UNIVERSITÀ DI PISA Scuola di Dottorato in Ingegneria “Leonardo da Vinci” Corso di Dottorato di Ricerca in INGEGNERIA DELL’INFORMAZIONE Settore Scientifico-Disciplinare ING-INF/01 Tesi di Dottorato di Ricerca Design of low power, low noise instrumentation amplifiers for MEMS sensor interfacing Autore: Federico Butti Relatori: Prof. Paolo Bruschi Ing Giovanni Pennelli Ing. Massimo Piotto Anno 2013 Sommario La presente tesi di dottorato tratta del progetto di ampli(cid:28)catori da strumen- tazione in tecnologia CMOS atti ad interfacciare sensori MEMS resistivi. Il progetto di un ampli(cid:28)catore da strumentazione a basso o(cid:27)set e basso rumore, utilizzatoperlaletturadisensoridi(cid:29)ussoMEMS,vieneampliamentediscusso. Perraggiungerel’elevatarisoluzionerichiesta, sonostateutilizzatetecnichedi- namiche,comeadesempiolamodulazionechoppereilmatchingdinamicodelle portediingresso. Lastrettabandadifrequenzerichiestadall’applicazioneviene ottenuta implementando nell’ampli(cid:28)catore stesso un (cid:28)ltaggio passa-basso del secondoordine. Sonoinoltrestatifornitideicriteriperlaprogettazioneottima di (cid:28)ltri a bassa frequenza. In(cid:28)ne, viene presentato il progetto di un ampli(cid:28)catore da strumentazione per sensori magnetici integrati, sviluppato presso NXP Semiconductors (NL), du- rante una internship di 8 mesi, svolta all’interno del Programma di Dottorato. i Abstract ThisPh.D.thesisdealswiththedesignofCMOSinstrumentationampli(cid:28)erfor resistiveMEMSsensorinterfacing. Thedesignofalow-o(cid:27)set,low-noiseinstru- mentationampli(cid:28)er,targetedtotheread-outofMEMSthermal(cid:29)owsensors,is presented. Toachievethehighresolutionrequired,dynamictechniquessuchas chopper modulation, dynamic element matching and port-swapping have been used. The narrow bandwidth required for this applications has been obtained implementing in the ampli(cid:28)er block also a second order (cid:28)ltering function. Op- timumdesigncriteriaforlow-frequency(cid:28)lteroptimizationhavebeendeveloped and are also reported. Finally,thedesignofanhighgain-matchingmulti-channelinstrumentationam- pli(cid:28)erforintegratedmagneticsensors,carriedoutduringaninternshipatNXP Semiconductors, has been discussed. iii Contents Contents v Introduction 1 1 MEMS (cid:29)ow sensors 3 1.1 MEMS and microsensor market . . . . . . . . . . . . . . . . . . 3 1.2 MEMS CMOS thermal sensors . . . . . . . . . . . . . . . . . . 4 1.3 MEMS (cid:29)ow sensors . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 MEMS thermal (cid:29)ow sensors . . . . . . . . . . . . . . . . 6 1.4 CMOS integrated calorimetric (cid:29)ow meters . . . . . . . . . . . . 9 1.4.1 Principle of operations . . . . . . . . . . . . . . . . . . . 9 1.4.2 Device fabrication . . . . . . . . . . . . . . . . . . . . . 13 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Low o(cid:27)set ampli(cid:28)ers 19 2.1 O(cid:27)set in CMOS circuits . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 O(cid:27)set modelling . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 O(cid:27)set in current mirrors and di(cid:27)erential ampli(cid:28)ers . . . 20 2.2 Dynamic o(cid:27)set compensation techniques . . . . . . . . . . . . . 22 2.2.1 Autozero and Correlated Double Sampling . . . . . . . 23 2.2.2 Chopper modulation . . . . . . . . . . . . . . . . . . . . 31 2.2.3 O(cid:27)set ripple. . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Modulator non-idealities and residual o(cid:27)set . . . . . . . 35 2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 v CONTENTS 3 Low-noise, low-o(cid:27)set instrumentation ampli(cid:28)ers 41 3.1 Instrumentation ampli(cid:28)er characteristics . . . . . . . . . . . . . 41 3.2 Instrumentation ampli(cid:28)er topologies . . . . . . . . . . . . . . . 46 3.2.1 3-op-amp instrumentation ampli(cid:28)er . . . . . . . . . . . 46 3.2.2 Current Feedback Instrumentation Ampli(cid:28)ers . . . . . . 47 3.3 Low o(cid:27)set current feedback instrumentation ampli(cid:28)ers . . . . . 50 3.3.1 Chopper-modulatedcurrentfeedbackinstrumentationam- pli(cid:28)ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 Ripple reduction techniques . . . . . . . . . . . . . . . . 52 3.3.3 Mixed approaches for instrumentation ampli(cid:28)er design . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 An instrumentation ampli(cid:28)er for MEMS (cid:29)ow sensor interfac- ing 65 4.1 Design target and speci(cid:28)cations . . . . . . . . . . . . . . . . . . 65 4.2 Port-swapping technique . . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 Input impedance of a chopper ampli(cid:28)er . . . . . . . . . 67 4.2.2 Input currents in a CFIA . . . . . . . . . . . . . . . . . 69 4.2.3 Port-swapping technique . . . . . . . . . . . . . . . . . . 71 4.2.4 Common-mode related issues . . . . . . . . . . . . . . . 76 4.3 Ampli(cid:28)er description . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.1 Simpli(cid:28)ed architecture . . . . . . . . . . . . . . . . . . . 78 4.3.2 G C implementation . . . . . . . . . . . . . . . . . . . 80 m 4.3.3 Fully-di(cid:27)erential implementation . . . . . . . . . . . . . 82 4.3.4 Common-mode related issues correction . . . . . . . . . 88 4.4 Circuit implementation. . . . . . . . . . . . . . . . . . . . . . . 91 4.4.1 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.2 Input modulator . . . . . . . . . . . . . . . . . . . . . . 94 4.4.3 Preampli(cid:28)er design . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 G design . . . . . . . . . . . . . . . . . . . . . . . . . 100 m3 4.4.5 INT2 design . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4.6 OA-CM design . . . . . . . . . . . . . . . . . . . . . . . 105 4.4.7 Modulator SA-FB design . . . . . . . . . . . . . . . . . 107 4.5 Simulations and characterization . . . . . . . . . . . . . . . . . 107 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 vi CONTENTS 5 Smart chip design and layout 117 5.1 Programmable current mirror design . . . . . . . . . . . . . . . 117 5.2 Additional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3 Floorplan and layout of the System-on-Chip . . . . . . . . . . . 121 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 Optimization of very low frequency G C integrators 125 m 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2 Integrator topology and modelling . . . . . . . . . . . . . . . . 128 6.2.1 Optimization for minimum area occupation . . . . . . . 132 6.3 Optimization routine for integrator design . . . . . . . . . . . . 134 6.3.1 Optimization results . . . . . . . . . . . . . . . . . . . . 135 6.3.2 Routine accuracy . . . . . . . . . . . . . . . . . . . . . . 139 6.4 Routine re(cid:28)nement and accuracy improvement . . . . . . . . . 141 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7 Designofacompactinstrumentationampli(cid:28)erwithhighchannel- gain matching for AMR sensors 151 7.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.1.1 AMR Sensors . . . . . . . . . . . . . . . . . . . . . . . . 152 7.1.2 Rotational speed and angular position magnetic sensors 154 7.1.3 MultiPurpose Front-End for AMR sensors . . . . . . . . 156 7.2 Front-end speci(cid:28)cations . . . . . . . . . . . . . . . . . . . . . . 158 7.2.1 Gain and gain mismatch . . . . . . . . . . . . . . . . . . 158 7.2.2 Input noise and o(cid:27)set . . . . . . . . . . . . . . . . . . . 160 7.2.3 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2.4 Output stage and driving capabilities . . . . . . . . . . 164 7.2.5 HEXAGON speci(cid:28)cations summary . . . . . . . . . . . 166 7.3 HEXAGON architecture . . . . . . . . . . . . . . . . . . . . . . 166 7.3.1 Topology choice. . . . . . . . . . . . . . . . . . . . . . . 166 7.3.2 HEXAGON topology. . . . . . . . . . . . . . . . . . . . 167 7.3.3 Common-mode feedback . . . . . . . . . . . . . . . . . . 176 7.4 Circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.4.1 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . 179 7.4.2 Feedback network . . . . . . . . . . . . . . . . . . . . . 180 7.4.3 Switches design . . . . . . . . . . . . . . . . . . . . . . . 180 vii CONTENTS 7.4.4 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.4.5 Class AB control and output stage . . . . . . . . . . . . 187 7.4.6 Phase generator . . . . . . . . . . . . . . . . . . . . . . 189 7.5 Simulations and expected performances . . . . . . . . . . . . . 189 7.5.1 DC O(cid:27)set . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.5.2 O(cid:27)set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.5.3 Gain Matching . . . . . . . . . . . . . . . . . . . . . . . 191 7.5.4 Noise performances . . . . . . . . . . . . . . . . . . . . . 192 7.5.5 Periodic AC, linearity and crosstalk . . . . . . . . . . . 193 7.5.6 CMRR and PSRR . . . . . . . . . . . . . . . . . . . . . 196 7.5.7 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.5.8 Current Consumption . . . . . . . . . . . . . . . . . . . 198 7.5.9 Output impedance and ADC interfacing . . . . . . . . . 199 7.5.10 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 202 7.6 Layout and post-layout simulations . . . . . . . . . . . . . . . . 202 7.6.1 Modulator layout . . . . . . . . . . . . . . . . . . . . . . 202 7.6.2 HEXAGON layout . . . . . . . . . . . . . . . . . . . . . 203 7.6.3 Post-layout simulations . . . . . . . . . . . . . . . . . . 204 7.7 Conclusions and future developments . . . . . . . . . . . . . . . 205 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Conclusions 209 viii
Description: