FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Design Optimization of Stand-Alone Hybrid Energy Systems Francisco Gonçalves Goiana Mesquita ADissertationsubmittedunderthescopeof MestradoIntegradoemEngenhariaElectrotécnicaedeComputadores MajorEnergia Supervisor: ProfessorDoutorCláudioDomingosMartinsMonteiro Fevereirode2010 ©FranciscoGonçalvesGoianaMesquita,2010 Abstract Millions of people worldwide do not have access to electricity for the most basic goods of survival. Millionsofpeopledonothaveaccesstoculture–thepleasureofreadingabookbecause theydonothavetheluxuryofilluminationduringthenight. One of the many ways to extinguish this unevenness between the developed and underdevel- oped world starts from using renewable resources as a source of energy. Independently of the world´s site where we stand, these sources are abundantly, free and inexhaustible. The problem inhabits in the way as this renewable resources are managed in function of a certain associated loaddemand. Hybridenergysystems,namelythestand-aloneorisolatesones,showanenormousweightin thepathforadoptingwaysofgivingaccesstoenergyinthemostremoteplacesofourplanet. To conjugate,inanoptimizedway,thedifferentformsofenergy–wind,waterandsun–isthecourse wehavetoadoptandimplementsothatmotivatedinvestorscanapplytheirmonetaryresourcesin underdevelopedcountriessuchasAfricancountries. Thiswasthecontextonwhichthisthesiswasbased,aimedtodevelopcapabletoolstooptimize the design of stand-alone hybrid systems, concretely applied to any type of resource data and loadinformation. However,thecomplexityofthisproblemisofanextremelyhighmathematical degree. Unlike the algorithms already developed, the objective was to develop a tool that could optimize continuous variables, in this case, the wind, hydro and solar resources, as well as the batteriesandthedieselgeneratorthatconstituteagenerichybridsystem. An innovator and powerful optimization tool was then developed – GraSO (Gradient Swarm OptimizationAlgorithm)–capableofefficientlyanswertothiskindofproblems. Thissoftwareis skilledatthepointthatitcanoptimizedbothoperation(loadfollowingandcyclechargingdispatch strategies)anddesignofthehybridsystem. This algorithm was tested in several standard evaluation functions and presented satisfactory results. Hence,hisapplicationinotherkindofproblemsispossibleandadvised. With the developed algorithm core, GraSO was then applied to the system model created in an Excel spreadsheet proving his reliability to optimize the design of stand-alone hybrid energy systems. keywords: Design, GraSO, Hybrid Energy Systems, Metaheuristics, Operation, Optimization Algo- rithms,Stand-Alone i ii Acknowledgments TomyParents TomyBrother TomyFriends ToYou,Ana. ThanksBoss! Seeyouaround! FranciscoMesquita iii iv “Weinventtopersuadeourselvesthateventsareknowableandthatlifehasorderanddirection” Calvin&Hobbes v vi Contents 1 Introduction 1 1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 ThesisStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.6 DataandInformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 HybridEnergySystems-Principles 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Technologyused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 RenewableEnergyGenerators . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2 FossilFuelGenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.3 EnergyStorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.4 PowerConverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.5 SupervisoryController . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 EnergyLoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 RenewableEnergyResources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.2 SolarRadiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.3 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Economics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 HybridEnergySystems-DesignConsiderations 15 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 BriefReviewonDesignTechniques . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 HOMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 HYBRID2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 HOGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 SystemModeling 27 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 WindTurbineModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 InvestmentCosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 PhotovoltaicPerformanceModel . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 InvestmentCosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 vii
Description: