UC San Diego UC San Diego Electronic Theses and Dissertations Title Design of Silicon Power Ampliers and Arrays for Millimeter Wave Applications Permalink https://escholarship.org/uc/item/45n3721g Author Hanafi, Bassel Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Design of Silicon Power Amplifiers and Arrays for Millimeter Wave Applications A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) by Bassel Hanafi Committee in charge: Professor Peter M. Asbeck, Chair Professor James F. Buckwalter Professor Brian G. Keating Professor Andrew C. Kummel Professor Gabriel M. Rebeiz 2014 Copyright Bassel Hanafi, 2014 All rights reserved. The dissertation of Bassel Hanafi is approved, and it is acceptable in quality and form for publication on micro- film and electronically: Chair University of California, San Diego 2014 iii DEDICATION To my mother iv TABLE OF CONTENTS Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Millimeter Wave Applications . . . . . . . . . . . . . . . 2 1.1.1 Automotive Radar . . . . . . . . . . . . . . . . . 3 1.1.2 Wireless High-Definition Content Transmission . . 5 1.1.3 Millimeter Wave Mobile . . . . . . . . . . . . . . 5 1.2 Silicon Power Amplifiers . . . . . . . . . . . . . . . . . . 7 1.2.1 Stacked PAs . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Power Combining . . . . . . . . . . . . . . . . . . 8 1.3 Dissertation Scope and Organization . . . . . . . . . . . 10 Chapter 2 A300mWQ-bandPowerAmplifierImplementedinSiGeBiC- MOS Technology . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Stacking Overview . . . . . . . . . . . . . . . . . . . . . 14 2.3 Amplifier Design . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Unit Amplifier . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Amplifier Biasing . . . . . . . . . . . . . . . . . . 23 2.3.3 Power Combining . . . . . . . . . . . . . . . . . . 25 2.4 Experimental Results and Revisited Modeling . . . . . . 28 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter 3 Q-Band Spatially-Combined Power Amplifier Arrays in 45nm CMOS SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Chip Design . . . . . . . . . . . . . . . . . . . . . . . . . 37 v 3.3.1 PA Unit Cells - Design Considerations . . . . . . 37 3.3.2 Passive Structures and Supply Distribution . . . . 41 3.3.3 Antenna Board Design . . . . . . . . . . . . . . . 46 3.3.4 Thermal Considerations . . . . . . . . . . . . . . 50 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . 53 3.4.1 Testing of the 4-stack PA . . . . . . . . . . . . . . 53 3.4.2 Testing of the array chip . . . . . . . . . . . . . . 53 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6 Appendix 3.A: Stability of Stacked FET PAs . . . . . . . 71 Chapter 4 Thermal Analysis of Millimeter-Wave Power Amplifiers Imple- mented in CMOS SOI . . . . . . . . . . . . . . . . . . . . . . 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Thermal Modeling . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 The Back-end Oxide . . . . . . . . . . . . . . . . 84 4.2.2 Interconnects . . . . . . . . . . . . . . . . . . . . 86 4.2.3 Cross-Heating Effect . . . . . . . . . . . . . . . . 89 4.3 Experimental Verification . . . . . . . . . . . . . . . . . . 91 4.4 Full Amplifier Model . . . . . . . . . . . . . . . . . . . . 97 4.5 Thermally Aware Layout Optimization . . . . . . . . . . 100 4.6 Summary and Conclusions . . . . . . . . . . . . . . . . . 103 Chapter 5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 105 5.1 Dissertation Summary . . . . . . . . . . . . . . . . . . . 105 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 107 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 vi LIST OF FIGURES Figure 1.1: Atmospheric attenuation of mm-waves from [2] . . . . . . . . . 2 Figure 1.2: (a) Automotive radar concept as appears in [5]. (b) Housing of a commercial radar sensor as presented in [6]. (c) PCB of the radar with MMIC transceiver module and patch antennas on PCB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 1.3: Mm-wave 5G mobile concept from [10] . . . . . . . . . . . . . . 6 Figure 1.4: Stacked mm-wave PA concept from [17] . . . . . . . . . . . . . 9 Figure 2.1: Chip combined SiGe PA comprising 16 units . . . . . . . . . . . 14 Figure 2.2: (a) Stacked-FET concept showing 3-stacked FET [16]. (b) Two stacked-bipolar PA. (c) Small-signal model for Q2 to calculate the emitter impedance. . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 2.3: The PA unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 2.4: Simulated time domain waveforms for the unit PA at 45 GHz . 20 Figure 2.5: Simulated time domain waveforms for 2-stacked FET PA in [17] at 45 GHz and maximum output power . . . . . . . . . . . . . 21 Figure 2.6: Magnitude of fundamental components for Ib vs Ic and Ig 2 2 2 vs Id for stacked bipolar and FET PAs respectively . . . . . . 22 2 Figure 2.7: Simulated reverse DC base current for the bottom devices vs output power of the unit PA . . . . . . . . . . . . . . . . . . . . 23 Figure 2.8: (a) Standard low impedance biasing circuit. (b) Proposed im- proved biasing circuit. For this design, all devices are sized at 20×0.13 µm2, R = 312 Ω, R = 405 Ω, and Vbb = 2.2 V. . . . 24 B Figure 2.9: Output voltage of the proposed and original bias cells at differ- ent output currents (I = 2 mA for both cases) . . . . . . . . . 25 0 Figure 2.10: Schematicdiagramof1/2amplifier(impedancevaluesdisplayed at 45 GHz), along with cross sections of µ-strip and grounded CPW (G-CPW) lines . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 2.11: Large signal simulations of the initial design for 16x PA at 45 GHz 27 Figure 2.12: Die micrograph of the fabricated SiGe PA . . . . . . . . . . . . 28 Figure 2.13: Measured small-signal S-parameters vs simulations . . . . . . . 29 Figure 2.14: Revisited simulations of input match and K-factor for the non- matched unit PA . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 2.15: Large signal power measurement setup . . . . . . . . . . . . . . 31 Figure 2.16: (a) Measured gain and output power of the combined PA at 39 GHz. (b) Measured PAE. Oscillations cause inaccurate mea- surements for P < 17 dBm. . . . . . . . . . . . . . . . . . . . 32 in Figure 3.1: (a) Simplified power amplifier and 2x2 antenna array system block diagram. (b) Expanded system containing M chips to achieve higher EIRP. . . . . . . . . . . . . . . . . . . . . . . . . 36 vii Figure 3.2: Schematic of the 3-stack driver PA from [18]. All FETs have 45nm gate length, and all T-lines are grounded CPW lines . . . 38 Figure 3.3: Schematic of the 4-stack PA, used as primary driver and as each half of the final pseudo-differential PA. All FETs have 45nm gate length, and all T-lines are grounded CPW lines . . . . . . 40 Figure 3.4: (a) Simulated stability factor for the 4-stack PA for 3 cases: no tuning; tuning with L2 only; and tuning with both L1 and L2. (b) Simulated gain and output power for the PA at 45 GHz, under the same tuning conditions. . . . . . . . . . . . . . . . . 42 Figure 3.5: Back-end metalization layers and CPW cross-section . . . . . . 43 Figure 3.6: (a) 3D view of the on-chip balun (part of the ground plane was removed to show internal structure). (b) Simulated inser- tion loss (IL), amplitude imbalance (∆A), and phase imbalance (∆φ) of the integrated balun. . . . . . . . . . . . . . . . . . . . 44 Figure 3.7: Array power budget for 29 dBm total output power (based on simulation). All values are in dBm . . . . . . . . . . . . . . . . 45 Figure 3.8: ESD architecture, R = 100 Ω . . . . . . . . . . . . . . . . . . . 45 Figure 3.9: Cross-section of the antenna array PCB. Antennas and CPW lines are fabricated on L1. L2 is used for CPW ground shield, while the antenna ground is on L4 . . . . . . . . . . . . . . . . 46 Figure 3.10: Geometry of the designed differential patch antenna (half patch shown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 3.11: Simulated antenna array gain and directivity for the designed arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 3.12: Phase of the input RF signal to the chip at different ribbon bond dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 3.13: Degradation of the array directivity vs chip-to-chip phase error, for a 2x8 array. A maximum phase error of 40o results in 1 dB degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 3.14: Simulated antenna impedance (Z ) at 45 GHz at different ANT ribbon bond profile, and the PA load-pull. The locus of Z ANT from 40-50 GHz vs L and H is also shown for L : 475- bw bw BW 775 µm and H : 200-400 µm . . . . . . . . . . . . . . . . . . 51 BW Figure 3.15: (a) Die micrograph of the stand-alone 4-stack PA, with stan- dard GSG pads for probing. (b) Die photo of the 2x2 chip (2.5x4.5 mm2 including pads). . . . . . . . . . . . . . . . . . . . 54 Figure 3.16: Simulated and measured S-parameters of the balun structure. Insertion loss (dB) of a single balun = 0.5*S . . . . . . . . . . 55 21 Figure 3.17: (a) Simulated and measured S-parameters of the 4-stack PA. (b) Large signal gain and PAE vs output power of the PA at 45 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 viii Figure 3.18: (a) Setup arrangement for chip probing. (b) Simulated and measured S-parameters of the PA chip. Port-1 = Chip input GSG, Port-2 = half of GSSG output (1/8 chip). . . . . . . . . . 57 Figure 3.19: PCB with 2.4 mm connectors assembly . . . . . . . . . . . . . . 58 Figure 3.20: (a) Measured aggregate output power of the array chip in class AB and class A modes, at 45 GHz. (b) Measured overall PAE at 45 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 3.21: (a) Antenna array assembly for the 2x2, with SMT capacitors in close proximity for supply decoupling. (b) Antenna array measurement setup. . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 3.22: Radiation patterns for the 2x2 array at 45 GHz . . . . . . . . . 62 Figure 3.23: (a) Measured EIRP along with the estimated total generated power (P ) for the 2x2 array, at 45 GHz. P is computed chip chip based on an antenna array gain of 12 dB. (b) PAE of the PA chip as inferred from the EIRP measurements, at 45 GHz. . . . 63 Figure 3.24: Maximum EIRP vs frequency for the 2x2 antenna array, when biased in class AB mode . . . . . . . . . . . . . . . . . . . . . . 64 Figure 3.25: Antenna array assembly for the 2x8 . . . . . . . . . . . . . . . 65 Figure 3.26: Radiation patterns for the 2x8 array at 45 GHz . . . . . . . . . 67 Figure 3.27: (a) Measured EIRP along with the estimated total generated power (P ) for the 2x8 array at 45 GHz. P is computed chip chip based on an antenna array gain of 17 dB. (b) PAE of the 2x8 array system at 45 GHz. . . . . . . . . . . . . . . . . . . . . . . 68 Figure 3.28: Maximum EIRP of the 2x8 array system in class AB mode vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 3.29: Simplified schematic for stability analysis . . . . . . . . . . . . 72 Figure 4.1: (a) FET structure for the IBM 45nm SOI. (b) Back-end cross- section of the process [42]. . . . . . . . . . . . . . . . . . . . . . 79 Figure 4.2: Simplified layout of the 32 µm FET . . . . . . . . . . . . . . . 82 Figure 4.3: (a) Thermal simulation of simplified 32 µm unit cell at 23 mW, temperaturevaluesareinK. (b)Simulatedsurfacetemperature rise, assuming uniform power source over the entire active area, vs power sources in channel regions . . . . . . . . . . . . . . . . 83 Figure 4.4: Thermal simulation of simplified 32 µm unit cell at 23 mW, with top dielectric included. Dotted arrows indicate various heat conduction paths. Temperature values are in K . . . . . . 85 Figure 4.5: 3D model of the 32 µm unit cell . . . . . . . . . . . . . . . . . . 86 Figure 4.6: Cross section of the thermal distribution within the FET in- cluding metal interconnects . . . . . . . . . . . . . . . . . . . . 87 ix
Description: