ebook img

Design with Constructal Theory PDF

548 Pages·2008·28.585 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design with Constructal Theory

Design with Constructal Theory Design with Constructal Theory Adrian Bejan DukeUniversity,Durham,NorthCarolina Sylvie Lorente UniversityofToulouse,INSA,LMDCToulouse,France JohnWiley&Sons,Inc. Thisbookisprintedonacid-freepaper.(cid:2)∞ Copyright(cid:2)C 2008byJohnWiley&Sons,Inc.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA 01923,(978)750-8400,fax(978)646-8600,oronthewebatwww.copyright.com.Requeststothe PublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons, Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat www.wiley.com/go/permissions. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandtheauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernortheauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages. Forgeneralinformationaboutourotherproductsandservices,pleasecontactourCustomerCare DepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993 orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicbooks.FormoreinformationaboutWileyproducts,visitourweb siteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData Bejan,Adrian. Designwithconstructaltheory/AdrianBejan,SylvieLorente. p.cm. Includesindex. ISBN978-0-471-99816-7(cloth) 1.Design,Industrial.I.Lorente,Sylvie.II.Title. TS171.4.B432008 745.2–dc22 2008003739 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 Contents AbouttheAuthors xi Preface xiii ListofSymbols xvii 1. FlowSystems 1 1.1 ConstructalLaw,Vascularization,andSvelteness 1 1.2 FluidFlow 6 1.2.1 InternalFlow:DistributedFrictionLosses 7 1.2.2 InternalFlow:LocalLosses 11 1.2.3 ExternalFlow 18 1.3 HeatTransfer 20 1.3.1 Conduction 20 1.3.2 Convection 24 References 31 Problems 31 2. Imperfection 43 2.1 EvolutiontowardtheLeastImperfectPossible 43 2.2 Thermodynamics 44 2.3 ClosedSystems 46 2.4 OpenSystems 51 2.5 AnalysisofEngineeringComponents 52 2.6 HeatTransferImperfection 56 2.7 FluidFlowImperfection 57 2.8 OtherImperfections 59 2.9 OptimalSizeofHeatTransferSurface 61 References 62 Problems 63 3. SimpleFlowConfigurations 73 3.1 FlowBetweenTwoPoints 73 3.1.1 OptimalDistributionofImperfection 73 3.1.2 DuctCrossSections 75 3.2 RiverChannelCross-Sections 78 3.3 InternalSpacingsforNaturalConvection 81 3.3.1 LearnbyImaginingtheCompetingExtremes 81 3.3.2 SmallSpacings 84 3.3.3 LargeSpacings 85 v vi Contents 3.3.4 OptimalSpacings 86 3.3.5 StaggeredPlatesandCylinders 87 3.4 InternalSpacingsforForcedConvection 89 3.4.1 SmallSpacings 90 3.4.2 LargeSpacings 90 3.4.3 OptimalSpacings 91 3.4.4 StaggeredPlates,Cylinders,andPinFins 92 3.5 MethodofIntersectingtheAsymptotes 94 3.6 FittingtheSolidtothe“Body”oftheFlow 96 3.7 EvolutionofTechnology:FromNaturaltoForcedConvection 98 References 99 Problems 101 4. TreeNetworksforFluidFlow 111 4.1 OptimalProportions:T-andY-ShapedConstructs 112 4.2 OptimalSizes,NotProportions 119 4.3 TreesBetweenaPointandaCircle 123 4.3.1 OnePairingLevel 124 4.3.2 FreeNumberofPairingLevels 127 4.4 PerformanceversusFreedomtoMorph 133 4.5 Minimal-LengthTrees 136 4.5.1 MinimalLengthsinaPlane 137 4.5.2 MinimalLengthsinThreeDimensions 139 4.5.3 MinimalLengthsonaDisc 139 4.6 StrategiesforFasterDesign 144 4.6.1 MiniaturizationRequiresConstruction 144 4.6.2 OptimalTreesversusMinimal-LengthTrees 145 4.6.3 75DegreeAngles 149 4.7 TreesBetweenOnePointandanArea 149 4.8 Asymmetry 156 4.9 Three-DimensionalTrees 158 4.10 Loops,JunctionLossesandFractal-LikeTrees 161 References 162 Problems 164 5. ConfigurationsforHeatConduction 171 5.1 TreesforCoolingaDisc-ShapedBody 171 5.1.1 ElementalVolume 173 5.1.2 OptimallyShapedInserts 177 5.1.3 OneBranchingLevel 178 5.2 ConductionTreeswithLoops 189 5.2.1 OneLoopSize,OneBranchingLevel 190 5.2.2 Radial,One-BifurcationandOne-LoopDesigns 195 5.2.3 TwoLoopSizes,TwoBranchingLevels 197 5.3 TreesatMicroandNanoscales 202 Contents vii 5.4 EvolutionofTechnology:FromForcedConvectiontoSolid-Body Conduction 206 References 209 Problems 210 6. MultiscaleConfigurations 215 6.1 DistributionofHeatSourcesCooledbyNaturalConvection 216 6.2 DistributionofHeatSourcesCooledbyForcedConvection 224 6.3 MultiscalePlatesforForcedConvection 229 6.3.1 ForcingtheEntireFlowVolumetoWork 229 6.3.2 HeatTransfer 232 6.3.3 FluidFriction 233 6.3.4 HeatTransferRateDensity:TheSmallestScale 234 6.4 MultiscalePlatesandSpacingsforNaturalConvection 235 6.5 MultiscaleCylindersinCrossflow 238 6.6 MultiscaleDropletsforMaximumMassTransferDensity 241 References 245 Problems 247 7. MultiobjectiveConfigurations 249 7.1 ThermalResistanceversusPumpingPower 249 7.2 ElementalVolumewithConvection 250 7.3 DendriticHeatConvectiononaDisc 257 7.3.1 RadialFlowPattern 258 7.3.2 OneLevelofPairing 265 7.3.3 TwoLevelsofPairing 267 7.4 DendriticHeatExchangers 274 7.4.1 Geometry 275 7.4.2 FluidFlow 277 7.4.3 HeatTransfer 278 7.4.4 RadialSheetCounterflow 284 7.4.5 TreeCounterflowonaDisk 286 7.4.6 TreeCounterflowonaSquare 289 7.4.7 Two-ObjectivePerformance 291 7.5 ConstructalHeatExchangerTechnology 294 7.6 Tree-ShapedInsulatedDesignsforDistributionofHotWater 295 7.6.1 ElementalStringofUsers 295 7.6.2 DistributionofPipeRadius 297 7.6.3 DistributionofInsulation 298 7.6.4 UsersDistributedUniformlyoveranArea 301 7.6.5 TreeNetworkGeneratedbyRepetitivePairing 307 7.6.6 One-by-OneTreeGrowth 313 7.6.7 ComplexFlowStructuresAreRobust 318 References 325 Problems 328 viii Contents 8. VascularizedMaterials 329 8.1 TheFutureBelongstotheVascularized:NaturalDesign Rediscovered 329 8.2 Line-to-LineTrees 330 8.3 CounterflowofLine-to-LineTrees 334 8.4 Self-HealingMaterials 343 8.4.1 GridsofChannels 344 8.4.2 MultipleScales,LoopShapes,andBodyShapes 352 8.4.3 TreesMatchedCanopytoCanopy 355 8.4.4 DiagonalandOrthogonalChannels 362 8.5 VascularizationFightingagainstHeating 364 8.6 VascularizationWillContinuetoSpread 369 References 371 Problems 373 9. ConfigurationsforElectrokineticMassTransfer 381 9.1 ScaleAnalysisofTransferofSpeciesthroughaPorousSystem 381 9.2 Model 385 9.3 MigrationthroughaFinitePorousMedium 387 9.4 IonicExtraction 393 9.5 ConstructalViewofElectrokineticTransfer 396 9.5.1 ReactivePorousMedia 400 9.5.2 OptimizationinTime 401 9.5.3 OptimizationinSpace 403 References 405 10. MechanicalandFlowStructuresCombined 409 10.1 OptimalFlowofStresses 409 10.2 CantileverBeams 411 10.3 InsulatingWallwithAirCavitiesandPrescribedStrength 416 10.4 MechanicalStructuresResistanttoThermalAttack 424 10.4.1 BeaminBending 425 10.4.2 MaximizationofResistancetoSuddenHeating 427 10.4.3 Steel-ReinforcedConcrete 431 10.5 Vegetation 442 10.5.1 RootShape 443 10.5.2 TrunkandCanopyShapes 446 10.5.3 ConicalTrunks,BranchesandCanopies 449 10.5.4 Forest 453 References 458 Problems 459 11. QuoVadisConstructalTheory? 467 11.1 TheThermodynamicsofSystemswithConfiguration 467 11.2 TwoWaystoFlowAreBetterthanOne 470 Contents ix 11.3 DistributedEnergySystems 473 11.4 ScalingUp 482 11.5 SurvivalviaGreaterPerformance,SveltenessandTerritory 483 11.6 ScienceasaConsructalFlowArchitecture 486 References 488 Problems 490 Appendix 491 A. TheMethodofScaleAnalysis 491 B. MethodofUndeterminedCoefficients(Lagrange Multipliers) 493 C. VariationalCalculus 494 D. Constants 495 E. ConversionFactors 496 F. DimensionlessGroups 499 G. NonmetallicSolids 499 H. MetallicSolids 503 I. PorousMaterials 507 J. Liquids 508 K. Gases 513 References 516 AuthorIndex 519 SubjectIndex 523 About the Authors AdrianBejanreceivedallofhisdegrees(BS,1971;MS,1972;PhD,1975)inme- chanicalengineeringfromtheMassachusettsInstituteofTechnology.Hehasheld the J. A. Jones distinguished professorship at Duke University since 1989. His work covers thermodynamics, convective heat transfer, porous media, and con- structal theory of design in nature. He developed the methods of entropy genera- tion minimization, scale analysis, heatlines and masslines, intersection of asymp- totes,andtheconstructallaw.ProfessorBejanisrankedamongthe100mostcited authors in engineering, all disciplines all countries. He received the Max Jakob MemorialAwardand15honorarydoctoratesfromuniversitiesintencountries. SylvieLorentereceivedallherdegreesincivilengineering(BS,1992;MS,1992; PhD,1996)fromtheNationalInstituteofAppliedSciences(INSA),Toulouse.She is Professor of Civil Engineering at the University of Toulouse, INSA, and is af- filiated with the Laboratory of Durability and Construction of Materials, LMDC. Herworkcoversseveralfields,includingheattransferinbuildingstructures,fluid mechanics,andtransportmechanismsincementbasedmaterials.Sheistheauthor of70peer-referredarticlesandthreebooks.SylvieLorentereceivedthe2004Ed- wardF.ObertAwardandthe2005Bergles-RohsenowYoungInvestigatorAwardin HeatTransferfromtheAmericanSocietyofMechanicalEngineers,andthe2007 JamesP.HartnettAwardfromtheInternationalCenterofHeatandMassTransfer. Constructaltheoryadvancesarepostedatwww.constructal.org. xi Preface This book is the new design course that we have developed on several campuses during the past five years. The approach is new because it is based on constructal theory—the view that flow configuration (geometry, design) can be reasoned on the basis of a principle of configuration generation and evolution in time toward greaterglobalflowaccessinsystemsthatarefreetomorph.Thegenerationofflow configuration is viewed as a physics phenomenon, and the principle that sums up itsuniversaloccurrenceinnature(theconstructallaw,p.2)isdeterministic. Constructal theory provides a broad coverage of “designedness” everywhere, from engineering to geophysics and biology. To see the generality of the method, considerthefollowingmetaphor,whichweuseintheintroductorysegmentofthe course. Imagine the formation of a river drainage basin, which has the function of providing flow access from an area (the plain) to one point (the river mouth). Theconstructallawcallsforconfigurationswithsuccessivelysmallerglobalflow resistancesintime.Theinvocationofthislawleadstoabalancingofalltheinternal flow resistance, from the seepage along the hill slopes to the flow along all the channels. Resistances (imperfection) cannot be eliminated. They can be matched neighbortoneighbor,anddistributedsothattheirglobaleffectisminimal,andthe wholebasinistheleastimperfectthatitcanbe.Theriverbasinmorphsandtends towardanequilibriumflow-accessconfiguration. The visible and valuable product of this way of thinking is the configuration: the river basin, the lung, the tree of cooling channels in an electronics package, and so on. The configuration is the big unknown in design: the constructal law draws attention to it as the unknown and guides our thoughts in the direction of discoveringit. In the river basin example, the configuration that the constructal law uncovers is a tree-shaped flow, with balances between highly dissimilar flow resistances such as seepage (Darcy flow) and river channel flow. The tree-shaped flow is the theoreticalwayofprovidingeffectiveflowaccessbetweenonepoint(source,sink) andaninfinityofpoints(area,volume).Thetreeisacomplexflowstructure,which hasmultiple-lengthscalesthataredistributednonuniformlyovertheavailablearea orvolume. Allthesefeatures,thetreeshapeandthemultiplescales,arefoundinanyother flowsystemwhosepurposeistoprovideaccessbetweenonepointandanareaor volume.Thinkofthetreesofelectronics,vascularizedtissues,andcitytraffic,and you will get a sense of the universality of the principle that was used to generate andtodiscoverthetreeconfiguration. xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.