ebook img

Design of low power, low noise instrumentation amplifiers for MEMS sensor interfacing PDF

220 Pages·2013·11.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of low power, low noise instrumentation amplifiers for MEMS sensor interfacing

UNIVERSITÀ DI PISA Scuola di Dottorato in Ingegneria “Leonardo da Vinci” Corso di Dottorato di Ricerca in INGEGNERIA DELL’INFORMAZIONE Settore Scientifico-Disciplinare ING-INF/01 Tesi di Dottorato di Ricerca Design of low power, low noise instrumentation amplifiers for MEMS sensor interfacing Autore: Federico Butti Relatori: Prof. Paolo Bruschi Ing Giovanni Pennelli Ing. Massimo Piotto Anno 2013 Sommario La presente tesi di dottorato tratta del progetto di ampli(cid:28)catori da strumen- tazione in tecnologia CMOS atti ad interfacciare sensori MEMS resistivi. Il progetto di un ampli(cid:28)catore da strumentazione a basso o(cid:27)set e basso rumore, utilizzatoperlaletturadisensoridi(cid:29)ussoMEMS,vieneampliamentediscusso. Perraggiungerel’elevatarisoluzionerichiesta, sonostateutilizzatetecnichedi- namiche,comeadesempiolamodulazionechoppereilmatchingdinamicodelle portediingresso. Lastrettabandadifrequenzerichiestadall’applicazioneviene ottenuta implementando nell’ampli(cid:28)catore stesso un (cid:28)ltaggio passa-basso del secondoordine. Sonoinoltrestatifornitideicriteriperlaprogettazioneottima di (cid:28)ltri a bassa frequenza. In(cid:28)ne, viene presentato il progetto di un ampli(cid:28)catore da strumentazione per sensori magnetici integrati, sviluppato presso NXP Semiconductors (NL), du- rante una internship di 8 mesi, svolta all’interno del Programma di Dottorato. i Abstract ThisPh.D.thesisdealswiththedesignofCMOSinstrumentationampli(cid:28)erfor resistiveMEMSsensorinterfacing. Thedesignofalow-o(cid:27)set,low-noiseinstru- mentationampli(cid:28)er,targetedtotheread-outofMEMSthermal(cid:29)owsensors,is presented. Toachievethehighresolutionrequired,dynamictechniquessuchas chopper modulation, dynamic element matching and port-swapping have been used. The narrow bandwidth required for this applications has been obtained implementing in the ampli(cid:28)er block also a second order (cid:28)ltering function. Op- timumdesigncriteriaforlow-frequency(cid:28)lteroptimizationhavebeendeveloped and are also reported. Finally,thedesignofanhighgain-matchingmulti-channelinstrumentationam- pli(cid:28)erforintegratedmagneticsensors,carriedoutduringaninternshipatNXP Semiconductors, has been discussed. iii Contents Contents v Introduction 1 1 MEMS (cid:29)ow sensors 3 1.1 MEMS and microsensor market . . . . . . . . . . . . . . . . . . 3 1.2 MEMS CMOS thermal sensors . . . . . . . . . . . . . . . . . . 4 1.3 MEMS (cid:29)ow sensors . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 MEMS thermal (cid:29)ow sensors . . . . . . . . . . . . . . . . 6 1.4 CMOS integrated calorimetric (cid:29)ow meters . . . . . . . . . . . . 9 1.4.1 Principle of operations . . . . . . . . . . . . . . . . . . . 9 1.4.2 Device fabrication . . . . . . . . . . . . . . . . . . . . . 13 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Low o(cid:27)set ampli(cid:28)ers 19 2.1 O(cid:27)set in CMOS circuits . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 O(cid:27)set modelling . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 O(cid:27)set in current mirrors and di(cid:27)erential ampli(cid:28)ers . . . 20 2.2 Dynamic o(cid:27)set compensation techniques . . . . . . . . . . . . . 22 2.2.1 Autozero and Correlated Double Sampling . . . . . . . 23 2.2.2 Chopper modulation . . . . . . . . . . . . . . . . . . . . 31 2.2.3 O(cid:27)set ripple. . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Modulator non-idealities and residual o(cid:27)set . . . . . . . 35 2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 v CONTENTS 3 Low-noise, low-o(cid:27)set instrumentation ampli(cid:28)ers 41 3.1 Instrumentation ampli(cid:28)er characteristics . . . . . . . . . . . . . 41 3.2 Instrumentation ampli(cid:28)er topologies . . . . . . . . . . . . . . . 46 3.2.1 3-op-amp instrumentation ampli(cid:28)er . . . . . . . . . . . 46 3.2.2 Current Feedback Instrumentation Ampli(cid:28)ers . . . . . . 47 3.3 Low o(cid:27)set current feedback instrumentation ampli(cid:28)ers . . . . . 50 3.3.1 Chopper-modulatedcurrentfeedbackinstrumentationam- pli(cid:28)ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 Ripple reduction techniques . . . . . . . . . . . . . . . . 52 3.3.3 Mixed approaches for instrumentation ampli(cid:28)er design . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 An instrumentation ampli(cid:28)er for MEMS (cid:29)ow sensor interfac- ing 65 4.1 Design target and speci(cid:28)cations . . . . . . . . . . . . . . . . . . 65 4.2 Port-swapping technique . . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 Input impedance of a chopper ampli(cid:28)er . . . . . . . . . 67 4.2.2 Input currents in a CFIA . . . . . . . . . . . . . . . . . 69 4.2.3 Port-swapping technique . . . . . . . . . . . . . . . . . . 71 4.2.4 Common-mode related issues . . . . . . . . . . . . . . . 76 4.3 Ampli(cid:28)er description . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.1 Simpli(cid:28)ed architecture . . . . . . . . . . . . . . . . . . . 78 4.3.2 G C implementation . . . . . . . . . . . . . . . . . . . 80 m 4.3.3 Fully-di(cid:27)erential implementation . . . . . . . . . . . . . 82 4.3.4 Common-mode related issues correction . . . . . . . . . 88 4.4 Circuit implementation. . . . . . . . . . . . . . . . . . . . . . . 91 4.4.1 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.2 Input modulator . . . . . . . . . . . . . . . . . . . . . . 94 4.4.3 Preampli(cid:28)er design . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 G design . . . . . . . . . . . . . . . . . . . . . . . . . 100 m3 4.4.5 INT2 design . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4.6 OA-CM design . . . . . . . . . . . . . . . . . . . . . . . 105 4.4.7 Modulator SA-FB design . . . . . . . . . . . . . . . . . 107 4.5 Simulations and characterization . . . . . . . . . . . . . . . . . 107 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 vi CONTENTS 5 Smart chip design and layout 117 5.1 Programmable current mirror design . . . . . . . . . . . . . . . 117 5.2 Additional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3 Floorplan and layout of the System-on-Chip . . . . . . . . . . . 121 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 Optimization of very low frequency G C integrators 125 m 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2 Integrator topology and modelling . . . . . . . . . . . . . . . . 128 6.2.1 Optimization for minimum area occupation . . . . . . . 132 6.3 Optimization routine for integrator design . . . . . . . . . . . . 134 6.3.1 Optimization results . . . . . . . . . . . . . . . . . . . . 135 6.3.2 Routine accuracy . . . . . . . . . . . . . . . . . . . . . . 139 6.4 Routine re(cid:28)nement and accuracy improvement . . . . . . . . . 141 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7 Designofacompactinstrumentationampli(cid:28)erwithhighchannel- gain matching for AMR sensors 151 7.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.1.1 AMR Sensors . . . . . . . . . . . . . . . . . . . . . . . . 152 7.1.2 Rotational speed and angular position magnetic sensors 154 7.1.3 MultiPurpose Front-End for AMR sensors . . . . . . . . 156 7.2 Front-end speci(cid:28)cations . . . . . . . . . . . . . . . . . . . . . . 158 7.2.1 Gain and gain mismatch . . . . . . . . . . . . . . . . . . 158 7.2.2 Input noise and o(cid:27)set . . . . . . . . . . . . . . . . . . . 160 7.2.3 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2.4 Output stage and driving capabilities . . . . . . . . . . 164 7.2.5 HEXAGON speci(cid:28)cations summary . . . . . . . . . . . 166 7.3 HEXAGON architecture . . . . . . . . . . . . . . . . . . . . . . 166 7.3.1 Topology choice. . . . . . . . . . . . . . . . . . . . . . . 166 7.3.2 HEXAGON topology. . . . . . . . . . . . . . . . . . . . 167 7.3.3 Common-mode feedback . . . . . . . . . . . . . . . . . . 176 7.4 Circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.4.1 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . 179 7.4.2 Feedback network . . . . . . . . . . . . . . . . . . . . . 180 7.4.3 Switches design . . . . . . . . . . . . . . . . . . . . . . . 180 vii CONTENTS 7.4.4 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.4.5 Class AB control and output stage . . . . . . . . . . . . 187 7.4.6 Phase generator . . . . . . . . . . . . . . . . . . . . . . 189 7.5 Simulations and expected performances . . . . . . . . . . . . . 189 7.5.1 DC O(cid:27)set . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.5.2 O(cid:27)set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.5.3 Gain Matching . . . . . . . . . . . . . . . . . . . . . . . 191 7.5.4 Noise performances . . . . . . . . . . . . . . . . . . . . . 192 7.5.5 Periodic AC, linearity and crosstalk . . . . . . . . . . . 193 7.5.6 CMRR and PSRR . . . . . . . . . . . . . . . . . . . . . 196 7.5.7 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.5.8 Current Consumption . . . . . . . . . . . . . . . . . . . 198 7.5.9 Output impedance and ADC interfacing . . . . . . . . . 199 7.5.10 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 202 7.6 Layout and post-layout simulations . . . . . . . . . . . . . . . . 202 7.6.1 Modulator layout . . . . . . . . . . . . . . . . . . . . . . 202 7.6.2 HEXAGON layout . . . . . . . . . . . . . . . . . . . . . 203 7.6.3 Post-layout simulations . . . . . . . . . . . . . . . . . . 204 7.7 Conclusions and future developments . . . . . . . . . . . . . . . 205 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Conclusions 209 viii

Description:
scopes, several new classes of integrated sensors and systems have been in auomotive, entertainment and mobile fields, dense micromirrors for high- medication and surgical tools [1.21], climate control and many others, fluids and the integrated flow sensor, the flow regime, either laminar or
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.