MASTER'S THESIS Design of Reinforced Concrete Railway Bridges with Spans from 3 to 9 meters Design According to the Eurocodes and the Swedish National Annex Adolfo Martinez Diaz 2014 Master of Science in Engineering Technology Civil Engineering Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Preface This master thesis was carried out at the Department of Civil, Environmental and Natural Resources Engineering, at Luleå University of Technology, in Luleå, Sweden under the supervision of Tekn. Dr. Professor emeritus Lennart Elfgren. The work was carried out in collaboration with Trafikverket, Luleå, and I would like to thank Mr. Magnus Edfast. MSc.Eng, for his support and collaboration during the realization of the thesis. I also want to thank Dr Anders Carolin for his assistance especially at the beginning when deciding the main ideas and its relevance and interest to Trafikverket. I also want to thank Mr Henrik Bøgh Friis, MSc.Eng, from COWI (Denmark) for all his valuable comments on the design and calculation according to the new Eurocodes. The thesis will be part of the European MAINLINE Project on Railway Infrastructure. My stay in Sweden was made possible through the European Erasmus project and through a grant from my home university of Oviedo and my supervisor María Jesús Lamela Rey. Finally, I would like to thank my family for their support and effort in giving me the possibility to come to Sweden to study and do my master thesis, and my friends for all their support. Luleå in March 2014 Adolfo Martinez Diaz i ii Abstract (English) National codes have been used in bridge design as well as for the design of other type of strutures in Sweden and other European countries. However, in the last years, the old codes have begun to give way to new common European design standards: the Eurocodes. All existing bridges, designed according to the earlier codes are gradually getting older, and eventually they will have to be either repaired/strengthened or replaced. The aim of this thesis is to provide useful standard designs for short railway concrete bridges. Further, the aim is provide a manual for their design without getting lost in the huge amount of information that the Eurocodes offer. The focus is on the most important parts and an effort has been made to make the design process fluent. The designed bridges have lengths between 3 and 9 meters and the Swedish National Annex to the Eurocode has been considered. There will be some limitations in the calculations, for example, the bridges are supposed to have straight tracks. The work is related to the European Project MAINLINE, which has the aim to help to improve the management of the European railway infrastructure. The results show, as can be expected, that as the length of the bridge increases, the amount of reinforcement also increases and so does the thickness of the beams. In Appendix A, the calculations for a 6 meters long bridge is given in detail, as an example. A table with reinforcement distribution and dimensions is given for each length, as well as final drawings. When the results obtained are compared to the ones obtained using the Spanish National Annex for the Eurocode, it can be seen that the two designs are quite similar. The differences are due to some safety factors and coefficients, but they do not make a big change when all the calculations are done. Sometimes the crack width is the most determinant characteristic in the Spanish design because the maximum crack width is lower. Moreover, the possible differences in the designs are almost evened out after a fatigue verification for 120 years. iii Sammanfattning (Swedish) För inte så länge sedan användes nationella normer vid dimensionering och byggande av broar i Sverige. Under senare år har de dock ersatts av nya internationella regler: Europakoderna Alla befintliga broar, som dimensionerats enligt tidigare normer, blir gradvis allt äldre och de behöver med tiden repareras/förstärkas eller bytas ut Syftet med detta examensarbete är att ta fram användbara standardritningar för korta järnvägsbroar av betong. Vidare är målet att ta fram en vägledning för hur en bro konstrueras utan att gå vilse i den enorma mängd information som finns i Eurokoderna. Fokus ligger på de viktigaste delarna och på att göra designprocessen lättflytande. Broarna har längder mellan 3 och 9 meter. Vissa begränsningar finns i beräkningarna, till exempel att endast broar med raka spår behandlas. Metoderna som används förklaras. De omfattar permanenta och variabla laster, gränstillstånd, böjmoment, tvärkraft och vridmoment, förankring, armeringsutformning, sprickbredder, krympning och utmattning. Arbetet anknyter till det europeiska projektet MAINLINE, vars mål är att bidra till att förbättra underhåll och skötsel av europeisk järnvägsinfrastruktur. Resultaten visar, som man kan vänta sig, att när brolängden ökar, ökar också mängden erforderlig armering. Så gör också erforderlig väggtjocklek. I bilaga A redovisas beräkningarna i detalj för en 6 meter lång bro. Alla huvudresultat redovisas i en tabell med dimensioner och armeringsmängder, såväl som tillhörande ritningar. När resultat från beräkningar enligt den svenska nationella bilaga jämförs med de som erhållits med enligt den spanska nationella bilagan, ser man att båda ger ganska likartade resultat. Skillnaden består i vissa säkerhetsfaktorer och koefficienter, men de ger inga stora förändringar när alla beräkningar genomförts. Dessa skillnader försvinner dessutom nästan helt när hänsyn tas till att broarna skall klara utmattning under 120 år. iv Resumen (Español) Hasta no hace mucho, se venía utilizando una normativa nacional para el diseño de puentes así como para otros tipos de estructuras tanto en Suecia como en otros países europeos. Pero en los últimos años, estos códigos están dando paso a una nueva normativa europea común: Los Eurocódigos. Todos los puentes existentes diseñados según los estándares antiguos van gradualmente quedando viejos y deben ser reparados/reforzados o reemplazados. El objetivo de esta tesis es proporcionar a Trafikverket, la Administración de Transportes de Suecia, unos diseños estándar para los puentes más comunes en Suecia y en Europa muy útiles para facilitar la tarea de reemplazar los viejos. Además, se pretende proporcionar un manual de diseño de puentes centrándose en las partes más importantes sin perderse entre la gran cantidad de información que ofrecen los Eurocódigos para hacer el proceso de diseño más fluido y sencillo. Los puentes diseñados tienen una longitud de entre 3 y 9 metros y será tenido en cuenta los anejos nacionales suecos del Eurocódigo. El método seguido será explicado, abarcando todos los aspectos necesarios del diseño como cargas permanentes, cargas variables, Estados Límite, momentos flectores, cortadura, torsión, refuerzos, anchos de grieta, desgaste y fatiga para 120 años de vida. Este trabajo está relacionado con el proyecto europeo MAINLINE con el objetivo de ayudar a mejorar la administración de la infraestructura ferroviaria europea. Los resultados principales muestran que, como es de esperar, al incrementar la longitud del puente, lo mismo ocurre con la cantidad de refuerzos necesarios y el ancho de las vigas. En el apéndice A se muestran los cálculos en detalle para un puente de 6 metros como ejemplo. Se proporcionará también una tabla con la distribución de los refuerzos para cada longitud así como planos finales. Cuando comparamos los resultados obtenidos con los que proporcionan los anejos nacionales españoles, podemos concluir que no hay grandes diferencias. Algunos coeficientes y factores de seguridad cambian entre países pero el resultado final es muy similar. En ocasiones el ancho de grieta es determinante en el diseño según los anejos españoles por ser más restrictivo. Además, cualquier posible diferencia entre ambos diseños prácticamente desaparece tras la verificación a fatiga para 120 años de vida. v vi Nomenclature Latin upper case letters A Concrete cross‐sectional area c A Effective area of concrete in tension c,eff A Area enclosed by the centre‐lines of the closed transverse torsional reinforcements k A Area of each bar ø A Reference area ref,x A Total reinforcement area s A' Area of pre or post‐tensioned tendons ρ ALS Accidental Limit State C Drag coefficient D C Allowance in design for deviation dev C Directional factor dir C Reduction of minimum cover for use of additional protection dur,add C Reduction of minimum cover for use of stainless steel dur,st C Additive safety element dur,γ C Minimum concrete cover min C Minimum cover due to bond requirements min,b C Minimum cover due to environmental conditions min,dur C Season factor season E Design value of modulus of elasticity of concrete c E Design value of modulus of elasticity of reinforcing steel s F Forces (kN/m) FLS Fatigue Limit State G Characteristic permanent action k I Second moment of inertia L Length M Bending moment M Bending moment limit for cracking crack M Maximum design moment d M Design value of the applied internal bending moment Ed M Serviceability Limit State bending moment SLS P Point load Q Point load vii Q Traction force lak Q Braking force lbk S Characteristic value of snow on the ground at the relevant site (kN/m2) k S Maximum crack spacing r,max SLS Serviceability limit state T Maximum uniform bridge temperature e,max T Minimum uniform bridge temperature e,min T Design value of the applied torsional moment Ed T Maximum shade temperature max T Minimum shade temperature min ULS Ultimate limit state V Basic wind velocity b V Shear force Ed V Reference value of wind velocity ref W Wind force (kN/m2) e Latin lower case letters b Width d Depth f Natural frequency f Design value of concrete compressive strength cd f Characteristic compressive cylinder strengthof concrete at 28 days ck f Design value of concrete tensile strength ctd f Characteristic axial tensile strength of concrete ctk, 0,05 f Mean value of axial tensile strengthof concrete ctm f Design yield strength of reinforcement std f Design yield strength of reinforcement yd f Characteristic yield strength of reinforcement yk h Height h Notional size 0 l Basic anchorage length b,rqd l Design anchorage length bd n Number of reinforcement bars q Distributed load viii