ebook img

Design of High-Speed Analog-to-Digital Converters using Low-Accuracy Components PDF

92 Pages·2011·1.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of High-Speed Analog-to-Digital Converters using Low-Accuracy Components

Linköping Studies in Science and Technology Dissertations, No. 1367 Design of High-Speed Analog-to-Digital Converters using Low-Accuracy Components Timmy Sundström Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2011 ISBN 978-91-7393-203-5 ISSN 0345-7524 ii Design of High-Speed Analog-to-Digital Converters using Low-Accuracy Components Timmy Sundström Copyright © Timmy Sundström, 2011 ISBN 978-91-7393-203-5 Linköping Studies in Science and Technology Dissertations, No. 1367 ISSN 0345-7524 Electronic Devices Department of Electrical Engineering Linköping University SE-581 83 Linköping SWEDEN Cover image A low-accuracy and color quantized image, by Mikael Sundström, illustrating the printed circuit board of the 1.0 GS/s, 7.5 ENOB, 73 mW pipeline ADC. Printed by LiU-Tryck, Linköping University Linköping, Sweden, 2011 To Camilla Abstract The scaling of CMOS technologies has increased the performance of general purpose processors and DSPs. However, analog circuits designed in the same process have not been able to utilize the scaling to the same extent, suffering from reduced voltage headroom and reduced analog gain. Integration of the system components on the same die means that the analog-to-digital converters (ADCs) needs to be implemented in the newest technologies in order to utilize the digital capabilities at these process nodes. To design efficient ADCs in nanoscale CMOS technologies, there is a need to both understand the physical limitations as well as to develop new architectures and circuits that take full advantage of the potential that process has to offer. As the technology scales to smaller feature sizes, the possible sample-rate of ADCs can be increased. This thesis explores the design of high-speed ADCs and investigates architectural and circuit concepts that address the problems associated with lower supply voltage and analog gain. The power dissipation of Nyquist rate ADCs is investigated and lower bounds, as set by both thermal noise and minimum feature sizes are formulated. Utilizing the increasing digital performance, low-accuracy analog components can be used, assisted by digital correction or calibration, which leads to a reduction in power dissipation. Through the aid of new techniques and concepts, the power dissipation of low-to-medium resolution ADCs benefit from going to more modern CMOS processes, which is supported by both theory and published results. v vi New architectures and circuits of high-speed ADCs are explored in test-chips based on the flash and pipeline ADC architectures. Two flash ADCs were developed, both based on a new comparator that suppresses common-mode kick-back by a factor of 6x compared to conventional topologies. The first flash ADC is based on redundancy in the comparator array, allowing the use of low-accuracy, small-sized and low-power comparators to achieve an overall low-power solution. The flash ADC achieves 4.0 effective bits at 2.5 GS/s while dissipating 30 mW of power. The second Flash ADC further explores the use of low-accuracy components, relying on the process variations to generate the reference levels based on the mismatch induced comparator offsets. The reference-free ADC achieves a resolution of 3.7 bits at 1.5 GS/s and dissipates 23 mW of power, showing that process variations does not necessarily has to be seen as detrimental to circuit performance, but rather can be seen as a source of diversity. In two implemented pipeline ADCs, the potential of very high sample-rates and energy efficiency is explored. The first pipeline ADC utilizes a new high-speed current- mode amplifier in open-loop configuration in order to reach a sample-rate of 2.4 GS/s in a single-channel pipeline ADC, a speed which is significantly faster than previous state- of-the-art The ADC achieved above 4.7 bits throughout the Nyquist range while dissipating 318 mW. The second pipeline ADC relies on an inverter-based amplifier, used in switched-capacitor feedback in order to keep the amplifier biased at a power- optimal point. The amplifier uses asymmetrically biased transistors in order to better match the p- and n-type transistors, which increases linearity and allows for fully symmetrical layout. Operating at 1.0 GS/s, the effective resolution of the ADC was 7.5 bits and the power dissipation was 73 mW. This shows that it is possible to achieve low power dissipation while maintaining both high sample-rates and medium resolution. Populärvetenskaplig sammanfattning Dagens ständigt ökande krav på högre dataöverföringshastigheter leder till ett antal olika problem i överföringen av information. Den ström av ettor och nollor som sänds ut påverkar varandra och när de kommer fram till mottagaren går det inte att bestämma vad det var som sändes ut. Genom att omvandla den mottagna signalen i en analog-till- digitalomvandlare till en högre upplösning än endast ettor och nollor och sedan använda digital signalbehandling går det att återfå den utsända informationen. Med höga prestandakrav på digital signalbehandling betyder det att analog-till- digitalomvandlare behöver integreras tillsammans med digitala byggblock på samma chip. Även om utvecklingen av tillverkningsprocesserna leder till ökat antal transistorer per yta såväl som förbättrad prestanda för digital logik så har analoga kretsar inte samma fördelar av processkalningen. Till exempel blir det svårare att bygga kretsar med hög förstärkning och linjäritet i och med att matningsspänningen minskar. Utvecklingen av analog-till-digitalomvandlare har därför gått mot att börja använda analoga kretsar med otillräcklig prestanda och att sedan använda den kraftfulla digitala signalbehandlingen som finns tillgänglig för att korrigera för de fel som uppstår. Denna avhandling undersöker möjligheter och gränser för denna digitalt understödda analogdesign. Flera analog-till-digitalomvandlare har konstruerats och demonstrerar olika tekniker för att uppnå både höga samplingstakter såväl som låg effektförbrukning. Effektförbrukningen är en av de viktigaste parametrarna hos analog-till- digitalomvandlare och de lägsta gränserna undersöks för olika omvandlararkitekturer. vii viii Det har skett en ständig minskning av effektförbrukningen hos publicerade omvandlare och de börjar nu närma sig vad som är teoretiskt möjligt. Preface This Ph.D. thesis presents the results of my research during the period from March 2006 to April 2011 at the Electronic Devices group, Department of Electrical Engineering, Linköping University, Sweden. The following papers are included in the thesis: • Paper I – Timmy Sundström, Boris Murmann and Christer Svensson, “Power Dissipation Bounds for High‐Speed Nyquist Analog‐to‐Digital Converters,” in IEEE Transactions on Circuits and Systems—I: Regular Papers, Volume 56, Issue 3, pp. 509 - 518, March 2009. • Paper II - Timmy Sundström and Atila Alvandpour, ”A Kick‐back Reduced Comparator for a 4‐6‐bit 3‐GS/s Flash ADC in a 90nm CMOS Process,“ in Mixed Design of Integrated Circuits and Systems, MIXDES, Ciechocinek, Poland, pp. 195 - 198, 21 ‐ 23 June 2007. • Paper III - Timmy Sundström and Atila Alvandpour, ”A 6‐bit 2.5‐GS/s Flash ADC using Comparator Redundancy for Low Power in 90nm CMOS,“ in Analog Integrated Circuits and Signal Processing, Volume 64, Issue 3, pp. 215 - 222, August 2010. • Paper IV - Timmy Sundström and Atila Alvandpour, ”Utilizing Process Variations for Reference Generation in a Flash ADC,“ in IEEE Transactions ix x on Circuits and Systems—II: Express Briefs, Volume 56, Issue 5, pp. 364 ‐ 368, May 2009. • Paper V – Timmy Sundström, Christer Svensson and Atila Alvandpour, “A 2.4 GS/s, Single-channel, 31.3 dB SNDR at Nyquist, 8-bit Pipeline ADC in 65nm CMOS,” accepted for publication in Journal of Solid-State Circuits. • Paper VI – Timmy Sundström, Christer Svensson and Atila Alvandpour, “A 7.5 ENOB, 1.0 GS/s, 73 mW Pipeline ADC in 65nm CMOS,” manuscript to be submitted. During my research I have also been involved in projects generating the following papers, which are either beyond the scope of the thesis or overlapping in content with the included papers: • Timmy Sundström and Atila Alvandpour, “A comparative analysis of logic styles for secure IC's against DPA attacks,“ in Proceedings of the 23rd Norchip conference, pp 297 – 300, Oulu, Finland, November 2005. • Timmy Sundström, Behzad Mesgarzadeh, Mattias Krysander, Markus Klein, Ingemar Söderquist, Anneli Crona, Torbjörn Fransson and Atila Alvandpour, “Prognostics of Electronic Systems through Power Supply Current Trends, “ in International Conference on Prognostics and Health Management 2008, PHM2008, Denver, USA, October 2008. • Timmy Sundström and Atila Alvandpour, “A 2.5-GS/s 30-mW 4-bit Flash ADC in 90nm CMOS,” in Proceedings of the 26rd Norchip conference, pp 264 – 267, Tallinn, Estonia, November 2008,. • Jonas Fritzin, Timmy Sundström, Ted Johansson, Atila Alvandpour, "Reliability study of a low-voltage Class-E power amplifier in 130nm CMOS", in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1907 – 1910, Paris, France, May 2010. • Timmy Sundström, Christer Svensson and Atila Alvandpour, "A 2.4- GS/s, 4.9 ENOB at Nyquist, Single-channel Pipeline ADC in 65nm CMOS, " in proceedings of the European Solid-State Circuits Conference, pp. 370 - 373, Sevilla, Spain, September 2010.

Description:
mode amplifier in open-loop configuration in order to reach a sample-rate of 2.4 Timmy Sundström and Atila Alvandpour, “A comparative analysis of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.