ebook img

Design Studies on the Detection of Air Showers with the Radio Air Shower Test Array PDF

129 Pages·2012·12.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design Studies on the Detection of Air Showers with the Radio Air Shower Test Array

Design Studies on the Detection of Air Showers with the Radio Air Shower Test Array (RASTA) at the South Pole von Markus Vehring Diplomarbeit in P H Y S I K vorgelegt der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen im Mai 2011 angefertigt am III. Physikalischen Institut B Prof. Dr. Christopher Wiebusch Abstract The Radio Air Shower Test Array (RASTA) is a project for the possible detection of air showers by their in- duced synchrotron radiation. Radio emissions due to the geosynchrotron effect are expected especially for theelectromagneticcomponentoftheshowermaximum. The detection of this radiation is a promising possibil- ity for a cost-efficient air shower detector with a high acceptance and a high duty cycle. The RASTA project aims to extend the existing IceCubeandIceTopdetectorsatthegeographicSouth Pole with another detector component. This hybrid de- tector will provide complementary information about the detected air showers. The deployment at the South Pole imposes special demands on the construction and electric characteristics of the used antennas. In this thesis different models of antennas for the de- ployment at Antarctica were simulated and compared to each other. A prototype antenna was built for the most promising model to compare the simulation results with experimental data. The results show consistence between measurement and simulation. The main an- tenna characteristics and properties are understood af- ter the study of systematic effects. Furthermore, a sim- ple dipole antenna was constructed and shipped to the South Pole, to measure the electromagnetic background at the possible site of deployment. Although the mea- surement showed to be more difficult than expected, it was possible to extract the electromagnetic background at the possible site of the later deployment. Note Thisisarevisedversionoftheoriginalthesis. Twosmall errors have been corrected in this release. The intrinsic impedance of a medium in section 6.1.5 was corrected from nZ to n/Z . It has to be stated, that this error 0 0 was limited to this section and had no impact on the following chapters. Furthermore, figure 9.1a showed the integrated intensity for a solid angle of 2π. This was also corrected. iii Contents Abstract i 1 Introduction 1 2 Theory of Ultra High Energy Cosmic Rays 3 2.1 Early Discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Lower Energy Particles . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Acceleration of Cosmic Rays and Galactic Sources . . . . . . . . . . 5 2.2.3 Sources for Ultra High Energy Cosmic Rays (UHECR) . . . . . . . 6 2.3 Composition and Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . 7 3 Cosmic Ray Induced Air Showers 11 3.1 Shower Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Radio Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Radio Emission of EAS . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Simulation of Radio Emission from EAS . . . . . . . . . . . . . . . 16 4 IceCube 19 4.1 The InIce Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 IceTop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.1 First IceTop Measurements . . . . . . . . . . . . . . . . . . . . . . 23 5 Radio Detection 27 5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.1 Veto Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.2 UHE Gamma Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.3 Measurement of the Cosmic Ray Flux Composition . . . . . . . . . 28 5.2 Demands for Antennas at the South Pole . . . . . . . . . . . . . . . . . . . 29 6 Antenna Theory and Simulation 31 6.1 Antenna Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.1.1 Directivity and Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.1.2 Reflection Coefficient and VSWR . . . . . . . . . . . . . . . . . . . 33 6.1.3 Antenna Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.4 Maximum Power Transfer . . . . . . . . . . . . . . . . . . . . . . . 34 6.1.5 Antenna in Reception Mode . . . . . . . . . . . . . . . . . . . . . . 35 6.1.6 Transmission between two Antennas . . . . . . . . . . . . . . . . . 36 6.1.7 RF Transformers and Baluns . . . . . . . . . . . . . . . . . . . . . 37 v Contents 6.2 Antenna Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.1 Simulations for a Half-Wave Dipole . . . . . . . . . . . . . . . . . . 38 6.2.2 Differences between NEC2/NEC4 and FEKO . . . . . . . . . . . . 41 7 Antenna designs 45 7.1 Existing antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.2 Simulated Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.1 The Fat Wire Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.2 Logarithmic Periodic Dipole Antennas . . . . . . . . . . . . . . . . 48 7.2.2.1 Design of a LPDA . . . . . . . . . . . . . . . . . . . . . . 48 7.2.2.2 Meander Shape V-LPDA . . . . . . . . . . . . . . . . . . 50 7.2.3 The Butterfly Antenna . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.3 Results from Antenna Simulations . . . . . . . . . . . . . . . . . . . . . . . 52 7.4 Pulse Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.4.1 Principle of the Pulse Simulation . . . . . . . . . . . . . . . . . . . 56 7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8 Measurement of a Prototype Antenna Model 63 8.1 Design of a Scale Size Prototype Model and Emitter Dipoles . . . . . . . . 64 8.2 First Tests of the Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.2.1 Noise Level at the Test Site . . . . . . . . . . . . . . . . . . . . . . 70 8.3 Measurements of the Transmission Between the Prototype and a Test An- tenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 8.3.1 Measurement Inside the Physics Experiment Hall . . . . . . . . . . 72 8.3.2 Measurement Outdoors . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9 Noise Measurement at the South Pole 79 9.1 Galactic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9.2 Design of an Antenna for the Measurement of Radio Noise . . . . . . . . . 81 9.3 Data Taken at the South Pole . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10 Summary and Outlook 89 A Equations 91 A.1 Decibel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 A.2 Dielectric Properties of Snow . . . . . . . . . . . . . . . . . . . . . . . . . . 91 B Antenna designs 93 vi Contents C Plots 95 C.1 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 C.2 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 C.3 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 C.4 Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 D Data sheets 102 References I List of Figures VII List of Tables XII Acknowledgements XIII Erklärung / Declaration XV vii

Description:
2 Theory of Ultra High Energy Cosmic Rays. 3 6 Antenna Theory and Simulation . 9.2 Design of an Antenna for the Measurement of Radio Noise . Figure 2.1(a) shows Victor Franz Hess (Nobel Prize 1938) microwave background radiation (CMBR) via the ∆ resonance and loose much of their. 9
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.