraststocomparethe referencetreatmenttoeachrespectivecuttreatment(i.e.,bydefault,therewasnodirectcom- parisonbetweenthe100mand30mtreatments;[57]).Basedonanaprioridecision,whenthe hydroperiodinteractionwasnotsignificant,weremovedthisinteractionfromthemodeland refitthemodelfortheremainingfixedeffects.Intheirfinalforms,allmodelssatisfiedthe assumptionsofLME.See[35]forfurtherdetailsonthedummyvariablesusedintheyearX treatmentinteractionandthemodel-selectionprocess. EthicsandDataDepositionStatements WeconductedalloftheresearchinaccordancewiththerulesoftheInstitutionalAnimalCare andUseCommitteeattheUniversityofNewHampshire(IACUC-UNH).IACUC-UNH approvedourresearchprotocol,asdetailedinpermits:020601and050604.Noneofthecap- turedspecieswereprotectedorendangeredunderfederalorstatelaw.Weconductedthe researchonprivateland,withpermissionfromthelandowner.Forthesereasons,noadditional permitsorpermissionwereneededtoconductthiswork.Thedatausedinthisstudyareavail- ablefromtheDryaddatabase(http://dx.doi.org/10.5061/dryad.62ks6). Results Overthesixstudyyears,the11vernalpoolsproducedover47kgofbreedingspottedsalaman- dersand64kgofbreedingwoodfrogs.Thisbiomassrepresented3624breedingspottedsala- mandersand6521breedingwoodfrogs.DescriptivestatisticsareprovidedinTable2forsize andbodyconditionandinTable3forbiomass. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 6/31 ForestBuffersandAmphibianSizeandBiomass Table2. Meanandvariabilityofpredictorandamphibiansizevariables,byspecies,capturestatus,sex,andforestrytreatment. Mean±SE Range Meanhydroperiod(days) 126.0±6.0 44.8–197.0 SDhydroperioda(days) 31.8±1.6 6.3–48.8 SVL/SULb(mm) Mass(g) BCIc Mean±SE Range Mean±SE Range Mean±SE Range SpottedSalamander recapture F Reference 82.4±1.0 67.0–99.0 18.1±0.5 8.1–26.0 0.204±0.042 -0.637–1.082 100m 82.6±0.5 61.0–100.0 17.4±0.2 7.3–28.0 0.098±0.024 -0.942–0.912 30m 75.0±0.7 55.0–90.0 13.1±0.3 6.5–22.9 -0.096±0.035 -0.794–0.580 M Reference 74.8±0.6 60.0–90.0 14.0±0.3 8.9–21.0 0.242±0.027 -0.514–1.034 100m 73.1±0.4 54.0–98.0 12.8±0.1 7.3–21.0 0.146±0.018 -0.715–1.009 30m 67.1±0.6 51.0–85.0 9.8±0.2 5.5–20.5 -0.040±0.030 -0.685–0.849 new-capture F Reference 82.3±0.6 61.0–101.0 17.3±0.3 7.5–31.0 0.094±0.026 -0.883–1.188 100m 81.7±0.3 53.0–102.0 16.5±0.1 7.1–26.9 0.032±0.015 -0.979–1.939 30m 74.8±0.4 53.0–95.0 12.7±0.2 6.0–25.0 -0.157±0.017 -1.153–0.962 M Reference 73.6±0.5 55.0–96.0 12.3±0.2 5.7–22.2 0.053±0.020 -0.638–0.825 100m 72.5±0.3 52.0–96.0 11.6±0.1 5.3–24.0 -0.013±0.012 -1.589–1.103 30m 65.4±0.3 51.0–95.0 8.9±0.1 4.5–18.9 -0.128±0.011 -0.742–0.719 WoodFrog recapture F Reference 51.9±0.3 44.0–58.0 13.1±0.2 8.8–18.0 0.031±0.013 -0.318–0.434 100m 51.0±0.4 35.0–59.0 12.8±0.2 6.6–19.3 0.044±0.014 -0.313–0.454 30m 49.8±0.5 35.0–56.0 11.0±0.3 5.3–17.8 -0.045±0.021 -0.243–0.445 M Reference 44.1±0.2 31.0–56.0 9.1±0.1 4.8–14.0 0.020±0.008 -0.462–0.488 100m 44.5±0.2 31.0–54.0 9.2±0.1 4.1–13.4 0.020±0.010 -0.409–0.710 30m 43.4±0.3 31.0–56.0 8.8±0.2 5.5–14.3 0.011±0.015 -0.273–0.542 new-capture F Reference 49.9±0.1 33.0–60.0 12.1±0.1 3.7–20.8 0.011±0.006 -0.915–0.656 100m 49.6±0.2 37.0–60.0 12.1±0.1 5.0–22.0 0.022±0.006 -0.518–0.555 30m 48.6±0.2 35.0–59.0 10.9±0.1 3.8–21.5 -0.043±0.007 -0.958–0.606 M Reference 44.1±0.1 33.0–55.0 9.0±0.1 3.3–19.0 0.014±0.004 -0.777–0.635 100m 43.0±0.1 30.0–61.0 8.7±0.1 4.2–19.6 0.005±0.005 -0.729–0.821 30m 42.6±0.1 27.0–53.0 8.3±0.1 4.1–13.8 -0.033±0.005 -0.638–0.611 aStandarddeviationofpoolhydroperiod. bSnout-ventorsnout-urodylelength. cBodyconditionindex.ObtainedviaordinaryleastsquaresregressionofmassonSVL/SUL.MassandSVL/SULweresquare-roottransformedfor salamandersandlog-transformedforfrogs,priortoregression.BCImeasuresrelativeenergyreserves.BCI>0indicatesbetterbodyconditionthan BCI<0.MeanBCImaynotequalzerobecauseBCIwascalculatedoverrecapturedandnew-capturedanimalscombined,foreachsex. doi:10.1371/journal.pone.0143505.t002 SpottedSalamanders Ingeneral,wefoundthatspottedsalamandersweresmallerandhadworsebodyconditionat 30m,comparedtoreference,pools.Forsome,butnotall,combinationsofcapturestatus,sex, andsizemetric,weobservedpartialrecoveryofthesizemetricat30m-bufferpoolsoverthesix studyyears.Wefoundlessconsistentrelationshipsbetweentreatmentandbiomassthan betweentreatmentandbodysize/condition.Allresultspresentedinthissectionwerestatisti- callysignificant,unlessotherwiseindicated. Recapturedfemalesalamanderswere,throughoutthestudyandonaverage,predictedtobe 9.1mmshorterat30mversusreferencepools(Table4;Fig2).(Note:nofemaleswererecap- turedat30m-bufferpoolsin2009).Similarly,inthefirstrecaptureyear(i.e.,2005),theaverage PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 7/31 ForestBuffersandAmphibianSizeandBiomass Table3. Meanandvariabilityoftotalannualbreedingamphibianbiomassbyspecies,forestrytreatment,capturestatus,andsex. AdultBiomass(g) Species Sex Treatment Mean±SE Range Total SpottedSalamander recapture F Reference 71.2±17.2 0–227.2 1068.4 100m 160.0±66.5 0–1273.4 3199.1 30m 52.2±14.6 0–240.5 992.3 M Reference 102.6±23.1 0–286.0 1539.5 100m 171.8±48.8 0–750.8 3435.9 30m 55.7±12.0 0–191.6 1057.8 new-capture F Reference 214.8±26.1 29.6–436.0 3866.9 100m 390.5±108.9 0–2158.6 9373.1 30m 213.9±32.0 27.4–551.5 4920.4 M Reference 179.6±33.1 0–570.9 3232.9 100m 383.1±96.7 0–1493.5 9195.4 30m 210.8±37.2 45.0–819.7 4848.7 WoodFrog recapture F Reference 99.3±25.7 0–337.8 1489.2 100m 74.9±27.1 0–515.4 1498.8 30m 33.9±11.0 0–175.2 645.0 M Reference 222.1±82.6 26.3–1347.7 3331.4 100m 106.9±25.9 0–421.6 2137.5 30m 55.5±11.5 0–189.8 1054.4 new-capture F Reference 498.2±87.5 109.8–1319.2 8968.2 100m 341.3±55.2 17.8–1049.5 8192.3 30m 329.1±48.9 22.7–897.5 7570.2 M Reference 600.7±139.8 88.2–2765.9 10812.0 100m 385.4±69.6 27.5–1386.3 9249.4 30m 390.1±50.5 51.8–855.2 8972.3 doi:10.1371/journal.pone.0143505.t003 recapturedfemaleatthe30m-bufferpoolswaspredictedtoweigh7gless,andhaveworse bodycondition,thanherreference-poolcounterpart.However,massandBCIwerebothpre- dictedtorecovertomeanreferencelevelsbyabout9.5yearspost-cut.Conversely,recaptured- femalebodyconditionatthe100m-bufferpoolsworsenedwithtime,sothatbythestudy’send, 100m-poolBCIwaspredictedtobeabouttwotimeslowerthanthemeanreferenceBCI.BCI alsodecreased,inalltreatments,withincreasinghydroperioddurationandvariability.Addi- tionally,recapturedfemalebiomasswaspredictedtodecreasebyabout58%peryearat30m- bufferpools,buttendedtoincrease(i.e.,wasmarginallysignificant)byabout2.4%pereach additionaldayofmeanhydroperiodinalltreatments.Finally,SVL,mass,andbiomassdidnot differsignificantlybetweenthe100mandreferencetreatments. New-capturedfemalespottedsalamanderswerepredictedtoweigh,onaverageandforthe durationofthestudy,4.5glessat30m-bufferpoolsthanatreferencepools(Fig3).Theyalso tendedtohavepersistentlyworsebodyconditionat30m-bufferpools.Duringthefirstyear post-cut,new-capturedfemaleswerepredictedtobe,onaverage,7.3mmshorterinthe30m versusreferencetreatment.SVLat30m-bufferpoolswaspredictedtorecovertomeanrefer- encelevelsbyabout14yearspost-cut.Fornew-capturedfemalebiomass,the30mandrefer- encetreatmentsdidnotdiffer,but100m-treatmentbiomassdependedonmeanpool hydroperiod.Short-hydroperiodpoolswerepredictedtoproducemuchlowerbiomassinthe PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 8/31 ForestBuffersandAmphibianSizeandBiomass Table4. Linearmixedregressionresultsshowingtherelativeimpactofforestrytreatment,hydroperiod,andstudyyearonsize,bodycondition, andtotalannualbiomassofbreedingspottedsalamandersandwoodfrogs. SizeMetric Predictorc Fvalue j tvalue l Coefficient±SE (df) (df) SpottedSalamander RecapturedFemales SVLa(mm) treatment(30m)d 3.61 * -2.10 * -9.089±4.336 (2,312) (312) intercept 683.04 *** 26.13 *** 86.708±3.318 (1,312) (312) mass(g) treatment(30m) 7.90 * -3.89 * -8.938±2.296 (2,6) (6) 30m.yeare 4.28 * 2.07 * 1.049±0.507 (1,300) (300) intercept 64.15 *** 8.01 *** 20.062±2.505 (1,300) (300) BCIb treatment(30m) 6.38 * -2.01 * -0.385±0.192 (2,301) (301) cut.yearf 5.78 * -2.40 * -0.066±0.027 (1,301) (301) 30m.year 4.28 * 2.07 * 0.105±0.051 (1,301) (301) mean.hydrog 7.91 * -2.81 * -0.002±0.001 (1,301) (301) sd.hydroh 7.46 * -2.73 * -0.005±0.002 (1,301) (301) intercept 15.25 ** 3.91 ** 0.530±0.136 (1,301) (301) biomass(g) 30m.year 16.37 ** -4.05 ** -0.734±0.181 (1,47) (47) mean.hydro 4.00 (cid:129) 2.00 (cid:129) 0.024±0.012 (1,47) (47) New-capturedFemales SVL(mm) treatment(30m) 4.78 * -2.53 * -7.820±3.095 (2,1079) (1079) 30m.year 5.75 * 2.40 * 0.660±0.275 (1,1079) (1079) intercept 397.14 *** 19.93 *** 84.855±4.258 (1,1079) (1079) mass(g) treatment(30m) 3.25 * -2.34 * -4.461±1.905 (2,1051) (1051) intercept 51.52 *** 7.18 *** 19.008±2.648 (1,1051) (1051) BCI treatment(30m) 2.34 (cid:129) -1.96 (cid:129) -0.229±0.117 (2,1054) (1054) biomass(g) treatment(100m)i*mean.hydro 7.91 * 3.88 ** 0.040±0.013 (2,45) (45) treatment(100m) 6.62 * -3.48 * -5.212±1.496 (2,45) (45) intercept 21.21 *** 4.61 *** 5.564±1.208 (1,45) (45) RecapturedMales SVL(mm) treatment(30m) 5.38 * -3.05 * -9.778±3.201 (2,478) (478) intercept 415.79 *** 20.39 *** 79.218±3.885 (1,478) (478) mass(g) treatment(30m) 7.31 ** -3.53 ** -4.796±1.359 (2,473) (473) 30m.year 3.05 (cid:129) 1.75 (cid:129) 0.373±0.214 (1,473) (473) intercept 92.18 *** 9.60 *** 15.321±1.596 (1,473) (473) BCI treatment(30m) 5.15 * -3.17 * -0.439±0.138 (2,468) (468) mean.hydro 5.54 * -2.35 * -0.001±<0.001 (1,468) (468) intercept 6.73 * 2.59 * 0.297±0.114 (1,468) (468) biomass(g) treatment(100m)*mean.hydro 4.24 * 2.90 * 3.038±1.047 (2,45) (45) treatment(100m) 3.15 (cid:129) -2.50 * -314.310±125.594 (2,45) (45) sd.hydro 3.62 (cid:129) -1.90 (cid:129) -3.457±1.818 (1,45) (45) intercept 4.19 * 2.05 * 251.847±123.053 (1,45) (45) New-capturedMales SVL(mm) treatment(30m) 4.36 * -2.73 * -7.820±2.865 (2,1444) (1444) cut.year 3.15 (cid:129) 1.77 (cid:129) 0.500±0.282 (1,1444) (1444) 30m.year 5.39 * 2.32 * 0.556±0.239 (1,1444) (1444) intercept 398.02 *** 19.95 *** 77.363±3.878 (1,1444) (1444) mass(g) treatment(30m) 6.78 * -3.01 * -3.620±1.204 (2,1410) (1410) 30m.year 22.70 *** 4.76 *** 0.409±0.086 (1,1410) (1410) mean.hydro 3.27 (cid:129) -1.81 (cid:129) -0.015±0.008 (1,1410) (1410) (Continued) PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 9/31 ForestBuffersandAmphibianSizeandBiomass Table4. (Continued) SizeMetric Predictorc Fvalue j tvalue l Coefficient±SE (df) (df) intercept 78.92 *** 8.88 *** 14.336±1.614 (1,1410) (1410) BCI treatment(30m) 11.02 *** -3.22 * -0.274±0.085 (2,1410) (1410) 30m.year 12.03 ** 3.47 ** 0.043±0.012 (1,1410) (1410) mean.hydro 3.62 (cid:129) -1.90 (cid:129) -0.001±<0.001 (1,1410) (1410) biomass(g) treatment(100m)*mean.hydro 4.28 * 2.91 * 0.030±0.013 (2,45) (45) treatment(100m) 4.53 * -2.90 * -4.409±1.522 (2,45) (45) cut.year 3.79 (cid:129) 1.95 (cid:129) 0.172±0.088 (1,45) (45) 30m.year 9.45 * -3.07 * -0.269±0.088 (1,45) (45) intercept 16.56 ** 4.07 ** 5.202±1.278 (1,45) (45) WoodFrogs RecapturedFemales SULa(mm) 30m.year 4.21 * -2.05 * -1.284±0.626 (1,284) (284) intercept 473.14 *** 21.75 *** 53.190±2.445 (1,284) (284) mass(g) intercept 89.78 *** 9.48 *** 14.303±1.509 (1,236) (236) BCI treatment(30m) 4.44 * -2.97 * -0.221±0.074 (2,231) (231) sd.hydro 5.97 * -2.44 * -0.002±0.001 (1,231) (231) biomass(g) treatment(100m)*mean.hydro 6.10 * 3.49 )* 0.038±0.011 (2,45) (45 treatment(100m) 5.94 * -3.33 * -5.794±1.741 (2,45) (45) treatment(30m) -1.89 (cid:129) -5.005±2.654 (45) intercept 14.18 ** 3.77 ** 4.958±1.317 (1,45) (45) New-capturedFemales SUL(mm) cut.year 5.50 * 2.34 * 0.349±0.149 (1,2041) (2041) intercept 1019.22 *** 31.93 *** 50.362±1.577 (1,2040) (2041) mass(g) cut.year 5.55 * 2.36 * 0.229±0.097 (1,1869) (1869) intercept 116.32 *** 10.78 *** 12.572±1.166 (1,1869) (1869) BCI nsk biomass(g) treatment(100m)*mean.hydro 3.45 * 2.63 * 0.015±0.006 (2,56) (56) treatment(100m) 5.98 * -3.45 * -2.931±0.850 (2,56) (56) 30m.year 5.58 * -2.36 * -0.268±0.113 (1,56) (56) intercept 59.07 *** 7.69 *** 5.737±0.746 (1,56) (56) RecapturedMales SUL(mm) 30m.year 3.91 * -1.98 * -0.914±0.462 (1,706) (706) sd.hydro 11.44 ** -3.38 ** -0.045±0.013 (1,706) (706) intercept 2064.37 *** 45.44 *** 44.803±0.986 (1,706) (706) mass(g) sd.hydro 6.35 * -2.52 * -0.033±0.013 (1,684) (684) intercept 202.99 *** 14.25 *** 9.559±0.671 (1,684) (684) BCI sd.hydro 2.90 (cid:129) -1.70 (cid:129) -0.002±0.001 (1,685) (685) biomass(g) 30m.year 3.50 (cid:129) -1.87 (cid:129) -0.518±0.277 (1,47) (47) mean.hydro 7.11 * 2.67 * 0.015±0.006 (1,47) (47) intercept 5.21 * 2.28 * 2.471±1.083 (1,47) (47) New-capturedMales SUL(mm) intercept 5523.34 *** 4.32 *** 44.060±0.593 (1,3082) (3082) mass(g) sd.hydro 5.86 * -2.42 * -0.022±0.009 (1,2932) (2932) intercept 432.10 *** 0.79 *** 9.403±0.452 (1,2932) (2932) BCI sd.hydro 5.60 (cid:129) -2.37 (cid:129) -0.002±0.001 (1,6) (6) biomass(g) mean.hydro 5.11 * 2.26 * 0.008±0.004 (1,58) (58) (Continued) PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 10/31
Description: