ebook img

Design of Underwater Mobile Sensor Networks for Real-time Aquatic Applications PDF

111 Pages·2014·5.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of Underwater Mobile Sensor Networks for Real-time Aquatic Applications

UCLA UCLA Electronic Theses and Dissertations Title Design of Underwater Mobile Sensor Networks for Real-time Aquatic Applications Permalink https://escholarship.org/uc/item/9h46g9q0 Author Han, Seongwon Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA LosAngeles Design of Underwater Mobile Sensor Networks for Real-time Aquatic Applications Adissertationsubmittedinpartialsatisfaction oftherequirementsforthedegree DoctorofPhilosophyinComputerScience by Seongwon Han 2014 ⃝c Copyrightby SeongwonHan 2014 ABSTRACT OF THE DISSERTATION Design of Underwater Mobile Sensor Networks for Real-time Aquatic Applications by Seongwon Han DoctorofPhilosophyinComputerScience UniversityofCalifornia,LosAngeles,2014 ProfessorMarioGerla,Chair Underwatersensornetworkingisgenerallyregardedasanemergingtechnologytocon- ductoceanicexplorationandresearchinanautomatedandeffectivemanner. Asunder- water operations become more sophisticated, there is an increasing demand for real- time aquatic applications such as real-time video streaming. However, real-time video streaming requires high bandwidth as well as low latency. Amongst the resources, bandwidth is the most critical limitation. To help overcome this obstacle, we first pro- pose an innovative MAC protocol called Multi-session FAMA (M-FAMA). M-FAMA leverages passively-acquired local information (i.e., neighboring nodes’ propagation delaymapsandexpectedtransmissionschedules)tolaunchmultiplesimultaneousses- sions. M-FAMA’s greedy behavior is controlled by a Bandwidth Balancing algorithm that guarantees max-min fairness across multiple contending sources. In addition to this,weproposeahybridsolutionthatcombinesacousticandopticalcommunications. Optics provides good quality real-time video. Acoustic maintains a “thin” channel for network topology and transmission control, and for still frame video delivery when the optical channel fails. In particular, we enable optical communications by acoustic- ii assistedalignmentanduseacousticcommunicationsasabackupwhentheopticalsig- nalisinterrupted. Themaincontributionistoenablereliable,real-timevideostreaming without underwater optical cables. Another important contribution is the smooth tran- sition between the acoustic and optical video delivery mode, using popular image pro- cessingalgorithmstocompressthevideobeforetransmittingitontheacousticchannel. iii ThedissertationofSeongwonHanisapproved. GregoryJ.Pottie JackW.Carlyle D.StottParker MarioGerla,CommitteeChair UniversityofCalifornia,LosAngeles 2014 iv Tomyparents andtomybrother v TABLE OF CONTENTS 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.1 AnOverviewonUnderwaterSensorNetwork . . . . . . . . . . . . . . 2 1.1.1 MobileUnderwaterNetworksandResourceConstraints . . . . 2 1.1.2 ReviewofUnderwaterMACProtocols . . . . . . . . . . . . . 4 1.2 UnderwaterOptical-AcousticHybridNetwork . . . . . . . . . . . . . . 4 2 M-FAMA:AMulti-sessionMACProtocolforReliableUnderwaterAcous- ticStreams : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 2.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 M-FAMA:MotivationsandBasicPrinciples . . . . . . . . . . . . . . . 9 2.3 TowardsEnablingMultipleTransmissionSessions . . . . . . . . . . . 12 2.4 Multi-sessionFAMAdesign . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 DelayMapManagementandGuardTime . . . . . . . . . . . . 17 2.4.2 Delay-mapAssistedPacketScheduling . . . . . . . . . . . . . 19 2.4.3 ScheduleRecovery . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.4 EnablingMultipleSessions . . . . . . . . . . . . . . . . . . . 22 2.4.5 Backoff,Recovery,andMaintenance . . . . . . . . . . . . . . 26 2.4.6 Bandwidthbalancing . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Simulation&Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.1 SimulationSetup . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.2 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vi 3 EvaluationofUnderwaterOptical-AcousticHybridNetwork : : : : : : 45 3.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 AcousticCommunications . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1 OverviewofAcousticCommunications . . . . . . . . . . . . . 46 3.2.2 UsingAcousticCommunicationsinNetworking . . . . . . . . 47 3.2.3 AcousticSignalAttenuation . . . . . . . . . . . . . . . . . . . 48 3.3 OpticalCommunications . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.1 OverviewofOpticalCommunications . . . . . . . . . . . . . . 49 3.3.2 OpticalSignalAttenuation . . . . . . . . . . . . . . . . . . . . 50 3.3.3 UsingOpticalCommunicationsinNetworking . . . . . . . . . 51 3.4 Acousticvs. OpticalDiscussion . . . . . . . . . . . . . . . . . . . . . 52 3.5 HybridSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 ObjectivesofHybridSolution . . . . . . . . . . . . . . . . . . 55 3.5.2 AcousticSourceLocalization . . . . . . . . . . . . . . . . . . 56 3.5.3 HybridTransmission . . . . . . . . . . . . . . . . . . . . . . . 59 3.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.1 SimulationSetup . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.2 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Real-timeVideoStreamingfromMobileUnderwaterSensors : : : : : : 64 4.1 TheHybridSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.2 ScenariosforTheHybridSolution . . . . . . . . . . . . . . . . 66 4.2 ImageProcessingandVideoCompression . . . . . . . . . . . . . . . . 69 vii 4.2.1 SimpleImageProcessingTechniques . . . . . . . . . . . . . . 70 4.2.2 SobelImageProcessing . . . . . . . . . . . . . . . . . . . . . 72 4.2.3 GaussianBlurring . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.4 CannyEdgeDetection . . . . . . . . . . . . . . . . . . . . . . 78 4.2.5 OtherMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.1 ImplementationDetails . . . . . . . . . . . . . . . . . . . . . . 82 4.3.2 DataRateandLatency . . . . . . . . . . . . . . . . . . . . . . 83 5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87 References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89 viii

Description:
assisted alignment and use acoustic communications as a back up when the optical sig- nal is interrupted. of acoustic signals in mobile underwater networks, which is a well-known problem. Moreover [35] Eric Gallimore, Jim Partan, Ian Vaughn, Sandipa Singh, Jon Shusta, and Lee Fre- itag.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.