ebook img

Design Study on the Switched and Linear Operation of Broadband CMOS Class-E Power Amplifiers PDF

136 Pages·2010·6.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design Study on the Switched and Linear Operation of Broadband CMOS Class-E Power Amplifiers

Design Study on the Switched and Linear Operation of Broadband CMOS Class-E Power Amplifiers Athesissubmitted tothe FacultyofElectricalEngineering,MathematicsandComputerSciences inpartialfulfillment oftherequirementsforthedegreeof MasterofScienceinElectricalEngineering at elft niversity of echnology D U T by Ronghui Zhang Thesissupervisors: Ir. MustafaAcar Dr.-Ing. LeoC.N.deVreede Dr.-Ing. MarkP.vanderHeijden P.D.Eng. MelinaApostolidou NXPSemiconductorsResearch Eindhoven,TheNetherlands DelftUniversityofTechnology Delft,TheNetherlands August 2010 Abstract Thisresearchworkaimstogainunderstandingofthepoweramplifier(PA)operatingasalinear PA under low power drive conditions and as a switch-mode PA in high power drive conditions both with the same Class-E load. Two approaches were taken here. Firstly, an analytical ap- proachwasdevelopedtoinvestigatetheswitchingoperationofconventionalClass-Eamplifier. The model used in the analytical approach takes into account the non-ideal switch resistance, finite dc-feed inductance, finite loaded quality factor, and arbitrary switch duty-cycle. This ap- proachpresentsanaccurateclosed-formexpressionformodelingClass-Epoweramplifier. Us- ingthisapproach,thefrequencyresponseofconventionalClass-Epoweramplifierwasstudied indetailandtheimpactoftheloadedqualityfactorandfinitedc-feedinductanceonthebroad- band performance was analyzed. It shows that the Class-E PA with conventional load network cannotprovidestableoutputpower,efficiency, andreliableoperatingvoltageconditionsacross abroadfrequencyband(∆B> 40%). Inaddition,studyoftheloadimpedancesoftheamplifier indicatesthattheClass-EPAissensitivetotheloadphaseangleatfundamentalfrequency. In the second approach, a purely linear voltage-control current source was constructed numer- ically as a way to represent the transistor. Based upon that model, the influence of non-ideal drivesignalontheswitchingoperationwasstudied. Itshowsthatthepoweramplifierwithfinite dc-feed inductance is tolerant to a non-ideal drive signal. For the rise and fall times of 25%T, only 5% drop in drain efficiency was found for the optimum finite dc-feed inductance. The performanceofthatmodelinlinearoperationwasalsoinvestigated. Theresultsagreewiththe classicaltheoryforlinearpoweramplifiers. The linearity (intermodulation distortion and 1dB compression point) was analyzed by using a realistic transistor model (an extended drain NMOS). It shows that the Class-B biased PA withfinitedc-feedinductancecanprovidenotonlysimilarIMD3featureastheoptimumClass- AB biased PA with RF choke does, but also high efficiency simultaneously. Based upon this device,asystematicdesignprocesswasappliedtoimplementabroadbandhighefficiencyClass- EPA.ThePCBforthisbroadbandhighefficiencyClass-EPAwasfabricated. Goodagreement was found between the simulation and measurement. The measurements indicated that the PA achievesadrainefficiency> 67%andaPAE> 52%withaPout> 30dBmfrom560-1050MHz, where the output power variation is within 1.0dB and efficiency variation is within 13%. The highestefficiencyisobservedat700MHzfroma5.0Vsupplywithpeakdrainefficiencyof77% and peak PAE of 65% at 31dBm output power and 17dB power gain. When using dynamic supplymodulation,thePAachievesaPAEof40%andadrainefficiencyof60%at10dBpower back-offacrossthefrequencyband500MHzto1100MHz. Acknowledgements I would like to take the opportunity to acknowledge to all the people who helped me in my worksandlife. MysinceregratitudeisdirectedtomydailysupervisorIr. MustafaAcaratNXPSemiconductors Research. He actively instructed me through the entire project, shared the valuable knowledge with me, offered useful support at every stage of the project, and answered all my questions with great patience. I would like to thank my other two supervisors at NXP Semiconductors Research: Dr.-Ing. Mark P. van der Heijden and P.D. Eng. Melina Apostolidou for the fruitful discussions in daily work and the feedback during the monthly meetings. Also thanks Dr.-Ing. AgneseBargagliforkindhelpinCadencesimulation. I am deeply grateful to my supervisor Dr.-Ing. Leo C.N. de Vreede at Delft University of Technology for providing me such a good opportunity to do this interesting research project at NXP,forvisitingmyprogresspresentationsinEindhoven,andforreviewingmythesisreport. I alsothankalltheM.Sc. ThesisCommitteemembersforreviewingthisreport. My thanks are extended to all engineers at NXP Nijmegen, especially Michel de Langen and Tennyson Nguty, for bonding the dies and assembling the boards. I would also like to express my appreciation for the support I received from Jan Vromans in doing the measurements with theLabviewsetup. I would like to acknowledge my friends and teachers at Delft University of Technology of the Netherlandswhowerekindlyhelpingmeduringmycourseworkandteachingmewiththebest oftheirknowledge. Iowemylovingthankstomyparents,mysistersandfriendsinChina. Theysupportedmevery much during my study abroad. Without their encouragement and understanding it would have beenimpossibleformetofinishthiswork. RonghuiZhang Eindhoven,TheNetherlands August15th,2010 iv Contents Abstract iii Acknowledgements iv ListofFigures vii ListofTables x Nomenclature xi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ThesisResearchGoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 StateoftheArtReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 ThesisOrganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background 7 2.1 ParametersofPowerAmplifiers . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 OutputPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 PowerGain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.4 Power-OutputCapability . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.5 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 PowerAmplifierClassification . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 LinearPowerAmplifier . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 SwitchingPowerAmplifier . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Switch-ModeClass-EPowerAmplifierAnalyticalModeling 17 3.1 AnalyticalDerivationofClass-EPowerAmplifierModel . . . . . . . . . . . . 17 3.1.1 CircuitDescriptionandAssumptions . . . . . . . . . . . . . . . . . . 18 3.1.2 DerivationofClass-EAmplifierEquationswithInfiniteLoadedQuality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.3 DerivationofClass-EAmplifierEquationswithFiniteLoadedQuality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 AnalysisandDiscussionofClass-EPowerAmplifierModel . . . . . . . . . . 33 3.2.1 AccuracyComparisonbetweenAnalyticalApproachandADSSolution 34 3.2.2 EffectsofDrainLoadImpedancesonClass-EAmplifier . . . . . . . . 35 v vi 3.2.3 BroadbandCharacteristicsofConventionalClass-EOutputLoadNetwork 45 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 EffectsofDriveSignalandLinearOperationofClass-EPowerAmplifier 53 4.1 NumericalModelingofCMOSTransistor . . . . . . . . . . . . . . . . . . . . 54 4.2 EffectsofDriveSignalonClass-EPowerAmplifier . . . . . . . . . . . . . . . 58 4.3 LinearOperationofClass-EPowerAmplifier . . . . . . . . . . . . . . . . . . 60 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5 BroadbandClass-EPowerAmplifierDesignBasedUponED-NMOSDevice 65 5.1 AnalysisofSwitchingandLinearOperationofED-NMOS . . . . . . . . . . . 65 5.1.1 DCI-VCharacteristicsandNon-LinearCapacitancesofED-NMOS . . 65 5.1.2 BondwiresSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.3 Switch-ModeOperationofED-NMOS . . . . . . . . . . . . . . . . . 71 5.1.4 LinearOperationofED-NMOS . . . . . . . . . . . . . . . . . . . . . 71 5.2 BroadbandClass-EPowerAmplifierDesign . . . . . . . . . . . . . . . . . . 75 5.2.1 OptimumLoadDesign . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.2 BroadbandOutputLoadNetwork . . . . . . . . . . . . . . . . . . . . 82 5.3 LayoutandPost-LayoutSimulations . . . . . . . . . . . . . . . . . . . . . . . 86 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6 Measurements 97 6.1 TestSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 MeasurementResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.1 ComparisonofSimulatedandMeasuredResults . . . . . . . . . . . . 98 6.2.2 DynamicInverterGateBias . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.3 DynamicSupplyVoltageforED-NMOSandInverter . . . . . . . . . . 102 6.2.4 Third-OrderIntermodulationDistortion . . . . . . . . . . . . . . . . . 103 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7 ConclusionsandFutureWork 109 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 RecommendationsforFutureWork . . . . . . . . . . . . . . . . . . . . . . . . 110 A MapleCodeforAnalyticalAnalysis 111 Bibliography 121 List of Figures 1.1 Mixed-modeoutphasingamplifier . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 TopologiesofoutputloadnetworkforbroadbandClass-Epoweramplifiers . . 5 2.1 Blockdiagramofpoweramplifier . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 3rd-orderinterceptpointand1dBcompressionpointdefinitions. . . . . . . . . 10 2.3 Linearpoweramplifierschematic. . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Waveforms of the gate-to-source voltage V , and drain current I of (a) Class gs ds A,(b)ClassB,(c)ClassAB,(d)ClassC. . . . . . . . . . . . . . . . . . . . . 12 2.5 Class-Fpoweramplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 Class-Dpoweramplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 Class-Epoweramplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Class-Eamplifier. (a)Basiccircuit. (b)Equivalentcircuit. . . . . . . . . . . . . 18 3.2 Generaldrainvoltageandcurrentwaveforms . . . . . . . . . . . . . . . . . . 19 3.3 Class-Eamplifierwithfiniteloadedqualityfactor . . . . . . . . . . . . . . . . 26 3.4 AnalyticaldesignflowchartofClass-Epoweramplifieratasinglefrequency. . 32 3.5 RelationsbetweentheelementsofthedesignsetK . . . . . . . . . . . . . . . 33 3.6 Class-Eamplifiercomponentsdesign:(a)foragivendevice,(b)foragivensup- plyvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.7 Class-EamplifierwaveformsforanalyticalapproachandADSsimulation . . . 34 3.8 Class-EmodelinADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.9 ElementsofthedesignsetK , K ,K ,K asafunctionofq . . . . . . . . . . 36 P C L X 3.10 Drainefficiencyandpower-outputcapabilityasafunctionofq . . . . . . . . . 37 3.11 DrainloadimpedancesofClass-EPAs . . . . . . . . . . . . . . . . . . . . . . 37 3.12 Equivalentdrainloadimpedanceasafunctionofq: (a)fundamentalimpedance interms of resistanceand reactance, (b)secondand thirdharmonics impedance intermsofreactance,(c)fundamentalimpedanceintermsofmagnitudeandphase 38 3.13 Effects of load phase angle θ on: (a) drain efficiency and K , (b) maximum 1 P drain-sourcevoltageandcurrent . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.14 Waveforms as a function of load phase angle θ : (a) drain-source voltage, (b) 1 switchcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.15 Effects of magnitude Z on: (a) drain efficiency and K , (b) maximum drain- 1 P | | sourcevoltageandcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.16 Waveformsasafunctionof Z : (a)drain-sourcevoltage,(b)switchcurrent . . 40 1 | | 3.17 Effects of load phase angle θ of second harmonic impedance: (a) drain effi- 2 ciencyandK ,(b)maximumdrain-sourcevoltageandcurrent . . . . . . . . . 42 P 3.18 Waveformsasafunctionofθ : (a)drain-sourcevoltage,(b)switchcurrent . . . 42 2 3.19 Effects of magnitude Z of second harmonic impedance: (a) drain efficiency 2 | | andK ,(b)maximumdrain-sourcevoltageandcurrent . . . . . . . . . . . . . 42 P vii viii 3.20 Waveformsasafunctionof Z : (a)drain-sourcevoltage,(b)switchcurrent . . 43 2 | | 3.21 Effectsofloadphaseangleθ ofthirdharmonicimpedance: (a)drainefficiency 3 andK ,(b)maximumdrain-sourcevoltageandcurrent . . . . . . . . . . . . . 43 P 3.22 Waveformsasafunctionofθ : (a)drain-sourcevoltage,(b)switchcurrent . . . 44 3 3.23 Effectsofmagnitude Z ofthirdharmonicimpedance: (a)drainefficiencyand 3 | | K ,(b)maximumdrain-sourcevoltageandcurrent . . . . . . . . . . . . . . . 44 P 3.24 Waveformsasafunctionof Z : (a)drain-sourcevoltage,(b)switchcurrent . . 44 3 | | 3.25 FundamentalimpedanceasafunctionoffrequencyfordifferentQ . . . . . . . 46 0 3.26 SecondharmonicimpedanceasafunctionoffrequencyfordifferentQ . . . . 46 0 3.27 Effectsoffiniteloadqualityfactoronthewidebandoperation . . . . . . . . . . 47 3.28 FundamentalimpedanceasafunctionoffrequencyfordifferentQ . . . . . . . 48 0 3.29 Effectsoffinitedc-feedinductanceonthewidebandoperation . . . . . . . . . 49 3.30 Effectsofduty-cycleonthewidebandoperation . . . . . . . . . . . . . . . . . 50 4.1 Simplifiedsmall-signalmodelofClass-Epoweramplifier . . . . . . . . . . . . 53 4.2 6th-orderpolynomialfunctionsfittingmeasuredI-Vcurves . . . . . . . . . . . 55 4.3 I-V curves created by Eq. 4.4 for g = 1, V = 0V, I = 1A, V = 0.05V m TH max k andλ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 NMOSsmall-signalequivalentmodel . . . . . . . . . . . . . . . . . . . . . . 56 4.5 S-parameters measured by Cadence and modeled S-parameters using extracted modelparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.6 NumericalmodelofClass-Epoweramplifier . . . . . . . . . . . . . . . . . . 57 4.7 Simulationmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.8 Testwaveformsofdrivesignaltogateterminal . . . . . . . . . . . . . . . . . 58 4.9 EffectsofdrivesignalontheperformanceofClass-Epoweramplifier . . . . . 59 4.10 Drain-sourcevoltageanddraincurrentwaveformsasafunctionofriseandfall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.11 Outputpoweranddrainefficiencyasafunctionofinputpowerforlinearoperation 61 4.12 VoltageandcurrentwaveformsofClass-AandBbiasingatq = 1.41 . . . . . . 62 4.13 Effects of dc-feed inductance for Class-E power amplifier at 1dB compression pointwithdifferentgatebiasvoltages . . . . . . . . . . . . . . . . . . . . . . 63 4.14 Waveformsat1dBcompressionpointforq = 1.41 . . . . . . . . . . . . . . . . 64 5.1 Schematicsofactivedevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Layoutofactivedevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 DCI-Vmeasurementsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4 MeasuredDCI-VcurvesforVBN=VBP=0V . . . . . . . . . . . . . . . . . . 68 5.5 Schematicsofactivedevicewithparasiticcapacitance(red)extractedbyCadence 68 5.6 ED-NMOS device capacitances obtained by Cadence simulation for different gatebiasvoltageV : (a)C ,(b)C ,(c)C . . . . . . . . . . . . . . . . . . . . 69 gs ds gd gs 5.7 Synthesizedtransistormodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.8 Bondwiresillustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.9 Bondwiresequivalentcircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.10 Switch-modeperformanceofED-NMOSusingsynthesizedmodel . . . . . . . 72 5.11 Largesignalperformanceoverpowersweepat1GHzfordifferentgatebiasandq 73 5.12 Simulateddrainefficiency,power-outputcapability,1dBcompressionpointand powergainversusqforClass-A,AB,andBbiases. . . . . . . . . . . . . . . . . 75 ix 5.13 3rd-order intermodulation distortion as a function of output power for different qat f = 1GHzwith∆f = 100kHz. . . . . . . . . . . . . . . . . . . . . . . . 76 0 5.14 Simulatedinverteroutputsignalat1GHz . . . . . . . . . . . . . . . . . . . . . 78 5.15 Calculatedsupplyvoltageandloadresistancefor P =31dBm . . . . . . . . . 79 out 5.16 Simulatedresultsasafunctionofqfordifferentα . . . . . . . . . . . . . . . . 80 5.17 Drain-sourcevoltageanddraincurrentwaveformsfordifferentα . . . . . . . . 81 5.18 Loadimpedanceasafunctionofqfordifferentα . . . . . . . . . . . . . . . . 82 5.19 Class-Epoweramplifierdesignflowchart . . . . . . . . . . . . . . . . . . . . 83 5.20 Effectsofloadphaseangleθ ontheperformanceofpoweramplifier . . . . . . 84 1 5.21 OptimumfundamentalloadimpedancesZ overfrequency . . . . . . . . . 84 L1opt 5.22 Idealoutputpower,drainefficiencyandPAEfortheidealoptimumloadimpedances 84 5.23 BroadbandoutputloadnetworkforthePA . . . . . . . . . . . . . . . . . . . . 85 5.24 Synthesizeddrainloadimpedancesasafunctionoffrequencywithideallumped elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.25 Poweramplifierperformanceforthesynthesizedideallumpedelements . . . . 87 5.26 Drain-source voltage waveforms at different frequencies for the synthesized ideallumpedelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.27 FinalPCBlayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.28 DrainloadimpedancesforfinallayoutwithMuratacomponents . . . . . . . . 89 5.29 Post-layout simulation results of switch-mode operation over broad frequency range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.30 Drive signal waveforms tuning by gate bias voltages of NMOS and PMOS of inverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.31 Effectsofvariationsofduty-cycleontheperformanceofswitch-mode . . . . . 92 5.32 DCstaticgate-sourcebiasvoltageasafunctionofV andV . . . . . . . . . 93 BN BP 5.33 Post-layoutsimulationresultsoflinear-modeoperationat0.7GHz. . . . . . . . 93 5.34 Post-layoutsimulationresultsoflinear-modeoperationat0.8GHz. . . . . . . . 94 5.35 Post-layoutsimulationresultsoflinear-modeoperationat0.9GHz. . . . . . . . 94 5.36 Post-layoutsimulationresultsoflinear-modeoperationat1.0GHz. . . . . . . . 95 5.37 Post-layoutsimulationresultsoflinear-modeoperationat1dBcompressionpoint 95 6.1 PhotographofimplementedbroadbandClass-Epoweramplifier . . . . . . . . 97 6.2 BlockdiagramofthemeasurementsetupforbroadbandClass-Epoweramplifier 98 6.3 Comparisonofsimulatedandmeasuredperformanceoftheproposedbroadband Class-E PA as a function of frequency: (a) output power, (b) power gain, (c) drainefficiency,(d)poweraddedefficiency. . . . . . . . . . . . . . . . . . . . 99 6.4 BroadbandmeasurementofdynamicinvertergatebiasofClass-EPA:(a)output power,(b)powergain,(c)drainefficiency,(d)poweraddedefficiency. . . . . . 101 6.5 MeasuredRFinputpowersweepat0.9GHzwithinvertergatebiasasaparam- eter: (a) output power, (b) power gain, (c) drain efficiency, (d) power added efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.6 Broadband measurement of dynamic supply voltage for ED-NMOS: (a) output power,(b)drainefficiency,(c)poweraddedefficiency. . . . . . . . . . . . . . 103 6.7 Measured output power as a function of V at 900MHz with V as a pa- DD2 DD1 rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.8 EfficiencyagainstoutputpowerforthesupplymodulationshowninFig.6.7: (a) drainefficiencyvs.Pout,(b)PAEvs. Pout. . . . . . . . . . . . . . . . . . . . . 104 x 6.9 Measured drain efficiency and PAE with optimum supplies of ED-NMOS and Inverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.10 MeasureddrainefficiencyandPAEversusoutputpowerfortheoptimumsupply voltagesofED-NMOSandInverterat: (a)0.5GHz,(b)0.6GHz,(c)0.7GHz,(d) 0.8GHz,(e)1.0GHz,and(f)1.1GHz. . . . . . . . . . . . . . . . . . . . . . . 105 6.11 MeasuredIMD3withVBN=VBPasaparameterat0.9GHz . . . . . . . . . . 106 6.12 MeasuredIMD3,drainefficiencyandPAEversusoutputpowerat: (a)0.5GHz, (b)0.6GHz, (c)0.7GHz, (d)0.8GHz, (e)0.9GHz, (f)1.0GHz, (g)1.1GHz, and (h)1.2GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Description:
PA under low power drive conditions and as a switch-mode PA in high power drive highest efficiency is observed at 700MHz from a 5.0V supply with peak drain is directed to my daily supervisor Ir. Mustafa Acar at NXP Semiconductors . 3.2.2 Effects of Drain Load Impedances on Class-E Amplifier .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.