Design of Smart Chemical Sensor Arrays: an Approach Based on Source Separation Methods Leonardo Tomazeli Duarte To cite this version: Leonardo Tomazeli Duarte. Design of Smart Chemical Sensor Arrays: an Approach Based on Source Separation Methods. Signal and Image processing. Université de Grenoble, 2009. English. NNT: . tel-00459333 HAL Id: tel-00459333 https://theses.hal.science/tel-00459333 Submitted on 23 Feb 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT POLYTECHNIQUE DE GRENOBLE N◦ attribu´e par la biblioth`eque: THE`SE pour obtenir le grade de DOCTEUR de L’Institut Polytechnique de Grenoble Sp´ecialit´e: Signal, Image, Parole, T´el´ecoms pr´epar´ee au laboratoire Grenoble Images Signal Parole et Automatique (GIPSA-lab) dans le cadre de l’E´cole Doctorale E´lectronique, E´lectrotechnique, Automatique et Traitement du Signal pr´esent´ee et soutenue publiquement par Leonardo TOMAZELI DUARTE le 17 novembre 2009 Design of Smart Chemical Sensor Arrays: an Approach Based on Source Separation Methods Directeur de th`ese: Christian JUTTEN JURY M. Jacques FOULETIER, Pr´esident M. Yannick DEVILLE, Rapporteur M. Ali MOHAMMAD-DJAFARI, Rapporteur M. Christian JUTTEN, Directeur de th`ese M. Sa¨ıd MOUSSAOUI, Examinateur M. Pierre TEMPLE-BOYER, Examinateur ii Acknowledgments First of all, I want to express my gratitude to my supervisor, Prof. Christian Jutten, for his support, availability and kindness. His passion for science and teaching, and his devotion to his students were really inspiring and helped me to grow as a researcher and as a person. I wish to thank my thesis committee members: the president of the jury, Prof. Jacques Fouletier, and the reviewers, Prof. Yannick Deville and Prof. Ali Mohammad-Djafari, for their carefulreadingandsuggestions. IamgratefultoProf. PierreTemple-Boyerfortheirsuggestions and for receiving me at the LAAS laboratory. Finally, I wish to thank Prof. Sa¨ıd Moussaoui for his careful reading, insightful ideas, and for his collaboration. I am grateful to the National Council for Scientific and Technological Development (CNPq- Brazil) for funding my thesis. I also thank the R´egion Rhˆone-Alpes for providing me a research fellowship. I wish to thank all the people I met at the Gipsa-lab for providing a stimulating and friendly environment. I am especially grateful to C´edric Gouy-Pailler, Ladan Amini, Reza Sameni and Sophie Achard. I am indebted to Bertrand Rivet for the discussions and collaboration. It is difficult to overstate my gratitude to Romis Attux, Ricardo Suyama and Jo˜ao Marcos Travassos Romano for their support and for their guidance since my first steps as a researcher. I would also like to thank my colleagues from the DSPCom laboratory for their support. I am grateful to all researchers with whom I discussed some technical points. In particular, I wish to thank Shahram Hosseini. I am grateful to Ahmed Benyahia and J´erˆome Launay for their support during my stay at the LAAS laboratory. I would like to thank all my friends, the long-standing ones and the ones I met at Grenoble, fortheirsupport. IamindebtedtothevoluntarymembersoftheAllianceFranc¸aisedeGrenoble for their kindness and for helping me during my studies in French language. I would like to thank my uncle Luiz, my aunt Sueli and my cousins Alexandre and Bruno for their love and encouragement. I also thank my parents-in-law, Agenor and Yara, my sister- in-law, Alexandra, and my relatives for their support. I cannot find words to thank my parents, Aparecida and Sebasti˜ao, for their love and contin- ualsupportthroughoutmystudies. Withouttheirhelpthisthesiswouldnothavebeenpossible. I also thank my brother, Ronaldo, for his friendship, love and for being an example to me. Lastly, but most importantly, I would like to thank my dear wife, Camila, for her love, unconditional support, encouragement, patience and for joining me in this adventure. To her, I dedicate this thesis. iii iv R´esum´e L’une des principales difficult´es dans l’utilisation de capteurs chimiques concerne le manque de s´electivit´e inh´erent `a ces dispositifs. La strat´egie classique pour faire face `a ce probl`eme est fond´ee sur le d´eveloppement de nouvelles membranes qui conduisent `a des capteurs plus s´electifs. Toutefois, plus r´ecemment, on a d´emontr´e que ce probl`eme peut ´egalement ˆetre trait´e par une autre approche, dans laquelle l’acquisition de donn´ees est effectu´ee par un r´eseau de capteurs qui ne sont pas forc´ement s´electifs. Ainsi, dans une deuxi`eme ´etape, les informations pertinentes sont r´ecup´er´ees `a l’aide des outils de traitement de signal. L’un des b´en´efices le plus remarquable dans cette d´emarche concerne la flexibilit´e du syst`eme de mesure : le mˆeme r´eseau de capteurs peut ˆetre utilis´e pour r´ealiser diff´erents types d’analyse. Dans cette th`ese, nous ´etudions l’utilisation de r´eseaux de capteurs dans le probl`eme de l’analyse chimique quantitative. Cependant, contrairement `a la grande majorit´e des travaux dans cette ligne, notre approche envisage des solutions non-supervis´ees, n’ayant pas besoin d’une ´etape d’´etalonnage. Cette situation peut ˆetre formul´ee comme un probl`eme de s´eparation aveugle de sources. Puisque les capteurs chimiques consid´er´es dans cette recherche pr´esentent des r´eponses non-lin´eaires, le processus de m´elange sous-jacent au r´eseau de capteurs est non- lin´eaire, ce qui rend le probl`eme difficile. Les principales contributions de cette recherche sont li´ees justement au d´eveloppement de m´ethodes de s´eparation des m´elanges non-lin´eaires sur mesure pour les r´eseaux d’´electrodes s´electives potentiom´etriques. Nous consid´erons des solutions fond´ees sur l’analyse en com- posantes ind´ependantes, mais ´egalement sur d’autres strat´egies qui nous permettent de prendre en compte des connaissances a priori typiques dans l’application cibl´ee dans cette recherche, comme la positivit´e des activit´es chimiques. v vi Abstract Chemical sensors usually lack selectivity, that is, they may respond to interfering species other than the target one. The conventional strategy to cope with this problem is based on the development of new sensitive membranes that lead to more selective sensors. More recently, however,muchattentionhasbeengiventoanalternativeapproach,inwhichthedataacquisition is conducted through an array of sensors that are not necessarily selective. Then, in a second stage, signalprocessingtoolsareemployedtoextracttherelevantinformationfromtheacquired data. Among the benefits brought by this approach, is the flexibility inherent in a sensor array, which allows one to consider different analytes, or even different types of analysis, by using the same measuring system. In this thesis, we study the problem of quantitative chemical analysis through sensor arrays. However, unlike the majority of the works in this line, we consider an unsupervised approach in which the adjustment of the signal processing method does not require a set of training (or calibration) points. This situation can be formulated as a Blind Source Separation (BSS) problem. The difficulty here lies in the fact that the chemical sensors considered in this research are clearly nonlinear devices, thus resulting in nonlinear mixing models. The main contributions of this research are related to the development of nonlinear BSS methods tailor-made for arrays of ion-selective electrodes. We consider a paradigm based upon the Independent Component Analysis (ICA) but also upon other strategies that allow us to incorporatesomeinformationtypicaloftheapplicationconsideredinthisresearch,likepositivity of chemical activities. vii viii Contents List of figures xv List of tables xvii List of abbreviations xix Introduction 1 1 State of the art 5 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Chemical sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Ion-selective electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Gas sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Selectivity of chemical sensors . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.4 Dealing with the interference: the sensor array approach . . . . . . . . . . 12 1.3 Blind source separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.2 Linear instantaneous models . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.3 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4 Application of BSS techniques to chemical sensor arrays . . . . . . . . . . . . . . 32 1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 Experiments with ISE arrays 33 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Experimental details and data set organization . . . . . . . . . . . . . . . 34 2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 First scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Second scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.3 Third scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ix
Description: