ebook img

Design Optimization of Renewable Energy Systems Using Advanced Optimization Algorithms PDF

395 Pages·2022·6.572 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design Optimization of Renewable Energy Systems Using Advanced Optimization Algorithms

Green Energy and Technology Venkata Rao Ravipudi Hameer Singh Keesari Design Optimization of Renewable Energy Systems Using Advanced Optimization Algorithms Green Energy and Technology Climatechange,environmentalimpactandthelimitednaturalresourcesurgescien- tific research and novel technical solutions. The monograph series Green Energy and Technology serves as a publishing platform for scientific and technological approaches to “green”—i.e. environmentally friendly and sustainable—technolo- gies. While a focus lies on energy and power supply, it also covers “green” solu- tions in industrial engineering and engineering design. Green Energy and Tech- nology addresses researchers, advanced students, technical consultants as well as decision makers in industries and politics. Hence, the level of presentation spans frominstructionaltohighlytechnical. **IndexedinScopus**. **IndexedinEiCompendex**. Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/8059 · Venkata Rao Ravipudi Hameer Singh Keesari Design Optimization of Renewable Energy Systems Using Advanced Optimization Algorithms VenkataRaoRavipudi HameerSinghKeesari DepartmentofMechanicalEngineering DepartmentofMechanicalEngineering S.V.NationalInstituteofTechnology SreenidhiInstituteofScience Surat,Gujarat,India andTechnology Hyderabad,Telangana,India ISSN1865-3529 ISSN1865-3537 (electronic) GreenEnergyandTechnology ISBN978-3-030-95588-5 ISBN978-3-030-95589-2 (eBook) https://doi.org/10.1007/978-3-030-95589-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Global warming is a significant concern that raises a need for cleaner production of energy. Renewable energy resources are significant sources of contribution to such clean energy demands. Taking advantage of these renewable energy sources providessignificantopportunitiesforhandlingenergy-relatedproblems.Inthelast few decades, researchers have focused on renewable energy resources like solar energy, bioenergy, wave energy, ocean thermal energy, tidal energy, geothermal energy,andwindenergy.Thishasresultedinthedevelopmentofnewtechniquesand tools that could harvest energy from renewable energy sources. However, to meet energydemandsandreduceinvestment,arigorousstudyofenergyextractionsystems is required. Identifying, analyzing, and optimizing the effect of various parame- ters of a renewable energy system contribute significantly to assessing the system performance.Furthermore,itisalwaysnotpreferabletopresenttheoptimumsystem parametersconsideringonlyasingleobjectiveasthesesystemshavemultipleobjec- tives such as power output, system efficiency, investment cost, and economic and ecologicalfactors.Hence,researchershavedevelopedvariousoptimizationmodels of these systems and presented optimum system parameters through single- and multi-objectiveoptimizationusingadvancedoptimizationalgorithms. All evolutionary computation and swarm intelligence-based optimization algo- rithmsarepopulation-basedalgorithmsandhavecontrolparameterssuchaspopula- tionsize,crossoverprobability,mutationprobability,scalingfactor,inertiaweight, socialandcognitiveparameters,amongothers.Appropriateadjustmentofthecontrol parametersdictatesthealgorithmconvergencetowardtheglobaloptimum.Inappro- priate adjustment of the control parameters leads to premature convergence and increased computational efforts. Also, selecting an appropriate population size for differentoptimizationapplicationsisatediousjob.Additionally,inmulti-objective optimization,selectingthemostsuitablesolutionfromnon-dominatedsolutionset isdifficult. Inthisbook,recentlydevelopedJayaandRao(Rao-1,Rao-2,andRao-3)algo- rithmsaredescribedforsingle-andmulti-objectiveoptimizationofselectedrenew- able energy systems. In addition, variants of the Jaya and Rao algorithms are presented to show the improvement in performances. Furthermore, variants of the v vi Preface Jaya algorithm, namely multi-team perturbation guiding Jaya (MTPG-Jaya) algo- rithmandadaptivemulti-teamperturbationguidingJaya(AMTPG-Jaya)algorithm, andvariantsoftheRaoalgorithms,namelyelitistRao(ERao-1,ERao-2,andERao-3) algorithmsandself-adaptivepopulationRao(SAP-Rao)algorithm,aredemonstrated for optimization of the selected renewable energy systems. These algorithms have noalgorithm-specificparametersandrequireonlythecommoncontrolparameters. Additionally,theapplicabilityofmulti-attributedecision-makingmethodsinmulti- objective optimization problems is discussed, and a decision-making procedure is recommendedbasedonaverageranktoidentifythebestsolutioninaPareto-front. TheJayaandRaoalgorithmsandtheirvariantsaredevelopedbyourteam,and thesearegainingwideacceptanceintheoptimizationresearchcommunity.Afterits introduction in 2016, the Jaya algorithm is finding many applications in different fieldsofscienceandengineering.Themajorapplications,asofDecember2021,are foundinthefieldsofelectricalengineering,mechanicaldesign,thermalengineering, manufacturingengineering,civilengineering,structuralengineering,computerengi- neering,electronicsengineering,physics,chemistry,biotechnology,andeconomics. Manyresearchpapershavebeenpublishedinvariousreputedinternationaljournals ofElsevier,Springer-Verlag,Taylor&Francis,andIEEETransactions,inaddition to those published in the proceedings of international conferences. The number of researchpapersiscontinuouslyincreasingatafasterrate.TheJayaalgorithmandits variantshavecarvedanicheinthefieldofadvancedoptimization,andmanymore researchersmayfindthisasapotentialoptimizationalgorithm.TheRaoalgorithms are developed by our team in 2020, and these are also gaining acceptance in the optimizationresearchcommunity. Thisbookpresentsacomprehensivereviewonlatestresearchanddevelopment trendsatinternationallevelforparameteroptimizationofvariousrenewableenergy systems.Usingexamplesofvariousrenewableenergysystems,thepossibilitiesfor parameter optimization with Jaya and Rao algorithms including their variants are demonstrated.Thebookpresentsrealcasestudies,resultsofapplicationsofthebasic Jaya and Rao algorithms, and their variants and comparison with other advanced optimization techniques and highlights the best optimization technique to achieve bestperformance.Thebookalsoincludesthevalidationofdifferentvariantsofthe JayaandRaoalgorithmsthroughapplicationtocomplexsingle-andmulti-objective unconstrainedbenchmarkfunctions.Thealgorithmsandcomputercodesofdifferent versionsofJayaandRaoalgorithmsareincludedinthebookthatwillbeverymuch usefultothereaders.Thisbookisexpectedtobecomeavaluablereferenceforthose wishingtodoresearchontheuseofadvancedoptimizationtechniquesforsolving single-/multi-objectivecombinatorialoptimizationproblemsrelatedtotherenewable energysystems. WearegratefultoDr.AnthonyDoyleandhisteamofSpringerfortheirsupportand helpinproducingthisbook.Wewishtothankvariousresearchersandthepublishers ofinternationaljournalsforpublishingtheresearchworksofourteam.Ourspecial thanks are due to the director and the colleagues at Sardar Vallabhbhai National InstituteofTechnology,Surat,India.Whileeveryattempthasbeenmadetoensure thatnoerrors(printingorotherwise)enterthebook,thepossibilityofthesecreeping Preface vii intothe book is always there.We willbe grateful tothe readers ifthese errors are pointed out. Suggestions for further improvement of the book will be thankfully acknowledged. Surat,India VenkataRaoRavipudi Hyderabad,India HameerSinghKeesari December2021 Contents 1 IntroductiontoRenewableEnergySystems ....................... 1 1.1 SolarEnergySystems ....................................... 1 1.2 WindEnergySystems ....................................... 2 1.3 HydroenergySystems ....................................... 3 1.4 OceanThermalEnergySystems .............................. 4 1.5 GeothermalEnergySystems ................................. 4 1.6 BioenergySystems ......................................... 5 1.7 NuclearEnergySystems ..................................... 6 1.8 OtherEmergingRenewableEnergyTechnologies ............... 7 References ..................................................... 8 2 SelectedRenewableEnergySystemsandFormulationofTheir Problems ...................................................... 11 2.1 WindFarmLayout ......................................... 11 2.1.1 WakeModel ........................................ 11 2.1.2 PowerGenerationModel .............................. 13 2.1.3 CostModel ......................................... 13 2.1.4 Objective Function of the Wind Farm Layout Optimization ........................................ 14 2.2 SolarAssistedEnergySystems ............................... 14 2.2.1 Solar-AssistedBraytonHeatEngineSystem ............. 14 2.2.2 Solar-AssistedStirlingHeatEngineSystem .............. 17 2.2.3 Solar-AssistedCarnot-LikeHeatEngineSystem .......... 22 2.3 Bio-EnergySystems ........................................ 23 2.3.1 Single-CylinderDirect-InjectionDieselEngine ........... 24 2.3.2 TurbochargedDIDieselEngine ........................ 25 2.3.3 CompressionIgnitionBiodieselEnginewithanEGR System ............................................. 26 2.3.4 Microalgae-BasedBiomassCultivationProcess .......... 28 2.4 HydroEnergyandGeothermalEnergySystems ................. 29 2.4.1 HydropowerGenerationandReservoirOperation ......... 29 ix x Contents 2.4.2 Ground Source Heat Pump-Radiant Ceiling Air ConditioningSystem ................................. 29 References ..................................................... 30 3 AdvancedEngineeringOptimizationTechniquesandTheir RoleinEnergySystemsOptimization ............................ 33 References ..................................................... 46 4 WorkingofJayaandRaoOptimizationAlgorithmsandTheir Variants ....................................................... 53 4.1 WorkingoftheJayaAlgorithmandItsModifiedVersions ........ 53 4.1.1 JayaAlgorithm ...................................... 53 4.1.2 Multi-teamPerturbation-GuidingJaya(MTPG-Jaya) Algorithm ........................................... 55 4.1.3 Adaptive Multi-team Perturbation-Guiding Jaya (AMTPG-Jaya)Algorithm ............................ 61 4.1.4 Multi-objective Jaya and Multi-objective AMTPG-JayaAlgorithms ............................. 66 4.2 WorkingoftheRaoAlgorithmsandTheirModifiedVersions ..... 69 4.2.1 RaoAlgorithms ...................................... 69 4.2.2 Multi-objectiveRaoAlgorithms ........................ 70 4.2.3 ElitistRaoAlgorithms ................................ 71 4.2.4 Multi-objectiveElitistRaoAlgorithms .................. 74 4.2.5 Self-AdaptivePopulationRao(SAP-Rao)Algorithm ...... 74 4.2.6 Multi-objectiveSAP-RaoAlgorithms ................... 79 4.3 PerformanceIndicators ...................................... 80 4.3.1 Coverage ........................................... 80 4.3.2 Spacing ............................................. 80 4.3.3 Hypervolume ........................................ 81 4.3.4 InvertedGenerationalDistance(IGD) ................... 81 4.4 Computational Results Analysis on Single-objective OptimizationofUnconstrainedBenchmarkProblems ............ 82 4.4.1 ComputationalResultsAnalysison30Unconstrained StandardBenchmarkProblems ......................... 82 4.4.2 ComputationalResultsAnalysisonUnconstrained Unimodal and Multimodal Standard Benchmark Problems ........................................... 93 4.5 Computational Results Analysis on Multi-objective OptimizationBenchmarkProblems ........................... 114 References ..................................................... 127 5 Multi-attribute Decision-Making Methods and Their ImplementationinEnergySystems .............................. 131 5.1 SimpleAdditiveWeighing(SAW) ............................ 132 5.2 WeightedProductMethod(WPM) ............................ 132

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.