Title Page Page: i Copyright Page: ii Contents Page: iii Preface Page: xi Chapter 1 Introduction Page: 1 1.1 Concrete and Reinforced Concrete Page: 1 1.2 Advantages of Reinforced Concrete as a Structural Material Page: 1 1.3 Disadvantages of Reinforced Concrete as a Structural Material Page: 2 1.4 Historical Background Page: 3 1.5 Comparison of Reinforced Concrete and Structural Steel for Buildings and Bridges Page: 5 1.6 Compatibility of Concrete and Steel Page: 6 1.7 Design Codes Page: 6 1.8 Summary of 2014 ACI Code Changes Page: 7 Reorganization Page: 7 New Chapters Page: 7 Tables Page: 7 Other Changes Page: 7 1.9 SI Units and Shaded Areas Page: 7 1.10 Types of Portland Cement Page: 8 1.11 Admixtures Page: 9 1.12 Properties of Concrete Page: 10 Compressive Strength Page: 10 Static Modulus of Elasticity Page: 12 Dynamic Modulus of Elasticity Page: 13 Poisson’s Ratio Page: 13 Shrinkage Page: 14 Creep Page: 15 Tensile Strength Page: 15 Shear Strength Page: 17 1.13 Aggregates Page: 17 1.14 High-Strength Concretes Page: 18 1.15 Fiber-Reinforced Concretes Page: 20 1.16 Concrete Durability Page: 21 1.17 Reinforcing Steel Page: 21 1.18 Grades of Reinforcing Steel Page: 23 1.19 SI Bar Sizes and Material Strengths Page: 24 1.20 Corrosive Environments Page: 26 1.21 Identifying Marks on Reinforcing Bars Page: 26 1.22 Introduction to Loads Page: 26 1.23 Dead Loads Page: 27 1.24 Live Loads Page: 28 1.25 Environmental Loads Page: 30 1.26 Selection of Design Loads Page: 31 1.27 Calculation Accuracy Page: 32 1.28 Impact of Computers on Reinforced Concrete Design Page: 33 Problems Page: 33 Chapter 2 Flexural Analysis of Beams Page: 34 2.1 Introduction Page: 34 Uncracked Concrete Stage Page: 34 Concrete Cracked–Elastic Stresses Stage Page: 34 Beam Failure—Ultimate-Strength Stage Page: 35 2.2 Cracking Moment Page: 37 2.3 Elastic Stresses-Concrete Cracked Page: 40 Discussion Page: 43 2.4 Ultimate or Nominal Flexural Moments Page: 47 2.5 SI Example Page: 50 2.6 Computer Examples Page: 51 Problems Page: 53 Chapter 3 Strength Analysis of Beams According to ACI Code Page: 64 3.1 Design Methods Page: 64 3.2 Advantages of Strength Design Page: 65 3.3 Structural Safety Page: 65 3.4 Derivation of Beam Expressions Page: 66 3.5 Strains in Flexural Members Page: 69 3.6 Balanced Sections, Tension-Controlled Sections, and Compression-Controlled or Brittle Sections Page: 70 3.7 Strength Reduction or ø Factors Page: 70 3.8 Minimum Percentage of Steel Page: 72 3.9 Balanced Steel Percentage Page: 74 3.10 Example Problems Page: 75 3.11 Computer Examples Page: 79 Problems Page: 79 Chapter 4 Design of Rectangular Beams and One-Way Slabs Page: 81 4.1 Load Factors Page: 81 4.2 Design of Rectangular Beams Page: 83 4.3 Beam Design Examples Page: 88 Use of Graphs and Tables Page: 89 4.4 Miscellaneous Beam Considerations Page: 94 Lateral Support Page: 94 Skin Reinforcement for Deep Beams Page: 94 Other Items Page: 95 Further Notes on Beam Sizes Page: 95 4.5 Determining Steel Area When Beam Dimensions Are Predetermined Page: 95 Appendix Tables Page: 95 Use of p Formula Page: 95 Trial-and-Error (Iterative) Method Page: 96 4.6 Bundled Bars Page: 97 4.7 One-Way Slabs Page: 98 4.8 Cantilever Beams and Continuous Beams Page: 101 4.9 SI Example Page: 102 4.10 Computer Example Page: 104 Problems Page: 105 Chapter 5 Analysis and Design of T Beams and Doubly Reinforced Beams Page: 110 5.1 T Beams Page: 110 5.2 Analysis of T Beams Page: 112 5.3 Another Method for Analyzing T Beams Page: 116 5.4 Design of T Beams Page: 117 5.5 Design of T Beams for Negative Moments Page: 123 5.6 L-Shaped Beams Page: 125 5.7 Compression Steel Page: 125 5.8 Design of Doubly Reinforced Beams Page: 130 5.9 SI Examples Page: 134 5.10 Computer Examples Page: 136 Problems Page: 141 Chapter 6 Serviceability Page: 152 6.1 Introduction Page: 152 6.2 Importance of Deflections Page: 152 6.3 Control of Deflections Page: 153 Minimum Thicknesses Page: 153 Maximum Deflections Page: 153 Camber Page: 154 6.4 Calculation of Deflections Page: 154 6.5 Effective Moments of Inertia Page: 154 6.6 Long-Term Deflections Page: 157 6.7 Simple-Beam Deflections Page: 159 6.8 Continuous-Beam Deflections Page: 161 6.9 Types of Cracks Page: 167 6.10 Control of Flexural Cracks Page: 168 6.11 ACI Code Provisions Concerning Cracks Page: 171 6.12 SI Example Page: 172 6.13 Miscellaneous Cracks Page: 173 6.14 Computer Example Page: 173 Problems Page: 175 Chapter 7 Bond, Development Lengths, and Splices Page: 180 7.1 Cutting Off or Bending Bars Page: 180 7.2 Bond Stresses Page: 183 7.3 Development Lengths for Tension Reinforcement Page: 185 7.4 Development Lengths for Bundled Bars Page: 193 7.5 Hooks Page: 194 7.6 Development Lengths for Welded Wire Fabric in Tension Page: 200 7.7 Development Lengths for Compression Bars Page: 201 7.8 Critical Sections for Development Length Page: 203 7.9 Effect of Combined Shear and Moment on Development Lengths Page: 203 7.10 Effect of Shape of Moment Diagram on Development Lengths Page: 204 7.11 Cutting Off or Bending Bars (Continued) Page: 205 7.12 Bar Splices in Flexural Members Page: 208 7.13 Tension Splices Page: 209 7.14 Compression Splices Page: 210 7.15 Headed and Mechanically Anchored Bars Page: 211 7.16 SI Example Page: 212 7.17 Computer Example Page: 213 Problems Page: 214 Chapter 8 Shear and Diagonal Tension Page: 220 8.1 Introduction Page: 220 8.2 Shear Stresses in Concrete Beams Page: 220 8.3 Lightweight Concrete Page: 221 8.4 Shear Strength of Concrete Page: 221 8.5 Shear Cracking of Reinforced Concrete Beams Page: 223 8.6 Web Reinforcement Page: 224 8.7 Behavior of Beams with Web Reinforcement Page: 225 8.8 Design for Shear Page: 227 8.9 ACI Code Requirements Page: 229 8.10 Shear Design Example Problems Page: 233 8.11 Economical Spacing of Stirrups Page: 243 8.12 Shear Friction and Corbels Page: 245 8.13 Shear Strength of Members Subjected to Axial Forces Page: 247 8.14 Shear Design Provisions for Deep Beams Page: 249 8.15 Introductory Comments on Torsion Page: 250 8.16 SI Example Page: 252 8.17 Computer Example Page: 253 Problems Page: 254 Chapter 9 Introduction to Columns Page: 259 9.1 General Page: 259 9.2 Types of Columns Page: 260 9.3 Axial Load Capacity of Columns Page: 262 9.4 Failure of Tied and Spiral Columns Page: 262 9.5 Code Requirements for Cast-in-Place Columns Page: 265 9.6 Safety Provisions for Columns Page: 267 9.7 Design Formulas Page: 268 9.8 Comments on Economical Column Design Page: 269 9.9 Design of Axially Loaded Columns Page: 270 9.10 SI Example Page: 273 9.11 Computer Example Page: 274 Problems Page: 275 Chapter 10 Design of Short Columns Subject to Axial Load and Bending Page: 277 10.1 Axial Load and Bending Page: 277 10.2 The Plastic Centroid Page: 278 10.3 Development of Interaction Diagrams Page: 280 10.4 Use of Interaction Diagrams Page: 286 10.5 Code Modifications of Column Interaction Diagrams Page: 288 10.6 Design and Analysis of Eccentrically Loaded Columns Using Interaction Diagrams Page: 289 Caution Page: 290 10.7 Shear in Columns Page: 297 10.8 Biaxial Bending Page: 298 10.9 Design of Biaxially Loaded Columns Page: 302 10.10 Continued Discussion of Capacity Reduction Factors, ø Page: 305 10.11 Computer Example Page: 306 Problems Page: 308 Chapter 11 Slender Columns Page: 313 11.1 Introduction Page: 313 11.2 Nonsway and Sway Frames Page: 313 11.3 Slenderness Effects Page: 314 Unsupported Lengths Page: 314 Effective Length Factors Page: 314 11.4 Determining k Factors with Alignment Charts Page: 316 11.5 Determining k Factors with Equations Page: 318 11.6 First-Order Analyses Using Special Member Properties Page: 319 11.7 Slender Columns in Nonsway and Sway Frames Page: 320 Avoiding Slender Columns Page: 321 11.8 ACI Code Treatments of Slenderness Effects Page: 323 11.9 Magnification of Column Moments in Nonsway Frames Page: 323 11.10 Magnification of Column Moments in Sway Frames Page: 328 11.11 Analysis of Sway Frames Page: 331 11.12 Computer Examples Page: 337 Problems Page: 340 Chapter 12 Footings Page: 343 12.1 Introduction Page: 343 12.2 Types of Footings Page: 343 12.3 Actual Soil Pressures Page: 345 12.4 Allowable Soil Pressures Page: 346 12.5 Design of Wall Footings Page: 348 12.6 Design of Square Isolated Footings Page: 353 Shears Page: 354 Moments Page: 357 12.7 Footings Supporting Round or Regular Polygon-Shaped Columns Page: 359 12.8 Load Transfer from Columns to Footings Page: 359 12.9 Rectangular Isolated Footings Page: 364 12.10 Combined Footings Page: 367 12.11 Footing Design for Equal Settlements Page: 373 12.12 Footings Subjected to Axial Loads and Moments Page: 375 12.13 Transfer of Horizontal Forces Page: 377 12.14 Plain Concrete Footings Page: 378 12.15 SI Example Page: 381 12.16 Computer Examples Page: 383 Problems Page: 386 Chapter 13 Retaining Walls Page: 389 13.1 Introduction Page: 389 13.2 Types of Retaining Walls Page: 389 13.3 Drainage Page: 392 13.4 Failures of Retaining Walls Page: 393 13.5 Lateral Pressure on Retaining Walls Page: 393 13.6 Footing Soil Pressures Page: 398 13.7 Design of Semigravity Retaining Walls Page: 399 13.8 Effect of Surcharge Page: 402 13.9 Estimating the Sizes of Cantilever Retaining Walls Page: 403 Height of Wall Page: 403 Stem Thickness Page: 403 Base Thickness Page: 404 Base Length Page: 404 13.10 Design Procedure for Cantilever Retaining Walls Page: 407 Stem Page: 407 Factor of Safety against Overturning Page: 408 Factor of Safety against Sliding Page: 408 Heel Design Page: 410 Toe Design Page: 410 13.11 Cracks and Wall Joints Page: 418 Problems Page: 420 Chapter 14 Continuous Reinforced Concrete Structures Page: 425 14.1 Introduction Page: 425 14.2 General Discussion of Analysis Methods Page: 425 14.3 Qualitative Influence Lines Page: 425 14.4 Limit Design Page: 428 The Collapse Mechanism Page: 430 Plastic Analysis by the Equilibrium Method Page: 431 14.5 Limit Design under the ACI Code Page: 435 14.6 Preliminary Design of Members Page: 438 14.7 Approximate Analysis of Continuous Frames for Vertical Loads Page: 438 ACI Coefficients for Continuous Beams and Slabs Page: 439 Equivalent Rigid-Frame Method Page: 444 Assumed Points of Inflection Page: 448 14.8 Approximate Analysis of Continuous Frames for Lateral Loads Page: 448 Frame Analysis by Portal Method Page: 450 14.9 Computer Analysis of Building Frames Page: 451 14.10 Lateral Bracing for Buildings Page: 452 14.11 Development Length Requirements for Continuous Members Page: 452 Positive-Moment Reinforcement Page: 452 Negative-Moment Reinforcement Page: 455 Problems Page: 458 Chapter 15 Torsion Page: 463 15.1 Introduction Page: 463 15.2 Torsional Reinforcing Page: 464 15.3 Torsional Moments That Have to Be Considered in Design Page: 467 15.4 Torsional Stresses Page: 468 15.5 When Torsional Reinforcement Is Required by the ACI Page: 469 15.6 Torsional Moment Strength Page: 470 15.7 Design of Torsional Reinforcing Page: 471 15.8 Additional ACI Requirements Page: 472 15.9 Example Problems Using U.S. Customary Units Page: 473 15.10 SI Equations and Example Problem Page: 476 15.11 Computer Example Page: 480 Problems Page: 481 Chapter 16 Two-Way Slabs, Direct Design Method Page: 485 16.1 Introduction Page: 485 16.2 Analysis of Two-Way Slabs Page: 488 16.3 Design of Two-Way Slabs by the ACI Code Page: 488 Direct Design Method Page: 488 Equivalent Frame Method Page: 488 Design for Lateral Loads Page: 489 16.4 Column and Middle Strips Page: 489 16.5 Shear Resistance of Slabs Page: 490 16.6 Depth Limitations and Stiffness Requirements Page: 492 Slabs without Interior Beams Page: 492 Slabs with Interior Beams Page: 495 16.7 Limitations of Direct Design Method Page: 498 16.8 Distribution of Moments in Slabs Page: 498 16.9 Design of an Interior Flat Plate Page: 504 16.10 Placing of Live Loads Page: 508 16.11 Analysis of Two-Way Slabs with Beams Page: 509 16.12 Transfer of Moments and Shears between Slabs and Columns Page: 515 Factored Moments in Columns and Walls Page: 520 16.13 Openings in Slab Systems Page: 520 16.14 Computer Example Page: 521 Problems Page: 523 Chapter 17 Two-Way Slabs, Equivalent Frame Method Page: 524 17.1 Moment Distribution for Nonprismatic Members Page: 524 17.2 Introduction to the Equivalent Frame Method Page: 525 17.3 Properties of Slab Beams Page: 527 17.4 Properties of Columns Page: 530 17.5 Example Problem Page: 532 17.6 Computer Analysis Page: 536 17.7 Computer Example Page: 537 Problems Page: 538 Chapter 18 Walls Page: 539 18.1 Introduction Page: 539 18.2 Non-Load-Bearing Walls Page: 539 18.3 Load-Bearing Concrete Walls-Empirical Design Method Page: 540 18.4 Load-Bearing Concrete Walls-Rational Design Page: 543 18.5 Shear Walls Page: 545 18.6 ACI Provisions for Shear Walls Page: 549 18.7 Economy in Wall Construction Page: 555 18.8 Computer Example Page: 555 Problems Page: 557 Chapter 19 Prestressed Concrete Page: 559 19.1 Introduction Page: 559 19.2 Advantages and Disadvantages of Prestressed Concrete Page: 561 Advantages Page: 561 Disadvantages Page: 561 19.3 Pretensioning and Posttensioning Page: 561 19.4 Materials Used for Prestressed Concrete Page: 562 19.5 Stress Calculations Page: 564 19.6 Shapes of Prestressed Sections Page: 568 19.7 Prestress Losses Page: 570 Elastic Shortening of the Concrete Page: 571 Shrinkage and Creep of the Concrete Page: 572 Relaxation or Creep in the Tendons Page: 573 Slippage in Posttensioning End Anchorage Systems Page: 573 Friction along the Ducts Used in Posttensioning Page: 573 19.8 Ultimate Strength of Prestressed Sections Page: 573 Discussion Page: 576 19.9 Deflections Page: 576 Additional Deflection Comments Page: 580 19.10 Shear in Prestressed Sections Page: 580 Approximate Method Page: 581 More Detailed Analysis Page: 581 19.11 Design of Shear Reinforcement Page: 582 19.12 Additional Topics Page: 586 Stresses in End Blocks Page: 586 Composite Construction Page: 586 Continuous Members Page: 587 Partial Prestressing Page: 587 19.13 Computer Example Page: 588 Problems Page: 589 Appendix A Tables and Graphs: U.S. Customary Units Page: 593 Appendix B Tables in SI Units Page: 631 Glossary Page: 637 Index Page: 641 EULA Page: 655
Description: