ebook img

Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass PDF

31 Pages·2015·9.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass

RESEARCHARTICLE Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass JessicaS.VeyseyPowell*,KimberlyJ.Babbitt DepartmentofNaturalResourcesandtheEnvironment,UniversityofNewHampshire,Durham,New Hampshire,UnitedStatesofAmerica *[email protected] Abstract Forestbuffersareaprimarytoolusedtoprotectwetland-dependentwildlife.Thoughimple- mentedwidely,bufferefficacyisuntestedformostamphibianspecies.Consequently,it OPENACCESS remainsunclearwhetherbuffersaresufficientformaintainingamphibianpopulationsandif so,howwidebuffersshouldbe.Wepresentevidencefromasix-year,landscape-scale Citation:VeyseyPowellJS,BabbittKJ(2015) DespiteBuffers,ExperimentalForestClearcuts experimenttestingtheimpactsofclearcutting,bufferwidth,andhydroperiodonbodysize ImpactAmphibianBodySizeandBiomass.PLoS andconditionandbiomassofbreedingadultsfortwoamphibianspeciesat11vernalpools ONE10(11):e0143505.doi:10.1371/journal. inthenortheasternUnitedStates.Werandomlyassignedtreatments(i.e.,reference,100m pone.0143505 buffer,30mbuffer)acrosspools,clearcuttocreatebuffers,andcapturedallspottedsala- Editor:ChristineCooper,CurtinUniversity, mandersandwoodfrogs.Clearcutsstronglyandnegativelyimpactedsize,condition,and AUSTRALIA biomass,butwiderbuffersmitigatedeffectmagnitudeandduration.Amongrecapturedindi- Received:July13,2015 viduals,forexample,30m-treatmentsalamanderswerepredictedtobeabout9.5mm Accepted:November5,2015 shorterthan,while100m-treatmentsalamandersdidnotdifferinlengthfrom,reference- Published:November23,2015 treatmentsalamanders.Similarly,amongrecapturedfrogs,meanlengthinthe30mtreat- mentwaspredictedtodecreasebyabout1mm/year,whileinthe100mandreferencetreat- Copyright:©2015VeyseyPowell,Babbitt.Thisis anopenaccessarticledistributedunderthetermsof ments,lengthwastime-invariant.Some,butnotall,metricsrecoveredwithtime.For theCreativeCommonsAttributionLicense,which example,femalenew-capturedandrecapturedsalamanderswerepredicted,respectively permitsunrestricteduse,distribution,and andonaverage,toweigh4.5and7glessinthe30mversusreferencetreatmentrightafter reproductioninanymedium,providedtheoriginal thecut.Whilerecaptured-femalemasswaspredictedtorecoverby9.5yearspost-cut,new- authorandsourcearecredited. captured-femalemassdidnotrecover.Hydroperiodwasanimportantmediator:inthe DataAvailabilityStatement:Thedatausedinthis 100mtreatment,cuttingpredominatelyaffectedpoolsthatwerestressedhydrologically. studyareavailablefromtheDryaddatabase(http:// dx.doi.org/10.5061/dryad.62ks6). Overall,salamandersandfemalefrogswereimpactedmorethanmalefrogs.Ourresults highlighttheimportanceofindividualizedmetricslikebodysize,whichcanrevealsublethal Funding:Theprojectwassupportedbygrantsto KJBfrom:theNationalResearchInitiativeofthe effectsandilluminatemechanismsbywhichhabitatdisturbanceimpactswildlifepopula- USDACooperativeStateResearch,Education,and tions.Individualizedmetricsthusprovidecriticalinsightsthatcomplementspeciesoccur- ExtensionService(http://www.csrees.usda.gov/ renceandabundance-basedpopulationassessments. funding/rfas/nri_rfa.html),grantnumbers:2003- 35101-12922and2007-35101-18281;andthe NortheasternStatesResearchCooperative(http:// nsrcforest.org/).Theprojectwasalsosupportedby fellowshipstoJSVPfrom:theRobertandPatricia SwitzerFoundation(http://www.switzernetwork.org/), PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 1/31 ForestBuffersandAmphibianSizeandBiomass theUniversityofNewHampshireGraduateSchool Introduction (http://www.gradschool.unh.edu/),andtheUniversity Globally,forestecosystemsareexperiencingintensifyingstressasgrowinghumanpopulations ofNewHampshireCooperativeExtension(http:// extension.unh.edu/).Partialfundingwasprovidedby demandmoredevelopedandagriculturallandandlargervolumesofforestproducts[1,2]. agranttoKJBfromtheNewHampshireAgricultural Whetherownersdevelop,harvest,orconservetheirforestsisacomplexdecisiondrivenby ExperimentStation(http://www.colsa.unh.edu/aes). globaleconomictrends[1,3].Overthelasttwodecades,increasingawarenessthatforestspro- ThisisScientificContributionnumber:2614.This videcriticalecosystemservicescatalyzedinterestinsustainablemanagementprogramsthat workwassupportedbytheUSDANationalInstituteof allowforestownerstoharvesttimberwhilemaintainingecosystemfunctionsandbiodiversity FoodandAgricultureMcIntire-StennisProject, accessionnumber:0226124.Thesefundershadno [4–6].Developingsustainableforest-managementplanscanbedifficultevenforcommonspe- roleinstudydesign,datacollectionandanalysis, cies,however,givenoursometimesrudimentaryunderstandingofthecomplexinteractions decisiontopublish,orpreparationofthemanuscript. betweenforestcomponentsandabilitytopredictspecies’responsestodisturbance[7]. CompetingInterests:Theauthorshavedeclared Amphibianscanbeparticularlychallengingtoaccommodategiventheircomplexlifecycles thatnocompetinginterestsexist. anddiversehabitatneeds[8].Intemperateforests,manyamphibianspeciesoccupywetlands duringtheireggandlarvalstages,butmigratehundredsofmetersintoadjacentforestasjuve- nilesandadults(e.g.,[9–11]).Forestharvestingcanalterboththewetlandanduplandhabitat ofthesespecies,withpotentiallynegativeconsequencesforpopulationpersistence[8].Ingen- eral,timberharvesting,especiallyclearcuts,islocallyassociatedwithreducedabundanceand survivalofnumerousamphibianspeciesacrossvariousforesttypes(e.g.,[12–14]).Responding tosuchscientificevidence,publicpressure,economicincentive,andpersonalecologicalethic, someforestmanagersintemperateecosystemshaveindicatedwillingnesstointegrateamphib- ianhabitatneedsintoforestmanagementplans[15–17]. Forestedbuffersareaprimarytoolusedtoprotectamphibiansinsuchplans.Thoughbuff- ersareimplementedwidely,theirefficacyisuntestedformostamphibianspecies.Thus,it remainsunclearwhetherbuffersaresufficientformaintainingviableamphibianpopulations inworkingforestsandifso,howwidebuffersshouldbe.Moststudiesthatrecommend amphibianbuffersarebasedonobservationaldatafromunbufferedlandscapes(e.g.,[18–20]). Afterreviewingthemovementcharacteristicsof32speciesacrosssuchlandscapes,Semlitsch andBodie[9]suggestedthata290-mlifezone,centeredlikeabufferaroundawetland,isnec- essarytoprotectthecorehabitatofmostwetland-dependentamphibianspecies.Scientistsand conservationplannersfrequentlyreferencetheneedforaprotective290-mlifezone,butpol- icy-makersareslowtoembracesuchlargeconstraintsonlanduse[21–23].Comparedtodevel- opmentandintensiveagriculture,however,forestrycanbeatemporarydisturbance.Because foreststypicallyregenerateforseveraldecadespost-cut,habitatconditionsaredynamicand amphibiansmaybeabletopersistevenifbuffersconsiderablysmallerthan290mareused[14, 21,24]. Onlyahandfulofstudieshaveintentionallytestedtheimpactsofbuffer-mediatedforest cuttingonamphibians,however,andthesehavelimitedinference.Mostwererestrictedto stream-sidehabitats(e.g.,[25,26]),usednarrowbuffers(i.e.,<35m;e.g.,[27–29]),andwere conductedinnorthwesternNorthAmerica.Forsome,forestryimpactswereconfoundedby othermanagementtreatmentsortimeofharvest[30,31].Somefocusedsolelyorpartlyon terrestrialspecies[29,32]oronlysampledinorextremelyclosetostreams[33,34].SSSuch studieshavelimitedapplicabilityforamphibiansthatbreedinlentichabitats,especiallysince post-breedingmigrationsforsuchspeciesoftenextendfarbeyond35m. Tostrengthenthescientificbasisformakingdecisionsaboutbufferwidth,wepresentevi- dencefromasix-year,landscape-scaleexperimenttestingtheinteractiveimpactsofclearcut- tingandbufferwidthonbreeding-adultdemographyfortwoamphibianspeciesatnatural vernalpoolsinanindustrialforestinthenortheasternUnitedStates.Toourknowledge,thisis thefirstexperimenttoevaluatebufferefficacyforpool-breedingamphibians.Inaprevious paperissuingfromthisexperiment[35],weshowedthatnarrowbuffersresultinreduced PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 2/31 ForestBuffersandAmphibianSizeandBiomass recapturesofmaturespottedsalamanders(Ambystomamaculatum)andwoodfrogs(Litho- batessylvaticus)andalteredsexratiosforspottedsalamanders.Here,weassesshowbodysize andconditionandpopulationbiomassvaryinresponsetobufferwidthforbreedingadultsof bothspecies.Notethatcompetitiveandpredaceousinteractionsbetweenlarvaeofthesetwo speciescaninfluenceindividualbodysizeandconditionandpopulationbiomass[36–38],but weassumedsuchinfluencewascomparableacrosspools(becausebothspecieswereabundant atallpools)anddidnotassessinterspeciesinteractionsinthisstudy. Amphibianbodysizeandconditionarecorrelatedwithandcanbeproxiesformultiplefit- nessmeasuresincludingfecundity[39,40],survival[41,42],endurance[43,44],andimmunity [45,46].Biomassmeasuresproductivityandindexesenergeticcontributionsofamphibian populationstoaquaticandterrestrialcomponentsofforestecosystems[47,48].Understanding howbufferwidthrelatestobodysizeandconditioncanprovideimportantinsightsintothe indirectpathwaysbywhichforestryaffectsamphibianpopulations[49].Similarly,knowing howadultbiomasschangesinresponsetobufferwidthcanhelpclarifyhowcuttinginfluences ecosystemenergyflows.Previousresearchsuggeststhatforestcuttingisassociatedwith reducedamphibiansizeandbodycondition,butstudiesexaminingsuchindirectforestry effectsarerelativelyrare,werenotconductedinbufferedlandscapes,andproducedresultsthat wereinconsistentacrossspeciesandageclasses(e.g.,[50–52]).Nonetheless,weexpectedthat clearcuttingwouldexertnegativeeffectsonamphibianbodysizeandconditionandadultbio- massinourlandscape,butthatbufferswouldmitigatetheseeffects.Becausenarrowbuffers providelessforesthabitatthanwidebuffers,wespecificallypredictedthatasbufferwidth decreasedacrossexperimentaltreatments,thefollowingcharacteristicsofspotted-salamander andwood-frogbreedingpopulationswouldalsodecrease: 1. individual-adultlength,mass,andbodycondition;and 2. totalbreeding-adultbiomass. Methods StudySite,Treatments,andSampling Weconductedthisresearchina700km2areaofHancockandWashingtoncounties,Maine, USA(45°0’52”N,44°48”32”N;68°28’11”W,67°53’10”W).Ourentirestudysitewaslocatedin anindustrialforestinMaine’snorthern-interiorclimatezoneandatthenorthernlimitofthe DowneastEcoregion[53].Whilemicro-climateandmicro-topographicalconditionsvaried slightlyacrossthesite,allofourstudypoolsweresubjectedtosimilaroverallclimaticand land-useconditions.Fordetaileddescriptionsofthesite,experimentaldesign,andsampling methods,see[35]. Allpoolswerefish-free.Amphibianspeciescompositionwassimilaracrosspools,withthe followingspeciesoccurringatallpools:Ambystomamaculatum,Lithobatessylvaticus,Noto- phathalmusviridescens,Lithobatesclamitans,Pseudacriscrucifer,Lithobatescatesbeianus,and Lithobatespalustris.AmbystomalateraleandAnaxyrusamericanuswerepresentatallbuttwo andoneofthepools,respectively.Threeadditionalspecieswererarelytrappedduringthe experiment;theseincluded:Desmognathusfuscus(astreamsalamander;oneindividual),Hyla versicolor(23individualsacrosssevenwetlands),andLithobatesseptentrionalis(11individuals acrosssixwetlands).Abioticconditionswerealsosimilaracrosspoolsandcomparedtoother woodlandpoolsintheregion(Table1;[54,55]).Inparticular,specificconductancevalues wererelativelylowandpHlevelsweresomewhatacidic. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 3/31 ForestBuffersandAmphibianSizeandBiomass Table1. Mean(±SE)ofvernalpoolabioticcharacteristicsbyforestrytreatmenta. Treatment pHb SpecificConductance(μS) WaterTemperature(°C) Depth(m)c Reference 5.60±0.10 18.74±1.40 14.12±0.74 0.94±0.18 100m 5.92±0.14 31.34±5.65 15.39±1.25 1.14±0.12 30m 5.92±0.06 23.32±1.05 16.27±0.87 1.12±0.19 aForestrytreatmentswere:reference(i.e.,uncut),100mbuffer,and30mbuffer.SeeFig1. bpH,specificconductance,andwatertemperatureweremeasuredateachpoolinMayof2007,2008,and2009,usinganOrionmodel230ApHmeter andaYSImodel85conductivitymeter. cMeasuredasthesinglegreatestdepthineachpoolacrossMay2007,2008,and2009. doi:10.1371/journal.pone.0143505.t001 Betweenfall2003andspring2004,thelandownercreatedexperimentalbuffersbyclearcut- tingforestaroundthestudypools.Werandomlyassignedeachofthe11poolstooneofthree treatments:reference(i.e.,uncut;N=3),100mbuffer(N=4),or30mbuffer(N=4).Poolsin thetwobuffertreatmentshad,respectively,a100-mor30-m-wideuplandbufferencirclingthe poolanda100-m-wideconcentricclearcutaroundthebuffer(Fig1). Insummerandfall2003,wesurroundedeachofthe11poolswithadriftfence/pitfalltrap array[56].From2004to2009,weopenedtrapsinthespringafterice-outandclosedtraps whenapoolwasdryforatleastsevenconsecutivedaysorinthefallwhenhardfrostscurbed amphibianmovement.Wecheckedpitfalltrapsdailyduringperiodsoffrequentamphibian movement(i.e.,April-MayandJuly-September)andeveryonetofivedaysduringperiods whenamphibianswerelessactive(i.e.,JuneandOctober-earlyNovember).For2009,wedid notopentrapsatone30m-bufferpoolbecausethepoolwasinaccessible.Ouranalysisisrobust tothismissingdata,however[57]. Usingthepitfalltraps,wecaptured,counted,andsexedalladultspottedsalamandersand woodfrogsexitingthepools.Foreachindividual,wealsomeasuredsnout-ventorsnout-uro- stylelength(hereafterSVL)andmass.Todistinguishrecapturesfromnew-capturesandmini- mizethechancesofcountingthesameindividualmorethanonceayear,wemarkedallexiting adultswithapool-specifictoe-clip[58].Foranyindividualthatreturnedtoapoolthesame yearitwastoe-clipped,weonlyanalyzeddatafromitsfirstvisit.Formoreinformationonthe rationalebehind,andpotentiallimitationsof,thismarkingmethod,see[35].Post-processing, wereleasedeachanimalontheoppositesideofthefencefromwhichwecapturedit. Wemeasuredhydroperiodforeachpoolineachyearasthenumberofdaysthepoolheld waterbetweenice-out(i.e.,<75%ofthepoolwascoveredinice)andthedaythepooldried completely.Tofacilitateanalyses,weassignedahydroperiodenddateofOctober28thtopools thatdidnotdryinagivenyear.Weusedthisdatebecausethesepoolsstillheldwateronthis date,butitwaslateenoughintheyearthatmostamphibiansatourstudypoolswereinactive. StatisticalAnalyses Totesttherelativeimpactsofbuffertreatmentandhydroperiodonseveralmeasuresofbreed- ing-amphibianbodyconditionandbiomass,weconductedlinearmixedeffectsregressions (LME)usingthe“lme”functioninS-Plus8.0(InsightfulCorporation,Seattle,WA,USA).We definedourstudypopulationasalladultsthatmigratedtoapoolandattemptedtobreedina givenyear.Ourresultsthusapplytoasubsetofeachspecies’totallocalpopulationanddonot accountforadultsalamandersthatskippedbreedinginagivenyearorjuveniles.Fortherestof thispaper,werefertoourstudypopulationasthe“breeding”population. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 4/31 ForestBuffersandAmphibianSizeandBiomass Fig1.Experimentaldesignimplementedat11naturalvernalpoolsineast-centralMaine,USA.Undisturbedbuffersofeither100m(left;n=4)or30m (right;n=4)wereleftadjacenttopoolsand100mwideclearcutswerecreatedaroundthebuffers.Forestbeyondtheclearcutwasundisturbed.Nocutting occurredatreferencevernalpools(notshown;n=3). doi:10.1371/journal.pone.0143505.g001 Weassessedbodyconditionusingthreesizemetrics:SVL,mass,andabody-condition index(BCI).WeusedtheBCIasarelativemeasureofenergyreserves.WecalculatedtheBCI astheresidualsofanordinaryleast-squaresregressionofmassonSVL.Toobtainnormal residualsfortheBCI,wesquare-roottransformedthemassandSVLdataforsalamandersand log-transformedmassandSVLforfrogs.WecalculatedseparateBCIsforeachsexwithineach species.Residual-basedconditionindicesareanappropriatetoolforourstudyforthefollowing reasons.First,bycalculatingseparateBCIsforeachsexwithineachspecies,weavoidedthe scalingissuesthatresultwhencomparingBCIsacrossgroupsknowntodifferinsizedueto heterauxesisandallomorphosis[59].Second,aftertransformation,ourdatadidnotviolatethe critical,testableassumptionsinherenttoBCIanalysis,namely:massandSVLwerelinearly related,BCIwasindependentofSVL,andSVLisareliableindicatorofstructuralsize[60–62]. Finally,residual-basedconditionindicesoutperformsimilarmeasuresofconditionandaccu- ratelyparallelenergyreservesinavarietyofspecies[61–63]. Wecalculatedbiomassasthesumofthemassofallindividuals,withseparatebiomasses calculatedforeachspeciesandeachsexateachwetlandineachyear.Foreachindividual counted,butnotweighed(N=328and748[or9%and11%],forspottedsalamandersand woodfrogs,respectively),weassignedamassequivalenttotheimputedmeanmassforits respectivecategory.Wecouldnotdeterminethesexof22spottedsalamandersand27wood frogsthatwefounddeadintraps.Wedidnotusedeadindividualsinthebiomassanalysis.To meettheassumptionsofLME,weusedln(biomass+0.5)astheyvariableinallbiomassanaly- ses,exceptforrecapturedmalespottedsalamanders,forwhichweusedtheuntransformed biomass. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 5/31 ForestBuffersandAmphibianSizeandBiomass Ourpredictorvariableswere:buffertreatment,mean-poolhydroperiod(i.e.,themean hydroperiodforeachpoolacrossthesixstudyyears),standarddeviationofpoolhydroperiod (calculatedforeachpoolacrossthesixstudyyears),aninteractionbetweentreatmentand mean-poolhydroperiod,andapairofnumericdummyvariablesrepresentinganinteraction betweentreatmentandstudyyear.Weusedthefirstdummyvariable(cut.year)todistinguish whetherapoolwasclearcutornot.Weusedtheseconddummyvariable(30m.year)toindicate marginalimpactsto30mbufferpools.ThistreatmentXyearinteractionallowedustoevaluate whetherimpactstothecuttreatmentsrecoveredwithtime.Wedefined‘recover’as:being restoredtovaluessimilartothoseinthereferencetreatment,afterdeviatingfromreference- treatmentvaluesatsomepriortime. Weperformedseparateregressionsforeachcombinationofcapturestatus(i.e.,new-capture orrecapture)andsex,withineachspecies,foratotalofeightregressionmodelspersizemetric. WetreatedyearandpoolIDascrossedrandomeffects[57]inallmodels,exceptwhenthe modelwouldnotconvergewithcrossedeffects,inwhichcasewesimplifiedthemodelto includeeitherarandominterceptforyearorforwetland,whicheverprovidedabettermodel fit,asdeterminedbylikelihoodratiotests(LRTs).Amongthesimplifiedmodels,weusedyear randominterceptsfortheSVLofnew-capturedandrecapturedmalewoodfrogs,theBCIof recapturedfemalewoodfrogs,andtheBCIofmaleandfemalerecapturedspottedsalamanders. Similarly,weusedwetlandrandominterceptsfortheBCIofnew-capturedmalewoodfrogs. Wealsomodeledthevariance-covariancestructureforeachregressiontoaccountforheteroge- neousvarianceacrossgroupsandcorrelationamongindividualsfromthesamewetland(S1 Appendix).WeusedLRTstooptimizethevariance-covariancestructureofeachmodel,ANO- VAstoassesstheoverallsignificanceofeachfixedeffect,andtteststodeterminethesignifi- canceofdifferenttreatmentlevels(α=0.05).Weusedtreatmentcontraststocomparethe referencetreatmenttoeachrespectivecuttreatment(i.e.,bydefault,therewasnodirectcom- parisonbetweenthe100mand30mtreatments;[57]).Basedonanaprioridecision,whenthe hydroperiodinteractionwasnotsignificant,weremovedthisinteractionfromthemodeland refitthemodelfortheremainingfixedeffects.Intheirfinalforms,allmodelssatisfiedthe assumptionsofLME.See[35]forfurtherdetailsonthedummyvariablesusedintheyearX treatmentinteractionandthemodel-selectionprocess. EthicsandDataDepositionStatements WeconductedalloftheresearchinaccordancewiththerulesoftheInstitutionalAnimalCare andUseCommitteeattheUniversityofNewHampshire(IACUC-UNH).IACUC-UNH approvedourresearchprotocol,asdetailedinpermits:020601and050604.Noneofthecap- turedspecieswereprotectedorendangeredunderfederalorstatelaw.Weconductedthe researchonprivateland,withpermissionfromthelandowner.Forthesereasons,noadditional permitsorpermissionwereneededtoconductthiswork.Thedatausedinthisstudyareavail- ablefromtheDryaddatabase(http://dx.doi.org/10.5061/dryad.62ks6). Results Overthesixstudyyears,the11vernalpoolsproducedover47kgofbreedingspottedsalaman- dersand64kgofbreedingwoodfrogs.Thisbiomassrepresented3624breedingspottedsala- mandersand6521breedingwoodfrogs.DescriptivestatisticsareprovidedinTable2forsize andbodyconditionandinTable3forbiomass. PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 6/31 ForestBuffersandAmphibianSizeandBiomass Table2. Meanandvariabilityofpredictorandamphibiansizevariables,byspecies,capturestatus,sex,andforestrytreatment. Mean±SE Range Meanhydroperiod(days) 126.0±6.0 44.8–197.0 SDhydroperioda(days) 31.8±1.6 6.3–48.8 SVL/SULb(mm) Mass(g) BCIc Mean±SE Range Mean±SE Range Mean±SE Range SpottedSalamander recapture F Reference 82.4±1.0 67.0–99.0 18.1±0.5 8.1–26.0 0.204±0.042 -0.637–1.082 100m 82.6±0.5 61.0–100.0 17.4±0.2 7.3–28.0 0.098±0.024 -0.942–0.912 30m 75.0±0.7 55.0–90.0 13.1±0.3 6.5–22.9 -0.096±0.035 -0.794–0.580 M Reference 74.8±0.6 60.0–90.0 14.0±0.3 8.9–21.0 0.242±0.027 -0.514–1.034 100m 73.1±0.4 54.0–98.0 12.8±0.1 7.3–21.0 0.146±0.018 -0.715–1.009 30m 67.1±0.6 51.0–85.0 9.8±0.2 5.5–20.5 -0.040±0.030 -0.685–0.849 new-capture F Reference 82.3±0.6 61.0–101.0 17.3±0.3 7.5–31.0 0.094±0.026 -0.883–1.188 100m 81.7±0.3 53.0–102.0 16.5±0.1 7.1–26.9 0.032±0.015 -0.979–1.939 30m 74.8±0.4 53.0–95.0 12.7±0.2 6.0–25.0 -0.157±0.017 -1.153–0.962 M Reference 73.6±0.5 55.0–96.0 12.3±0.2 5.7–22.2 0.053±0.020 -0.638–0.825 100m 72.5±0.3 52.0–96.0 11.6±0.1 5.3–24.0 -0.013±0.012 -1.589–1.103 30m 65.4±0.3 51.0–95.0 8.9±0.1 4.5–18.9 -0.128±0.011 -0.742–0.719 WoodFrog recapture F Reference 51.9±0.3 44.0–58.0 13.1±0.2 8.8–18.0 0.031±0.013 -0.318–0.434 100m 51.0±0.4 35.0–59.0 12.8±0.2 6.6–19.3 0.044±0.014 -0.313–0.454 30m 49.8±0.5 35.0–56.0 11.0±0.3 5.3–17.8 -0.045±0.021 -0.243–0.445 M Reference 44.1±0.2 31.0–56.0 9.1±0.1 4.8–14.0 0.020±0.008 -0.462–0.488 100m 44.5±0.2 31.0–54.0 9.2±0.1 4.1–13.4 0.020±0.010 -0.409–0.710 30m 43.4±0.3 31.0–56.0 8.8±0.2 5.5–14.3 0.011±0.015 -0.273–0.542 new-capture F Reference 49.9±0.1 33.0–60.0 12.1±0.1 3.7–20.8 0.011±0.006 -0.915–0.656 100m 49.6±0.2 37.0–60.0 12.1±0.1 5.0–22.0 0.022±0.006 -0.518–0.555 30m 48.6±0.2 35.0–59.0 10.9±0.1 3.8–21.5 -0.043±0.007 -0.958–0.606 M Reference 44.1±0.1 33.0–55.0 9.0±0.1 3.3–19.0 0.014±0.004 -0.777–0.635 100m 43.0±0.1 30.0–61.0 8.7±0.1 4.2–19.6 0.005±0.005 -0.729–0.821 30m 42.6±0.1 27.0–53.0 8.3±0.1 4.1–13.8 -0.033±0.005 -0.638–0.611 aStandarddeviationofpoolhydroperiod. bSnout-ventorsnout-urodylelength. cBodyconditionindex.ObtainedviaordinaryleastsquaresregressionofmassonSVL/SUL.MassandSVL/SULweresquare-roottransformedfor salamandersandlog-transformedforfrogs,priortoregression.BCImeasuresrelativeenergyreserves.BCI>0indicatesbetterbodyconditionthan BCI<0.MeanBCImaynotequalzerobecauseBCIwascalculatedoverrecapturedandnew-capturedanimalscombined,foreachsex. doi:10.1371/journal.pone.0143505.t002 SpottedSalamanders Ingeneral,wefoundthatspottedsalamandersweresmallerandhadworsebodyconditionat 30m,comparedtoreference,pools.Forsome,butnotall,combinationsofcapturestatus,sex, andsizemetric,weobservedpartialrecoveryofthesizemetricat30m-bufferpoolsoverthesix studyyears.Wefoundlessconsistentrelationshipsbetweentreatmentandbiomassthan betweentreatmentandbodysize/condition.Allresultspresentedinthissectionwerestatisti- callysignificant,unlessotherwiseindicated. Recapturedfemalesalamanderswere,throughoutthestudyandonaverage,predictedtobe 9.1mmshorterat30mversusreferencepools(Table4;Fig2).(Note:nofemaleswererecap- turedat30m-bufferpoolsin2009).Similarly,inthefirstrecaptureyear(i.e.,2005),theaverage PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 7/31 ForestBuffersandAmphibianSizeandBiomass Table3. Meanandvariabilityoftotalannualbreedingamphibianbiomassbyspecies,forestrytreatment,capturestatus,andsex. AdultBiomass(g) Species Sex Treatment Mean±SE Range Total SpottedSalamander recapture F Reference 71.2±17.2 0–227.2 1068.4 100m 160.0±66.5 0–1273.4 3199.1 30m 52.2±14.6 0–240.5 992.3 M Reference 102.6±23.1 0–286.0 1539.5 100m 171.8±48.8 0–750.8 3435.9 30m 55.7±12.0 0–191.6 1057.8 new-capture F Reference 214.8±26.1 29.6–436.0 3866.9 100m 390.5±108.9 0–2158.6 9373.1 30m 213.9±32.0 27.4–551.5 4920.4 M Reference 179.6±33.1 0–570.9 3232.9 100m 383.1±96.7 0–1493.5 9195.4 30m 210.8±37.2 45.0–819.7 4848.7 WoodFrog recapture F Reference 99.3±25.7 0–337.8 1489.2 100m 74.9±27.1 0–515.4 1498.8 30m 33.9±11.0 0–175.2 645.0 M Reference 222.1±82.6 26.3–1347.7 3331.4 100m 106.9±25.9 0–421.6 2137.5 30m 55.5±11.5 0–189.8 1054.4 new-capture F Reference 498.2±87.5 109.8–1319.2 8968.2 100m 341.3±55.2 17.8–1049.5 8192.3 30m 329.1±48.9 22.7–897.5 7570.2 M Reference 600.7±139.8 88.2–2765.9 10812.0 100m 385.4±69.6 27.5–1386.3 9249.4 30m 390.1±50.5 51.8–855.2 8972.3 doi:10.1371/journal.pone.0143505.t003 recapturedfemaleatthe30m-bufferpoolswaspredictedtoweigh7gless,andhaveworse bodycondition,thanherreference-poolcounterpart.However,massandBCIwerebothpre- dictedtorecovertomeanreferencelevelsbyabout9.5yearspost-cut.Conversely,recaptured- femalebodyconditionatthe100m-bufferpoolsworsenedwithtime,sothatbythestudy’send, 100m-poolBCIwaspredictedtobeabouttwotimeslowerthanthemeanreferenceBCI.BCI alsodecreased,inalltreatments,withincreasinghydroperioddurationandvariability.Addi- tionally,recapturedfemalebiomasswaspredictedtodecreasebyabout58%peryearat30m- bufferpools,buttendedtoincrease(i.e.,wasmarginallysignificant)byabout2.4%pereach additionaldayofmeanhydroperiodinalltreatments.Finally,SVL,mass,andbiomassdidnot differsignificantlybetweenthe100mandreferencetreatments. New-capturedfemalespottedsalamanderswerepredictedtoweigh,onaverageandforthe durationofthestudy,4.5glessat30m-bufferpoolsthanatreferencepools(Fig3).Theyalso tendedtohavepersistentlyworsebodyconditionat30m-bufferpools.Duringthefirstyear post-cut,new-capturedfemaleswerepredictedtobe,onaverage,7.3mmshorterinthe30m versusreferencetreatment.SVLat30m-bufferpoolswaspredictedtorecovertomeanrefer- encelevelsbyabout14yearspost-cut.Fornew-capturedfemalebiomass,the30mandrefer- encetreatmentsdidnotdiffer,but100m-treatmentbiomassdependedonmeanpool hydroperiod.Short-hydroperiodpoolswerepredictedtoproducemuchlowerbiomassinthe PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 8/31 ForestBuffersandAmphibianSizeandBiomass Table4. Linearmixedregressionresultsshowingtherelativeimpactofforestrytreatment,hydroperiod,andstudyyearonsize,bodycondition, andtotalannualbiomassofbreedingspottedsalamandersandwoodfrogs. SizeMetric Predictorc Fvalue j tvalue l Coefficient±SE (df) (df) SpottedSalamander RecapturedFemales SVLa(mm) treatment(30m)d 3.61 * -2.10 * -9.089±4.336 (2,312) (312) intercept 683.04 *** 26.13 *** 86.708±3.318 (1,312) (312) mass(g) treatment(30m) 7.90 * -3.89 * -8.938±2.296 (2,6) (6) 30m.yeare 4.28 * 2.07 * 1.049±0.507 (1,300) (300) intercept 64.15 *** 8.01 *** 20.062±2.505 (1,300) (300) BCIb treatment(30m) 6.38 * -2.01 * -0.385±0.192 (2,301) (301) cut.yearf 5.78 * -2.40 * -0.066±0.027 (1,301) (301) 30m.year 4.28 * 2.07 * 0.105±0.051 (1,301) (301) mean.hydrog 7.91 * -2.81 * -0.002±0.001 (1,301) (301) sd.hydroh 7.46 * -2.73 * -0.005±0.002 (1,301) (301) intercept 15.25 ** 3.91 ** 0.530±0.136 (1,301) (301) biomass(g) 30m.year 16.37 ** -4.05 ** -0.734±0.181 (1,47) (47) mean.hydro 4.00 (cid:129) 2.00 (cid:129) 0.024±0.012 (1,47) (47) New-capturedFemales SVL(mm) treatment(30m) 4.78 * -2.53 * -7.820±3.095 (2,1079) (1079) 30m.year 5.75 * 2.40 * 0.660±0.275 (1,1079) (1079) intercept 397.14 *** 19.93 *** 84.855±4.258 (1,1079) (1079) mass(g) treatment(30m) 3.25 * -2.34 * -4.461±1.905 (2,1051) (1051) intercept 51.52 *** 7.18 *** 19.008±2.648 (1,1051) (1051) BCI treatment(30m) 2.34 (cid:129) -1.96 (cid:129) -0.229±0.117 (2,1054) (1054) biomass(g) treatment(100m)i*mean.hydro 7.91 * 3.88 ** 0.040±0.013 (2,45) (45) treatment(100m) 6.62 * -3.48 * -5.212±1.496 (2,45) (45) intercept 21.21 *** 4.61 *** 5.564±1.208 (1,45) (45) RecapturedMales SVL(mm) treatment(30m) 5.38 * -3.05 * -9.778±3.201 (2,478) (478) intercept 415.79 *** 20.39 *** 79.218±3.885 (1,478) (478) mass(g) treatment(30m) 7.31 ** -3.53 ** -4.796±1.359 (2,473) (473) 30m.year 3.05 (cid:129) 1.75 (cid:129) 0.373±0.214 (1,473) (473) intercept 92.18 *** 9.60 *** 15.321±1.596 (1,473) (473) BCI treatment(30m) 5.15 * -3.17 * -0.439±0.138 (2,468) (468) mean.hydro 5.54 * -2.35 * -0.001±<0.001 (1,468) (468) intercept 6.73 * 2.59 * 0.297±0.114 (1,468) (468) biomass(g) treatment(100m)*mean.hydro 4.24 * 2.90 * 3.038±1.047 (2,45) (45) treatment(100m) 3.15 (cid:129) -2.50 * -314.310±125.594 (2,45) (45) sd.hydro 3.62 (cid:129) -1.90 (cid:129) -3.457±1.818 (1,45) (45) intercept 4.19 * 2.05 * 251.847±123.053 (1,45) (45) New-capturedMales SVL(mm) treatment(30m) 4.36 * -2.73 * -7.820±2.865 (2,1444) (1444) cut.year 3.15 (cid:129) 1.77 (cid:129) 0.500±0.282 (1,1444) (1444) 30m.year 5.39 * 2.32 * 0.556±0.239 (1,1444) (1444) intercept 398.02 *** 19.95 *** 77.363±3.878 (1,1444) (1444) mass(g) treatment(30m) 6.78 * -3.01 * -3.620±1.204 (2,1410) (1410) 30m.year 22.70 *** 4.76 *** 0.409±0.086 (1,1410) (1410) mean.hydro 3.27 (cid:129) -1.81 (cid:129) -0.015±0.008 (1,1410) (1410) (Continued) PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 9/31 ForestBuffersandAmphibianSizeandBiomass Table4. (Continued) SizeMetric Predictorc Fvalue j tvalue l Coefficient±SE (df) (df) intercept 78.92 *** 8.88 *** 14.336±1.614 (1,1410) (1410) BCI treatment(30m) 11.02 *** -3.22 * -0.274±0.085 (2,1410) (1410) 30m.year 12.03 ** 3.47 ** 0.043±0.012 (1,1410) (1410) mean.hydro 3.62 (cid:129) -1.90 (cid:129) -0.001±<0.001 (1,1410) (1410) biomass(g) treatment(100m)*mean.hydro 4.28 * 2.91 * 0.030±0.013 (2,45) (45) treatment(100m) 4.53 * -2.90 * -4.409±1.522 (2,45) (45) cut.year 3.79 (cid:129) 1.95 (cid:129) 0.172±0.088 (1,45) (45) 30m.year 9.45 * -3.07 * -0.269±0.088 (1,45) (45) intercept 16.56 ** 4.07 ** 5.202±1.278 (1,45) (45) WoodFrogs RecapturedFemales SULa(mm) 30m.year 4.21 * -2.05 * -1.284±0.626 (1,284) (284) intercept 473.14 *** 21.75 *** 53.190±2.445 (1,284) (284) mass(g) intercept 89.78 *** 9.48 *** 14.303±1.509 (1,236) (236) BCI treatment(30m) 4.44 * -2.97 * -0.221±0.074 (2,231) (231) sd.hydro 5.97 * -2.44 * -0.002±0.001 (1,231) (231) biomass(g) treatment(100m)*mean.hydro 6.10 * 3.49 )* 0.038±0.011 (2,45) (45 treatment(100m) 5.94 * -3.33 * -5.794±1.741 (2,45) (45) treatment(30m) -1.89 (cid:129) -5.005±2.654 (45) intercept 14.18 ** 3.77 ** 4.958±1.317 (1,45) (45) New-capturedFemales SUL(mm) cut.year 5.50 * 2.34 * 0.349±0.149 (1,2041) (2041) intercept 1019.22 *** 31.93 *** 50.362±1.577 (1,2040) (2041) mass(g) cut.year 5.55 * 2.36 * 0.229±0.097 (1,1869) (1869) intercept 116.32 *** 10.78 *** 12.572±1.166 (1,1869) (1869) BCI nsk biomass(g) treatment(100m)*mean.hydro 3.45 * 2.63 * 0.015±0.006 (2,56) (56) treatment(100m) 5.98 * -3.45 * -2.931±0.850 (2,56) (56) 30m.year 5.58 * -2.36 * -0.268±0.113 (1,56) (56) intercept 59.07 *** 7.69 *** 5.737±0.746 (1,56) (56) RecapturedMales SUL(mm) 30m.year 3.91 * -1.98 * -0.914±0.462 (1,706) (706) sd.hydro 11.44 ** -3.38 ** -0.045±0.013 (1,706) (706) intercept 2064.37 *** 45.44 *** 44.803±0.986 (1,706) (706) mass(g) sd.hydro 6.35 * -2.52 * -0.033±0.013 (1,684) (684) intercept 202.99 *** 14.25 *** 9.559±0.671 (1,684) (684) BCI sd.hydro 2.90 (cid:129) -1.70 (cid:129) -0.002±0.001 (1,685) (685) biomass(g) 30m.year 3.50 (cid:129) -1.87 (cid:129) -0.518±0.277 (1,47) (47) mean.hydro 7.11 * 2.67 * 0.015±0.006 (1,47) (47) intercept 5.21 * 2.28 * 2.471±1.083 (1,47) (47) New-capturedMales SUL(mm) intercept 5523.34 *** 4.32 *** 44.060±0.593 (1,3082) (3082) mass(g) sd.hydro 5.86 * -2.42 * -0.022±0.009 (1,2932) (2932) intercept 432.10 *** 0.79 *** 9.403±0.452 (1,2932) (2932) BCI sd.hydro 5.60 (cid:129) -2.37 (cid:129) -0.002±0.001 (1,6) (6) biomass(g) mean.hydro 5.11 * 2.26 * 0.008±0.004 (1,58) (58) (Continued) PLOSONE|DOI:10.1371/journal.pone.0143505 November23,2015 10/31

Description:
All pools were fish-free. Amphibian species composition was similar . heterauxesis and allomorphosis [59]. Second, after transformation, our data did
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.