ebook img

Design of pressure vessels using shape optimization PDF

15 Pages·2012·1.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of pressure vessels using shape optimization

InternationalJournalofPressureVesselsandPiping88(2011)198e212 ContentslistsavailableatScienceDirect International Journal of Pressure Vessels and Piping journal homepage: www.elsevier.com/locate/ijpvp Design of pressure vessels using shape optimization: An integrated approach R.C. Carbonaria, P.A. Muñoz-Rojasb, E.Q. Andradec, G.H. Paulinod,e, K. Nishimotof, E.C.N. Silvaa,* aDepartmentofMechatronicEngineering,EscolaPolitécnicadaUniversidadedeSãoPaulo,Av.Prof.MelloMoraes,2231SãoPaulo,SP05508-900,Brazil bDepartmentofMechanicalEngineering,UniversidadedoEstadodeSantaCatarina,BomRetiro,Joinville,SC89223-100,Brazil cCENPES,PDP/MétodosCientíficos,Petrobras,Brazil dNewmarkLaboratory,DepartmentofCivilandEnvironmentalEngineering,UniversityofIllinoisatUrbana-Champaign,205NorthMathewsAv.,Urbana,IL61801,USA eDepartmentofMechanicalScienceandEngineering,UniversityofIllinoisatUrbana-Champaign,158MechanicalEngineeringBuilding,1206WestGreenStreet,Urbana, IL61801-2906,USA fDepartmentofNavalArchitectureandOceanEngineering,EscolaPolitécnicadaUniversidadedeSãoPaulo,Av.Prof.MelloMoraes,2231SãoPaulo,SP05508-900,Brazil a r t i c l e i n f o a b s t r a c t Articlehistory: Previouspapersrelatedtotheoptimizationofpressurevesselshaveconsideredtheoptimizationofthe Received7September2010 nozzleindependentlyfromthedishedend.Thisapproachgeneratesproblemssuchasthicknessvariation Receivedinrevisedform fromnozzletodishedend(couplingcylindricalregion)and,asaconsequence,itreducestheoptimality 10May2011 ofthefinalresultwhichmayalsobeinfluencedbytheboundaryconditions.Thus,thisworkdiscusses Accepted11May2011 shapeoptimizationofaxisymmetricpressurevesselsconsideringanintegratedapproachinwhichthe entirepressurevesselmodelisusedinconjunctionwithamulti-objectivefunctionthataimstominimize Keywords: the von-Mises mechanical stress from nozzle to head. Representative examples are examined and Shapeoptimization solutionsobtainedfortheentirevesselconsideringtemperatureandpressureloading.Itisnoteworthy Pressurevessel Multi-objectivefunction thatdifferentshapesfromtheusualonesareobtained.Eventhoughsuchdifferentshapesmaynotbe profitable considering present manufacturing processes, they may be competitive for future manufacturingtechnologies,andcontributetoabetterunderstandingoftheactualinfluenceofshapein thebehaviorofpressurevessels. (cid:1)2011ElsevierLtd.Allrightsreserved. 1. Introduction astrength/weightratiohigherthansteeltanks,theyhaveahigher manufacturing cost. Thus, this work emphasizes homogeneous Inthepressurevesselliterature,theoptimizationofnozzleand tanks,andfocusesonCNG(CompressedNaturalGas)tankdesign headshasbeenconductedindependently.Althoughthisisaprac- bymeansofshapeoptimizationtechniques. tical and widely used approach, it leads to undesirable problems This paper is organized as follows. The literature review and such as thickness variation from nozzle to head (among others) related work are presented in Section 2. The formulation and and, as a consequence, reduces the optimality of the final result numerical implementation of the optimization problem for the (which may also be influenced by the adopted boundary condi- pressure vessel is described in Sections 3 and 4, respectively. In tions). Thus, this work investigates the optimization of pressure Section5,theoptimizedshapesfortheentirepressurevesselare vesselsconsideringamodeloftheentirevessel.Amulti-objective presentedandtheresultsarediscussed.Finally,inSection6,some function basedon ap-rootof summationofp-exponenttermsof conclusionsareinferred. von-Mises stress values is defined in order to minimize the tank maximum von-Mises stresses. Mechanical and thermal loads are 2. Relatedwork considered. Shape optimization techniques are applied, and the design optimizationprocedure is implemented bycombining the The design of pressure vessels is an important and practical commercial finiteelement analysis systemANSYSwith ourMAT- topic which has been explored for decades. Even though optimi- LAB optimization algorithm. Although composite tanks have zation techniques have been extensivelyapplied to design struc- turesingeneral,fewpiecesofworkcanbefoundwhicharedirectly relatedtooptimalpressurevesseldesign.Thesefewreferencesare mainly related to the design optimization of homogeneous and * Correspondingauthor.Tel.:þ551130919754;fax:þ551130915722. compositepressurevessels. E-mailaddresses:[email protected](R.C.Carbonari),[email protected](P.A. A pioneering work on optimization techniques for designing Muñoz-Rojas), [email protected] (E.Q. Andrade), [email protected] (G.H.Paulino),[email protected](K.Nishimoto),[email protected](E.C.N.Silva). pressurevesselswaspresentedbyMiddletownandOwen[1],who 0308-0161/$eseefrontmatter(cid:1)2011ElsevierLtd.Allrightsreserved. doi:10.1016/j.ijpvp.2011.05.005 R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 199 y spline Sh } y midsurface y y 1 2 head top y bottom nh variables integration points } x1 nozzle nodes x 2 variables x x nnspline S n x Fig.3. Detailsoftheshellelement(employedinthiswork). Fig.1. Definitionofdesignvariables. dimensions of a torispherical shell; optimization of the elliptical profileofthetorisphericalshellwithuniformthickness;thesame used parametric optimization techniques to minimize the maxi- problem,butincludingthethicknessasadesignvariable;andagain mum shear stress in the design of a pressure vessel dished end the same problem, however, considering the thickness varying (head)modeledwithaxisymmetricfiniteelements.Followingthis alongthemeridiandefinedbyapolynomial.Theweightreduction work, Middletown [2] applied these parametric optimization obtainedwas8%,19%,27%,and31%,respectively.Asanimportant techniques to design a pressure vessel nozzle considering the conclusion,theyshowedthattheboundaryconditionsbetweenthe minimization of the maximum shear stress. Mechanical and dishedendandthecylinderdoinfluencethedesign.A“FullyStressed thermal loads were taken into account by specifying different Design”-(FSD),whichkeepsthestressconstantalongthebody,was temperaturesintheinternalandexternalwallsofthenozzleand alsoperformed,however,itproducedinferiorresultsinrelationto dishedend(head).Later,Blachut[3]alsoappliedparametricopti- the best result among the four cases discussed, showing that, as mizationtechniquestominimizetheweightofthedishedendby expected,thedesignconsideringstressconstraintsisnotasintui- considering the limit pressure instead of mechanical stress. The tiveandthusamoreformalapproachisneeded. limitpressurewasdefinedasthevaluethatfirstcausesafullplastic Anotherrelevantworkconsideringpressurevesseldesignusing regionalongtheentirethicknessofthepressurevessel.Theopti- computationalmodelingwaspresentedbyZhuandBoyle[4],who mization problem was defined as the minimization with appliedshapeoptimizationtechniquestooptimizeseparatelythe constraintsofthelimitpressure,thestrainatthepeakofthedished head and nozzle of the pressure vessel, considering as objective end, and box constraints for parametric design variables. A zero functioneitherthemechanicalstressesorthelimitpressure.The ordermethod(nogradients)wasappliedtosolvetheoptimization limit pressure is calculated by using the elastic compensation problem. Four situations were studied: optimization of the main method [5e7], and performing successive linear analyses, which has as main advantage the fact that it precludes the need to Initialization and Data Input y Creation of Spline Curve and Solution of FEM Calculation of Objective Function and Constraints Y y P, Ti Te Converged? END etr m m N y s Calculate Sensitivities and Moving Limits Solve LP problem with respect to x and y i i x Update x and y i i Fig.4. Computer-aidedEngineering(CAE)modelincludingpressure(P),temperature Fig.2. Flowchartofoptimizationprocedure. (Ti,Te),andboundaryconditions. 200 R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 y Table2 Initialvaluesfordesignvariables(mm). symmetry point initialshape1 initialshape2 initialshape3 ellipticalhead h y1(0;3066) y1(0;3066) y1(0;3066) y1(0;2066) 1 y2(500;2932) y2(382.7;2989.9) y2(258.8;3.31.9) y2(223;2053) y3(866;2566) y3(707.1;2773.1) y3(500;2932) y3(434;2016) x1(900;893) y4(923.9;2448.7) y4(707.1;2773.1) y4(624;1957) x2(800;719) x1(900;893) y5(866;2560) y5(782;1877) x3(700;546) x2(800;719) y6(965.9,2324.8) y6(901;1783) x4(600;373) x3(700;546) x1(900;893) y7(975;1677) d0 h x4(600;373) x2(800;719) x1(900;893) 2 x3(700;546) x2(800;719) x4(600;373) x3(700;546) x4(600;373) thethicknessisuniformfortheproposedgeometry.Anequivalent ellipsoidalheadwouldhaveanequivalentstressvalueinthehead h 3 20% larger than the equivalent stress in the cylinder and a head thickness50%largerthanthecylinderthickness.Theminimization d 1 h of stress concentration in pressure vessels with ellipsoidal heads 4 x wasalsodiscussedbyMagnuckietal.[11]bymeansofanalytical techniques.Asnoticedintheirpreviouswork,ifthesamethickness isconsideredforheadandcylinder,thereisastressconcentration Fig.5. Initialpressurevesselshape. inthejunctionofheadandcylinderwithheadstressesbeinglarger than cylinder stresses. A stress equalization can be obtained by performnon-linearanalysis,thusreducingthecomputationalcost increasingtheheadthicknessorbychangingtheheadgeometryb/ in the overall optimization procedure. Their optimization proce- a > 0.5, where b and a are the minor and major ellipse axes, dure was implemented using the software ANSYS with the APDL respectively.Inthecaseofthicknessvariation,anincreaseof70% (ANSYSParametricDesignLanguage)languageandsplinecurvesto from cylinder to head would be necessary, which is impractical perform shape optimization. The obtained results showed satis- fromamanufacturingpointofview.Aninterestingplotofthickness factory improvements. The work of Malinowski and Magnuki [8] ratio as a function of (b/a) ratio related to the non-dimensional employed parametric discrete optimization techniques to design equivalent stress equalization between head and cylinder could internal reinforcements of pressure vessels by minimizing the bebuilt.Fromthisplot,byconsideringthesamethicknessforhead reinforcement mass considering stress constraints. Following an andcylinder,theratio(b/a)mustbeequalto0.6forstressequal- analyticalapproach,Banichuketal.[9]usedvariationalcalculusto ization. In another plot, the ratio between the maximum non- findtheheadmeridianprofileoptimalcurveinordertomaximize dimensional equivalent stress and the cylinder equivalent stress the ratio between head volume and mass subjected to stress (subjectedtopressureonly)isgivenasafunctionoftheratio(b/a). constraints. Itshowsthat(b/a)valueslessthan0.48arenotofinterestbecause Aninterestingissuewhendesigningthehead(ornozzle)isthe the stress concentration would increase. For (b/a) values ranging stressconcentrationinthetransitionbetweenthehead(ornozzle) from0.48to0.86,highstressvaluesaregenerated(althoughequal and the cylinder. At the head and cylinder junction, bending forheadandcylinder).Thus,othercriteria,suchasminimummass, moments and shear forces appear in order to compensate the mustbeselectedtodecideona(b/a)valuebetween0.48and0.86. stiffnessdifferencebetweenthecomponents(headandcylinder). Fromthesepreviouspiecesofwork,weconcludethatheadswith These bending moments and shear forces generate a stress hemispherical,torisphericalorellipticalgeometriesarenotoptimal concentration that can be estimated by thin shell theory. When becausetheycanonlyavoidthestressconcentrationinthejunction a non-hemispherical head is considered, the stressconcentration between head and cylinder with largethickness variation, which along the junction increases. Such stress concentration can be may be impractical (e.g. from a manufacturing point of view). reducedeitherbytransitioningthethicknessfromtheheadtothe Meanwhile,itisalsoconcludedthattheminimizationofthestress cylinder or by changing the head geometry. Following this idea, concentrationinthejunctioncanbeachievedbychangingthehead Magnucki and Lewinsky [10] analytically assessed the head meridian profile shape, suggesting that shape optimization tech- geometry (shape) design that generates an equivalent stress less niquescanbeappliedtosearchforthisoptimumshape.Thesame than or equal to the cylinder stress. In this case, the internal study could be developed for the junction between nozzle and bendingmomentsandshearforceswouldbenull.Theyconsidered cylinder, however, no analytical work has been found, probably, a head geometry partially composed by a sphere and a generic duetodifficultiestodeveloptheanalyticalmodel.However,similar curve (to be determined). The sphere radius is calculated to conclusions may be applied, that is, by changing the nozzle generate equivalent stresses in the head that do not exceed the meridian profile shape the stress concentration in the transition equivalentstressatthecylindersurface.Thestressisuniformand canbereduced. Table3 Table1 Representativeoptimizationparameters. Materialproperties. p 1to8 Young’sModulus E 200.0(cid:2)109 Pa w 0.5 Poisson’sRatio n 0.3 ah 0.25 Density r 7810.0 Kg/m3 an 0.5 Thermalexpansion a 1.15(cid:2)10(cid:3)5 1/◦C fh¼fn¼0.01 R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 201 250 B C x number of elements: 200 140 A D E a) 280 y P 700 M ( 150 1400 s s e r st s 100 e s Mi on 50 v A B C D E 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) Fig.6. von-Misesstressvaluesalongvesselmeridionalprofile,consideringdifferentdiscretizationsandnothermalload. Although most of previous optimization literature assumed optimization approach, the head and nozzle meridian profile specific geometries, Hammerand Olhoff [12] used topologyopti- curves will be optimized by using spline curves, thus no pre- mizationtodesignstructuressubjectedtopressureloads.Forsuch defined shape will be assumed. Shape here refers to the design-dependent problem, the boundary where the pressure is geometricshapeofthemidsurfacewithauniformthickness.The applied must move as the material is removed. This problem is shapeofthemidwallsurfaceismoreimportantthanthicknessfor addressed by using a spline function to represent the boundary either maximum stress or load-carrying capacity [4]. A typical where the pressure is applied. A follow up of this work was optimizationproblemisdefinedas providedbyDuandOlhoff[13]andZhengetal.[14],whoextended the investigation to three-dimensional structures. However, they Min FðxÞ considered as objective function the minimization of mean gðxÞ(cid:4)0 Subjectedto compliance without stress constraints, which is not realistic for x (cid:4)x(cid:4)x L U pressurevesseldesign.Infact,thesolutionoftopologyoptimiza- tionconsideringstressconstraintsisstillanopenproblem[15e17]. whereF(x)istheobjectivefunction,xarethedesignvariables,g(x) Recently,BlachutandMagnuki[18]publishedanextensivereview are inequalityconstraints, and xL and xU are boxconstraints. The pressure vessel optimized design can be achieved by direct about modeling and optimization of pressure vessels where they mentionthat,intheoptimizationfield,therearestillfewpiecesof enforcementofmaximumstressasconstraintsor,alternatively,by definingastressmeasuretobeminimizedasobjectivefunction.In workrelatedtopressurevesseldesign.Thisworkprovidesacontri- this work, we deal with the stress minimization problem by bution along those lines by presenting an integrated approach in definingamulti-objectivefunctionbasedonap-rootofsummation whichtheentirevesselisconsideredintheoptimizationprocess. ofp-exponenttermsofvon-Misesstresses.Thesestressesarethe usual choice of stress measurement for pressure vessel design in 3. Formulationoftheshapeoptimizationproblem theliterature[10,11].Thevon-Misesstressesarechoseninsteadof limitpressure[5e7]becausetheintentionistodesignthevesselfor In this section, an approach to design CNG tanks based on actual working conditions [4]. If different levels of mechanical the shape optimization technique is presented. In this shape stresses occur in nozzle and head regions in this work, then an 600 500 ) a P M ( 400 s x s B C e r st 300 s E e number of elements: A D s Mi y 200 140 n o 280 v A 700 B C D E 100 1400 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) Fig.7. von-Misesstressvaluesalongvesselmeridionalprofile,consideringdifferentdiscretizationsandthermalload. 202 R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 analysisoftheentirevesselisperformed.Apropermathematical 3.1. Designvariables setting must be formulated in the sense that the optimization process should guaranteethat nozzle and head stressvalues will Intheadoptedshapeoptimizationapproachtheshapesofhead haveequalinfluenceintheobjectivefunction.Thisisachievedby andnozzlearegivenbycubicsplineinterpolationwhoseshapeis using a logarithmic function. Thus, a multi-objective function is changed during the optimization process by varying the coordi- definedasthesumofthelogarithmicofthep-rootofsummationof nates of spline knots. Separate spline curves are defined for the p-exponenttermsofheadandnozzlevon-Misesstresses,allowing head and for the nozzle. The optimization must be performed in the control of the head and nozzle stresses through a weighting a way that the spline knots move in the normal direction to the coefficient,whichitisgivenby: spline curve, because analytical shape sensitivity in the direction tangenttothesplinecanbeshowntobenull.Inprinciple,xandy (cid:1)X (cid:3)1 (cid:1)X (cid:3)1 coordinates of spline knots could be chosen as design variables, F ¼ wln nh sp pþð1(cid:3)wÞln nn sp p (1) however,consideringtheconstraintthatknotsmustmoveinthe i¼1 hj j¼1 nj normaldirection,itsufficestochooseonlyxorycoordinates.Fig.1 wpohinertesosfhithanediesntjharaendthjeevothn-fiMniisteeselmemecehnatnsicthalatstmreosdseesltahteGhaeuasds svharoiwabsletshafotrxnoaznzdleyankdnohteacdoosrpdliinnaetse,sreasrpeeccthivoesleyn.Tahsusth,tehedehseigand and nozzle, respectively; w is the weighting coefficient which designvariablesetisdefinedbythecoordinatesoftheheadspline allowscontroloftheinfluenceofstressesintheheadandnozzle knots (yh) in the Cartesian direction y, while the nozzle design regionsintheoptimizationproblem;pisanexponentcoefficient variablesetisdefinedbythecoordinatesofthenozzlesplineknots whichcanassumeevenoroddvalues(asvon-Misesstressvalues (xn)intheCartesianxdirection,asillustratedinFig.1. arealwayspositive);nhandnnarethenumberoffiniteelements used to discretize the head and nozzle regions, respectively. 3.2. Complexityconstraints Therefore, the minimization of the multi-objective function consists of minimizing simultaneously the von-Mises mechanical In order to reduce the numerical oscillations during the opti- stressesintheheadandnozzleregions. mization process, and to control the spline shape, complexity a b 3000 initial 3000 initial optimized optimized m)2500 m) 2500 m m n y (2000 n y ( 2000 n i1500 n i 1500 o o si si n n e1000 e 1000 m m Di Di 500 500 0 0 0 500 1000 0 500 1000 Dimension in x (mm) Dimension in x (mm) head spline knots=3 head spline knots=4 c 3000 initial optimized m) 2500 m ( y 2000 n n i 1500 o si n e 1000 m Di 500 0 0 500 1000 Dimension in x (mm) head spline knots=6 Fig.8. Optimizationresultobtainedforinitialshapes1,2,and3correspondingtodifferentnumberofheadsplineknots(nothermalload).Detailedviewsofheadandnozzleare givenbesideeachfigure. R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 203 a 350 optimized B C x initial 300 a) semi-spherical head P D E M 250 analytical (8 cylinder) y A ( s s re 200 st s se 150 Mi n 100 o v 50 A B C D E 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) head spline knots=3 b 350 optimized B C x initial 300 a) semi-spherical head P D E M 250 analytical (8 cylinder) y A ( s s re 200 st s se 150 Mi n 100 o v 50 A B C D E 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) head spline knots=4 c 350 optimized B C x ) 300 initial Pa semi-spherical head (M 250 analytical (8 cylinder) y A D E s s e r 200 st s se 150 Mi n 100 o v 50 A B C D E 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) head spline knots=6 Fig.9. von-Misesstressvaluesalongvesseloptimizedmeridionalprofileforinitialshapes1,2,and3correspondingtodifferentnumberofheadsplineknots(nothermalload). 204 R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 TMaabxleim4umvon-Misesstressvalues(MPa),wheresubscriptsh,n,0,ss,andh2indicate SMuibnje:ctedtoF:ðyh;xnÞ (hseaad¼,no8z6z:l6e,Minpiatiafolrshaanpien,fisntaintedcayrdlinsdpehre)r.ical,andcylindricalregionh2,respectively y1(cid:4)ymax x1(cid:4)xmax h2 (cid:3)y þy (cid:4)(cid:3)e (cid:3)x þx (cid:4)(cid:3)d Example sh sh0 sss sn sn0 sh2 sh20 (cid:3)y1iþyiþ21(cid:4)(cid:3)e (cid:3)1xjþx2jþ1(cid:4)(cid:3)d Fig.9(a) 80.4 101.3 67.0 142.9 318.6 89.0 91.5 (cid:3)y (cid:4)(cid:3)y ði ¼ 2.nh(cid:3)1Þ nh min FFiigg..99((bc)) 7735..96 9729..94 6677..00 110033..34 331188..66 8899..00 9911..55 (cid:3)xnn(cid:4)(cid:3)xmin ðj ¼ 2.nn(cid:3)1Þ Fig.12(a) 303.5 292.0 261.6 276.6 452.7 276.5 278.0 Fig.12(b) 302.1 286.5 261.6 276.6 452.7 276.5 278.0 Thenumericalimplementationofthisdefinedshapeoptimiza- Fig.12(c) 256.6 276.2 261.6 276.6 452.7 276.5 278.0 tionproblemisdescribedinthenextsection.Mechanical(pressure) Fig.9(a,bandc) thermalload and thermal loads (temperature difference) are considered. In Fig.12(a,bandc) nothermalload addition, in the case of vessels subjected to internal pressure, bucklinginstabilitymayoccurforheadandnozzle(mainlyhead)if hoopstressesreachnegativevalues[19].Theheadbucklingismore constraintsareintroducedintheoptimizationproblem.Thus,the susceptibletooccurforvesselswithlargediameter/thicknessratio complexityconstraintsfortheheadregionaredefinedas: andhighyieldstressvalues[20].Becauseduringtheoptimization processtheheadandnozzlegeometryischanged,thenageometry y1(cid:4)ymax susceptibletobucklingproblemsmaybeobtained.Inthiswork,no y1(cid:3)y2(cid:5)e (2) constraint is specified for the hoop stress in the optimization yi(cid:3)yiþ1(cid:5)e problem,itsvalueisonlyverified“aposteriori”inthefinalresult. y (cid:5)y ði ¼ 2.nh(cid:3)1Þ nh min 4. Numericalimplementationofshapeoptimizationprogram whereyiareshowninFig.1andnhisthenumberofknotsinthe headregion;ymaxandyminarethemaximumandminimumvalues TheflowchartoftheprogramisillustratedinFig.2.Theprogram allowedforthesecoordinates,respectively;andeisasmallnumber. isimplementedusingthecommercial softwareMATLAB[21]and Forthenozzle,thecomplexityconstraintsaredefinedas: ANSYS[22].Allprocesses,includingtheoptimizationprocessand fileinputandoutputfromANSYSarecontrolledbyMATLAB.ANSYS x1(cid:4)xmax input files contain all the information of the pressure vessel x (cid:3)x (cid:5)d computer-aidedengineering(CAE)model.Afterobtainingtheinput 1 2 (3) xj(cid:3)xjþ1(cid:5)d files, the MATLAB routine executes ANSYS, and an output file is xnn(cid:5)xmin ði ¼ 2.nn(cid:3)1Þ generated,whichisinturnreadbyMATLAB. The pressurevessel ismodeled byusingthe2D-axisymmetric wherexiareshowninFig.1andnnisthenumberofknotsinthe shellfiniteelementtypeSHELL208[22].Thedefaultoptionforthis nozzle region; xmax and xmin are the maximum and minimum elementemploystwonodes(lineardisplacementinterpolationof valuesallowedforthesecoordinates,respectively;anddisasmall themidsurface)andthreeintegrationpointsthroughthethickness number. (atthebottom,atthetopandatthemidsurface),asillustratedby A material volume constraint is not specified because the Fig. 3. This element has the capability of modeling bending and changeofsplinelengthisnotsignificantduringtheoptimization. membranestiffness,andtorsion.Itgives,asaresult, thelongitu- Althoughmaterialvolumeconstraintisnotincluded,itisverified“a dinal, meridional, and von-Mises stress values at the Gauss inte- posteriori”. grationpoints.Thevon-Misesstressconsideredandpresentedfor allresultsinthisworkarethemaximumvaluesamongtheGauss 3.3. Summaryandremarks integrationpointsthroughthethickness. Fig. 4 illustrates the mechanical and thermal boundarycondi- Basedontheaboveconsiderations,shapeoptimizationproblem tionsappliedtothemodel.Inthisfigure,TiandTeareinternaland canbedefinedas: externaltemperature,respectively,andPistheinternalpressure. 10 9 p = 1 n o p = 5 cti 8 n u f e v 7 cti e obj 6 - ulti M 5 4 0 50 100 150 200 250 300 Iterations Fig.10. Convergenceofmulti-objectivefunctionforinitialshape1,correspondingtoheadsplineknotnumberequalto3(nothermalload). R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 205 FollowingtheflowchartinFig.2,theinitialdataoftheoptimi- containtheresultsofvon-Misesmechanicalstresses(shandsn)at zation problem is the geometry of the pressure vessel, which eachfiniteelementintegrationpoint. contains the spline knot coordinates (or design variable initial Thesensitivityanalysisofthemulti-objectivefunctioninrela- values), material properties, load and boundary conditions. The tion to design variables is obtained by using the central finite spline curves are obtained using the MATLAB function spline, differencescheme.Thus,forthegradientnumericalcalculationsit considering the design variables yh and xn and discretization is necessary to obtain the perturbations dh and dn defined in the parametersnhandnnforheadandnozzle,respectively.Theused expressionsbelow, functionsplineconsidersacubicsplinedatainterpolation,whichis generatedusingthefollowingparameters: vFyFðyiþdhÞ(cid:3)Fðyi(cid:3)dhÞ (6) vy 2d i h S ¼ fðx ;y Þ ¼ ½splineðh;x;1:nhÞ;splineðh;y;1:nhÞ(cid:6) (4) h h h i i h (cid:4) (cid:5) (cid:1) (cid:3)i vFyFðxiþdnÞ(cid:3)Fðxi(cid:3)dnÞ (7) Sn¼fðxn;ynÞ¼ spline n;xj;1:nn ;spline n;yj;1:nn (5) vyi 2dn Noticethatyandxcoordinatesaredefinedasdesignvariablesfor wcohoerrdeinSahteasnfdorStnhearheemadatarnicdefsorthtahtecnoonztzalien,rtehsepeccutbivicelsyp.lTihneehkenaodt head and nozzle, respectively. Moreover, dh and dn are calculated splineShisobtainedconsideringthetangentatthesymmetrypoint consideringafractionofthesplinelengthLhorLn,whichisgiven by: equal to zero (see Fig. 5). As mentioned before, xh and yn are calculated as functions of yh and xn, respectively, considering the Hnh S (cid:1)x;y(cid:3)ds constraintthatknotsmustmoveinthenormaldirection. L ¼ j¼1 hP j j 0d ¼ f L (8) Inthesequence,theCAEmodelisdefinedincludingalgorithmic h y h h h i parameters and mesh attributes such as the finite element type, number of nodes and elements, loads and boundary conditions. H OrunncneintgheaCliAnEearmsotdateilciasnbaluyisltis,,twhehicAhNSgYenSesroaltveesrouistpeuxtecfiuletesdthbayt Ln ¼ in¼n1SPnðxxij;yiÞds0dn ¼ fnLn (9) a b 3000 initial 3000 initial optimized optimized )2500 )2500 m m m m y (2000 y (2000 n n n i1500 n i1500 o o si si n n e1000 e1000 m m Di Di 500 500 0 0 0 500 1000 0 500 1000 Dimension in x (mm) Dimension in x (mm) head spline knots=3 head spline knots=4 c 3000 initial optimized )2500 m m y (2000 n n i1500 o si n e1000 m Di 500 0 0 500 1000 Dimension in x (mm) head spline knots=6 Fig.11. Optimizationresultobtainedforinitialshapes1,2,and3correspondingtodifferentnumberofheadsplineknotandwiththermalload.Detailedviewsofheadandnozzle aregivenbesideeachfigure. 206 R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 500 optimized B C x initial a) 400 semi-spherical head D E P A M y ( ss 300 e r st s e s 200 Mi n o v 100 A B C D E 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) head spline knots=3 500 optimized B C x initial a) 400 semi-spherical head D E P A M y ( ss 300 e r st s e s 200 Mi n o v 100 A B C D E 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) head spline knots=4 500 optimized B C x initial a) 400 semi-spherical head D E P A M y ( ss 300 e r st s e s 200 Mi n o v 100 A B C D E 0 0 500 1000 1500 2000 2500 3000 3500 4000 Along length (mm) head spline knots=6 Fig.12. von-Misesstressvaluesalongvesseloptimizedmeridionalprofileforinitialshapes1,2,and3correspondingtodifferentnumberofknotsatheadsplineandwith thermalload. R.C.Carbonarietal./InternationalJournalofPressureVesselsandPiping88(2011)198e212 207 12 11 n io p = 1 p = 7 t c 10 n u f e v 9 i t c e j b 8 o - i t l u M 7 6 0 50 100 150 200 250 300 Iterations Fig.13. Convergenceofmulti-objectivefunctionforinitialshape3,correspondingtoheadsplineknotnumberequalto6andthermalload. where f and f are percentage values specified for head and h n y ¼ y (cid:3)q l (11) nozzle,respectively. iL i hi i Tosolvetheoptimizationproblem,thegradientbasedsequen- y ¼ y þq l ði ¼ 1.nhÞ (12) tiallinearprogramming(SLP)optimizationalgorithmisused[23]. iU i hi i x ¼ x (cid:3)q l (13) TheSLPisimplementedusingtheavailablefunctionlinprog(Linear jL j nj j Programming)fromMATLAB.TheSLPrequiresthatamovinglimit x ¼ x þq l ðj ¼ 1.nnÞ (14) scheme be defined fordesignvariables. These movinglimits also jU j nj j helptocontrolthenumericaloscillationsofmulti-objectivefunc- wheresubscriptsLandUarelowerandupperbounds,respectively. tion gradients. The amplitude of the moving limits is defined as The parameters li and lj are updated during the optimization afunctionofcoefficientsqhandqn.Thesecoefficientsarecalculated process,andthusthemovinglimitstepsdecreaseby5%withthe byusingaschemesimilartotheoneusedforcalculatingdhanddn. convergenceofmulti-objectivefunction. Thus, qh and qn are obtained considering a fraction of the spline Thus, the following optimization problem at each iteration is length(LhorLn),whichisgivenby: defined: qh ¼ ahLh;qn ¼ anLn (10) SMuibnje:ctedto: Fðyh;xnÞ whereqhandqnarethemovinglimitscoefficientsfortheheadand (cid:3)yy1þ(cid:4)yym(cid:4)ax(cid:3)e (cid:3)x1x(cid:4)þxmxax(cid:4)(cid:3)d ninogzlzyl,e,arheasnpdecatinvealyr,ewpheircchenartaeguepdvaatluedesatspeeaccihfieitderafotironh.eAadccoarndd- (cid:3)(cid:3)yy1iþ(cid:4)yi(cid:3)2þ1y(cid:4)(cid:3)e i(cid:3)¼xj1þ2.xjþ2n1h(cid:4)(cid:3)d nh min nozzle, respectively. Therefore, the upper and lower bounds (cid:3)xnn(cid:4)(cid:3)xmin j ¼ 2.nn obtainedusingthemovinglimitsroutineforthedesignvariables y (cid:4)y (cid:4)y k ¼ 1.nh arecalculatedby: xkL(cid:4)x k(cid:4)x kU l ¼ 1.nn lL l jU 2500 initial 2500 initial optimized optimized m)2000 m)2000 m m mension in y (11050000 mension in y (11050000 Di 500 Di 500 0 0 0 500 1000 0 500 1000 Dimension in x (mm) Dimension in x (mm) Fig.14. Optimizationresultforexample2,consideringh2¼1000mmandfreetangent Fig.15. Optimizationresultforexample2,consideringh2¼1000mmandnulltangent angleatheadsymmetryknot(nothermalload).Detailedviewsofheadandnozzleare angleatheadsymmetrypoint(nothermalload).Detailedviewsofheadandnozzleare givenbesidefigure. givenbesidefigure.

Description:
head and nozzle of the pressure vessel, considering as objective function Computer-aided Engineering (CAE) model including pressure (P), temperature. (Ti, Te) dure was implemented using the software ANSYS with the APDL.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.