ebook img

Desingularization: Invariants and Strategy: Application to Dimension 2 PDF

258 Pages·2020·4.116 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Desingularization: Invariants and Strategy: Application to Dimension 2

Lecture Notes in Mathematics 2270 Vincent Cossart Uwe Jannsen Shuji Saito Desingularization: Invariants and Strategy Application to Dimension 2 With Contributions by Bernd Schober Lecture Notes in Mathematics Volume 2270 Editors-in-Chief Jean-MichelMorel,CMLA,ENS,Cachan,France BernardTeissier,IMJ-PRG,Paris,France SeriesEditors KarinBaur,UniversityofLeeds,Leeds,UK MichelBrion,UGA,Grenoble,France CamilloDeLellis,IAS,Princeton,NJ,USA AlessioFigalli,ETHZurich,Zurich,Switzerland AnnetteHuber,AlbertLudwigUniversity,Freiburg,Germany DavarKhoshnevisan,TheUniversityofUtah,SaltLakeCity,UT,USA IoannisKontoyiannis,UniversityofCambridge,Cambridge,UK AngelaKunoth,UniversityofCologne,Cologne,Germany ArianeMézard,IMJ-PRG,Paris,France MarkPodolskij,UniversityofLuxembourg,Esch-sur-Alzette,Luxembourg SylviaSerfaty,NYUCourant,NewYork,NY,USA GabrieleVezzosi,UniFI,Florence,Italy AnnaWienhard,RuprechtKarlUniversity,Heidelberg,Germany This series reports on new developments in all areas of mathematics and their applications-quickly,informallyandatahighlevel.Mathematicaltextsanalysing newdevelopmentsinmodellingandnumericalsimulationarewelcome.Thetypeof materialconsideredforpublicationincludes: 1. Research monographs 2. Lectures on a new field or presentations of a new angle in a classical field 3. Summer schools and intensive courses on topics of currentresearch. Textswhichareoutofprintbutstillindemandmayalsobeconsiderediftheyfall withinthesecategories.Thetimelinessofamanuscriptissometimesmoreimportant thanitsform,whichmaybepreliminaryortentative. Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Vincent Cossart (cid:129) Uwe Jannsen (cid:129) Shuji Saito Desingularization: Invariants and Strategy Application to Dimension 2 With Contributions by Bernd Schober VincentCossart UweJannsen UniversitéParis-Saclay,UVSQ Fakulta¨tfu¨rMathematik LMV(UMR8100)CNRS Universita¨tRegensburg VersaillesCedex,France Regensburg,Bayern,Germany ShujiSaito GraduateSchoolofMathematicalSciences UniversityofTokyo Meguro-ku,Tokyo,Japan ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-030-52639-9 ISBN978-3-030-52640-5 (eBook) https://doi.org/10.1007/978-3-030-52640-5 MathematicsSubjectClassification:14-02,14E15 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicencetoSpringerNatureSwitzerland AG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Abstract This first part is a course, almost self-contained on Hironaka’s methods providing rigorousproofsoftheoremsoffunctorial,canonicalembeddedandnon-embedded resolution of singularities for excellent two-dimensional schemes. The major part (Chaps.2–9) is written for schemes of arbitrary dimension, in the hope that this might be useful for further investigations. Chapters 2 and 3 give the classical notions.InChaps.4and5,weinvestigatethecasewhereanormalcrossingdivisor hastoberespectedduringtheprocess.InChaps.6–9,weexplainhowtohandlethe computations.Chapters11–16aredevotedtothespecialcaseofdimension2. v Contents 1 Introduction................................................................. 1 1.1 WhatIsDesingularization?.......................................... 1 1.2 VeryShortHistoryofDesingularization............................ 2 1.3 HowDidweStart?................................................... 3 1.4 Summary.............................................................. 4 1.5 ConventionsandConcludingRemarks.............................. 13 2 BasicInvariantsforSingularities......................................... 15 2.1 InvariantsofGradedRingsandHomogeneousIdealsin PolynomialRings .................................................... 15 2.2 InvariantsforLocalRings ........................................... 21 2.3 InvariantsforSchemes............................................... 25 3 PermissibleBlow-Ups...................................................... 37 4 B-PermissibleBlow-Ups:TheEmbeddedCase......................... 49 5 B-PermissibleBlow-Ups:TheNon-embeddedCase.................... 65 6 MainTheoremsandStrategyforTheirProofs.......................... 79 7 (u)-standardBases ......................................................... 105 8 CharacteristicPolyhedraofJ ⊂R....................................... 117 9 TransformationofStandardBasesUnderBlow-Ups................... 133 10 TerminationoftheFundamentalSequencesofB-Permissible Blow-Ups,andtheCaseex(X)=1....................................... 145 11 AdditionalInvariantsintheCaseex(X)=2............................ 155 12 ProofintheCaseex(X)=esx(X)=2,I:SomeKeyLemmas ........ 161 13 ProofintheCaseex(X) = ex(X) = 2,II:SeparableResidue Extensions ................................................................... 167 vii viii Contents 14 ProofintheCaseex(X)=ex(X)=2,III:InseparableResidue Extensions ................................................................... 175 15 Non-existenceofMaximalContactinDimension2..................... 191 16 AnAlternativeProofofTheorem6.17 ................................... 201 17 Functoriality,LocallyNoetherianSchemes,AlgebraicSpaces andStacks................................................................... 205 18 Appendix by B. Schober: Hironaka’s Characteristic Polyhedron.NotesforNovices ............................................ 211 18.1 Introduction........................................................... 211 18.2 TheNewtonPolyhedronofanIdeal................................. 216 18.3 TheProjectedPolyhedronandItsRelationtotheNewton Polyhedron............................................................ 221 18.4 TheDirectrixandItsRole:Choosing(u)........................... 228 18.5 DeterminingtheCharacteristicPolyhedron:Optimizingthe Choiceof(f;y) ..................................................... 233 18.6 InvariantsfromthePolyhedronandtheEffectofBlowingUp .... 238 References......................................................................... 249 Index............................................................................... 255 Chapter 1 Introduction 1.1 WhatIsDesingularization? LetXbeanirreducibleandreduced excellentnoetherianscheme. Whatisaregularpointx ∈X? This means that the local ring (O ,m ) is regular, i.e., that dim mx = X,x x k(x) m2 dimO , where k(x) = O /m is the residue field. This is equivalent to:xthe X,x X,x x gradedringgrm (OX,x)isapolynomialringovertheresiduefieldk(x)=OX,x/mx x [Se,(Ch.IVD)Th.9].Whenx ∈Xisnotregular,itiscalledsingular. (cid:3) ThegoalofdesingularizationistofindamodelX ofX,whichsharesalotofthe informationwithX,butwhichisregular,i.e.,whichdoesnothavesingularpoints. Afirstdefinitionofdesingularizationcouldbe: Definition1.1 Let X be a reduced, noetherian and excellent scheme. A desingu- (cid:3) larization of X is an everywhere regular scheme X and a surjective projective morphism π : X(cid:3) −→ X such that π induces an isomorphism π−1(U) −∼→ U, where ∅ (cid:6)= U ⊂ X is a (dense) open subset. The last condition means that π is birational. In the case where X is an irreducible and reduced variety over k = C, the definition above could be rephrased as “there is a global parametrization of X”. This has been the first motivation to solve this problem [Pu]. Another point of viewistheclassificationofsingularitiesbytheirdesingularization.Thenoneneeds a minimal resolution (valid only in dimension (cid:2)2 [Hart, Theorems V.5.7, V.5.8]) or, a canonical procedure of desingularization. Another motivation formulated by S.S.Abhyankar[Ab4]IntroductionandA.Grothendieck[EGAIV](7.9.6)and[Gr] inthe1960sistheimportanceforstudyinghomologicalandhomotopicalproperties ofschemes. ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicence 1 toSpringerNatureSwitzerlandAG2020 V.Cossartetal.,Desingularization:InvariantsandStrategy, LectureNotesinMathematics2270, https://doi.org/10.1007/978-3-030-52640-5_1 2 1 Introduction 1.2 VeryShort HistoryofDesingularization The interested reader might read the picturesque historical article of our late colleagueH.Reitberger[R]and[Ko]sections1and2. ResolutionofsingularitiesofcurveswasachievedinthenineteenthCenturyby three different methods. Indeed, a possibly singular germ of irreducible curve can beviewedalternatelyas: – acoveringofaregulargerm(PuiseuxandRiemann), – anintegraldomainDofdimensionone,essentiallyoffinitetypeovertheground field(Dedekind), – orageometricobjectCdefinedbyvariablesandequationsvanishingatacertain orderatthesingularpoint(M.Noether). Correspondingapproachestothestudyofthesingularityrespectivelyconsistin: studyingthelocalfundamentalgroupofthepointedline,thenormalizationof D, or the effect of a quadratic transform on the order of the equations. While the last twoapproachesgiveaproof fortheexistenceofaresolutionwhichischaracteristic free, the first one does not, due to the failure of the Puiseux theorem in positive characteristic([CP2]Introduction). Resolution of singularities of surfaces appeared to be extremely difficult. Over C,J.Walker’sproof[W](1935)isconsideredasthefirstcompleteone. Moreover, we must quote Albanese’s contribution [Al] (1924) who, by a sequence of stere- ographic projections (for a projective variety over an algebraically closed field of characteristic0orp > 0),reachesthecaseofmultiplicity(cid:2) 2whichisnowadays easytosolve. ThiswasfollowedbyZariski’stremendouscontributionforsurfaces[Za1,Za2] and then for three-folds [Za3]. In 1939, Zariski [Za1] proved the existence of a desingularization for irreducible surfaces over algebraically closed fields of characteristic zero (i.e., Theorem 1.2 without canonicity or functoriality). Five years later, in [Za3], he proved the existence of desingularization for surfaces over fields of characteristic zero which are embedded in a regular threefold (i.e., Corollary 1.5, again without canonicity or functoriality). In 1966, in his book [Ab4],Abhyankarextendedthislastresulttoallalgebraicallyclosedfields,making heavyuseofhispapers[Ab3]and[Ab5],usingvaluationtheoryandGaloistheory. Aroundthesametime,Hironaka[H6]sketchedashorterproofofthesameresult, over all algebraically closed ground fields, using his characteristic polyhedron [H3], which will also play a crucial role in the present book. Recently a shorter accountofAbhyankar’s resultswasgivenbyCutkosky[Cu2]andashortproofof desingularizationoftwo-dimensionalhypersurfacesoveralgebraicallyclosedfields in[Cu1,Theorems1.2and5.6]. For all excellent schemes of characteristic zero, i.e., whose residue fields all have characteristic zero, and of arbitrary dimension, Theorems 1.2 and 1.4 were ∗ provedbyHironakainhisfamous1964paper[H1](MainTheorem1 ,p.138,and Corollary 3, p. 146), so Theorem 1.3 holds in arbitrary dimension as well, except

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.