ebook img

Design of Comparative Experiments PDF

346 Pages·2008·3.092 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of Comparative Experiments

This page intentionally left blank Design of Comparative Experiments Thisbookshouldbeontheshelfofeverypractisingstatisticianwhodesignsexperi- ments. Gooddesignconsidersunitsandtreatmentsfirst,andthenallocatestreatmentsto units. It does not choose from a menu of named designs. This approach requires a notationforunitsthatdoesnotdependonthetreatmentsapplied.Moststructureonthe setofobservationalunits,oronthesetoftreatments,canbedefinedbyfactors.This bookdevelopsacoherentframeworkforthinkingaboutfactorsandtheirrelationships, includingtheuseofHassediagrams.Theseareusedtoelucidatestructure,calculate degreesoffreedomandallocatetreatmentsubspacestoappropriatestrata.Basedon a one-term course the author has taught since 1989, the book is ideal for advanced undergraduateandbeginninggraduatecourses.Examples,exercisesanddiscussion questionsaredrawnfromawiderangeofrealapplications:fromdrugdevelopment, toagriculture,tomanufacturing. r. a. baileyhasbeenProfessorofStatisticsatQueenMary,UniversityofLondon since 1994. She is a fellow of the Institute of Mathematical Statistics and a past presidentoftheInternationalBiometricSociety,BritishRegion.Thisbookreflectsher extensiveexperienceteachingdesignofexperimentsandadvisingonitsapplication. HerbookAssociationSchemeswaspublishedbyCambridgeUniversityPressin2004. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard R.Gill(DepartmentofMathematics,UtrechtUniversity) B.D.Ripley(DepartmentofStatistics,UniversityofOxford) S.Ross(DepartmentofIndustrialandSystemsEngineering,UniversityofSouthernCalifornia) B.W.Silverman(St.Peter’sCollege,Oxford) M.Stein(DepartmentofStatistics,UniversityofChicago) This series of high-quality upper-division textbooks and expository monographs covers all aspectsofstochasticapplicablemathematics.Thetopicsrangefrompureandappliedstatistics toprobabilitytheory,operationsresearch,optimization,andmathematicalprogramming.The books contain clear presentations of new developments in the field and also of the state of theartinclassicalmethods.Whileemphasizingrigoroustreatmentoftheoreticalmethods,the booksalsocontainapplicationsanddiscussionsofnewtechniquesmadepossiblebyadvances incomputationalpractice. Alreadypublished 1. BootstrapMethodsandTheirApplication,byA.C.DavisonandD.V.Hinkley 2. MarkovChains,byJ.Norris 3. AsymptoticStatistics,byA.W.vanderVaart 4. WaveletMethodsforTimeSeriesAnalysis,byDonaldB.PercivalandAndrewT.Walden 5. BayesianMethods,byThomasLeonardandJohnS.J.Hsu 6. EmpiricalProcessesinM-Estimation,bySaravandeGeer 7. NumericalMethodsofStatistics,byJohnF.Monahan 8. AUser’sGuidetoMeasureTheoreticProbability,byDavidPollard 9. TheEstimationandTrackingofFrequency,byB.G.QuinnandE.J.Hannan 10. DataAnalysisandGraphicsusingR,byJohnMaindonaldandJohnBraun 11. StatisticalModels,byA.C.Davison 12. SemiparametricRegression,byD.Ruppert,M.P.Wand,R.J.Carroll 13. ExercisesinProbability,byLoicChaumontandMarcYor 14. StatisticalAnalysisofStochasticProcessesinTime,byJ.K.Lindsey 15. MeasureTheoryandFiltering,byLakhdarAggounandRobertElliott 16. EssentialsofStatisticalInference,byG.A.YoungandR.L.Smith 17. ElementsofDistributionTheory,byThomasA.Severini 18. StatisticalMechanicsofDisorderedSystems,byAntonBovier 20. RandomGraphDynamics,byRickDurrett 21. Networks,byPeterWhittle 22. SaddlepointApproximationswithApplications,byRonaldW.Butler 23. AppliedAsymptotics,byA.R.Brazzale,A.C.DavisonandN.Reid 24. RandomNetworksforCommunication,byMassimoFranceschettiandRonaldMeester Design of Comparative Experiments R. A. Bailey QueenMary,UniversityofLondon CAMBRIDGEUNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521865067 © R. A. Bailey 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-39340-2 eBook (EBL) ISBN-13 978-0-521-86506-7 hardback ISBN-13 978-0-521-68357-9 paperback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface pagexi 1 Forwardlook 1 1.1 Stagesinastatisticallydesignedexperiment 1 1.1.1 Consultation 1 1.1.2 Statisticaldesign 2 1.1.3 Datacollection 2 1.1.4 Datascrutiny 3 1.1.5 Analysis 4 1.1.6 Interpretation 5 1.2 Theidealandthereality 5 1.2.1 Purposeoftheexperiment 5 1.2.2 Replication 5 1.2.3 Localcontrol 6 1.2.4 Constraints 6 1.2.5 Choice 7 1.3 Anexample 7 1.4 Definingterms 8 1.5 Linearmodel 14 1.6 Summary 15 Questionsfordiscussion 16 2 Unstructuredexperiments 19 2.1 Completelyrandomizeddesigns 19 2.2 Whyandhowtorandomize 20 2.3 Thetreatmentsubspace 21 2.4 Orthogonalprojection 23 2.5 Linearmodel 24 2.6 Estimation 24 2.7 Comparisonwithmatrixnotation 26 2.8 Sumsofsquares 26 2.9 Variance 28 2.10 Replication: equalorunequal? 30 v vi Contents 2.11 Allowingfortheoverallmean 30 2.12 Hypothesistesting 33 2.13 Sufficientreplicationforpower 35 2.14 Amoregeneralmodel 38 Questionsfordiscussion 41 3 Simpletreatmentstructure 43 3.1 Replicationofcontroltreatments 43 3.2 Comparingnewtreatmentsinthepresenceofacontrol 44 3.3 Othertreatmentgroupings 47 Questionsfordiscussion 52 4 Blocking 53 4.1 Typesofblock 53 4.1.1 Naturaldiscretedivisions 53 4.1.2 Continuousgradients 55 4.1.3 Choiceofblockingfortrialmanagement 55 4.1.4 Howandwhentoblock 56 4.2 Orthogonalblockdesigns 57 4.3 Constructionandrandomization 59 4.4 Modelsforblockdesigns 59 4.5 Analysiswhenblockshavefixedeffects 61 4.6 Analysiswhenblockshaverandomeffects 67 4.7 Whyuseblocks? 68 4.8 Lossofpowerwithblocking 69 Questionsfordiscussion 71 5 Factorialtreatmentstructure 75 5.1 Treatmentfactorsandtheirsubspaces 75 5.2 Interaction 77 5.3 Principlesofexpectationmodels 84 5.4 Decomposingthetreatmentsubspace 87 5.5 Analysis 90 5.6 Threetreatmentfactors 92 5.7 Factorialexperiments 97 5.8 Constructionandrandomizationoffactorialdesigns 98 5.9 Factorialtreatmentspluscontrol 99 Questionsfordiscussion 99 6 Row–columndesigns 105 6.1 Doubleblocking 105 6.2 Latinsquares 106 6.3 Constructionandrandomization 108 6.4 Orthogonalsubspaces 110 6.5 Fixedrowandcolumneffects: modelandanalysis 110 Contents vii 6.6 Randomrowandcolumneffects: modelandanalysis 112 Questionsfordiscussion 116 7 Experimentsonpeopleandanimals 117 7.1 Introduction 117 7.2 Historicalcontrols 118 7.3 Cross-overtrials 118 7.4 Matchedpairs,matchedthrees,andsoon 119 7.5 Completelyrandomizeddesigns 120 7.6 Bodypartsasexperimentalunits 120 7.7 Sequentialallocationtoanunknownnumberofpatients 121 7.8 Safeguardsagainstbias 122 7.9 Ethicalissues 124 7.10 Analysisbyintentiontotreat 126 Questionsfordiscussion 127 8 Smallunitsinsidelargeunits 131 8.1 Experimentalunitsbiggerthanobservationalunits 131 8.1.1 Thecontext 131 8.1.2 Constructionandrandomization 132 8.1.3 Modelandstrata 132 8.1.4 Analysis 132 8.1.5 Hypothesistesting 135 8.1.6 Decreasingvariance 137 8.2 Treatmentfactorsindifferentstrata 138 8.3 Split-plotdesigns 146 8.3.1 Blockingthelargeunits 146 8.3.2 Constructionandrandomization 147 8.3.3 Modelandstrata 148 8.3.4 Analysis 149 8.3.5 Evaluation 152 8.4 Thesplit-plotprinciple 152 Questionsfordiscussion 154 9 MoreaboutLatinsquares 157 9.1 UsesofLatinsquares 157 9.1.1 Onetreatmentfactorinasquare 157 9.1.2 Moregeneralrow–columndesigns 158 9.1.3 Twotreatmentfactorsinablockdesign 159 9.1.4 Threetreatmentfactorsinanunblockeddesign 161 9.2 Graeco-Latinsquares 162 9.3 UsesofGraeco-Latinsquares 166 9.3.1 Superimposeddesigninasquare 166 9.3.2 Twotreatmentfactorsinasquare 166 9.3.3 Threetreatmentfactorsinablockdesign 166 viii Contents 9.3.4 Fourtreatmentfactorsinanunblockeddesign 167 Questionsfordiscussion 167 10 Thecalculusoffactors 169 10.1 Introduction 169 10.2 Relationsonfactors 169 10.2.1 Factorsandtheirclasses 169 10.2.2 Aliasing 170 10.2.3 Onefactorfinerthananother 171 10.2.4 Twospecialfactors 171 10.3 Operationsonfactors 171 10.3.1 Theinfimumoftwofactors 171 10.3.2 Thesupremumoftwofactors 172 10.3.3 Uniformfactors 175 10.4 Hassediagrams 175 10.5 Subspacesdefinedbyfactors 178 10.5.1 Onesubspaceperfactor 178 10.5.2 Fittedvaluesandcrudesumsofsquares 178 10.5.3 Relationsbetweensubspaces 178 10.6 Orthogonalfactors 178 10.6.1 Definitionoforthogonality 178 10.6.2 Projectionmatricescommute 179 10.6.3 Proportionalmeeting 180 10.6.4 Howreplicationcanaffectorthogonality 181 10.6.5 Achainoffactors 181 10.7 Orthogonaldecomposition 182 10.7.1 Asecondsubspaceforeachfactor 182 10.7.2 Effectsandsumsofsquares 184 10.8 CalculationsontheHassediagram 185 10.8.1 Degreesoffreedom 185 10.8.2 Sumsofsquares 187 10.9 Orthogonaltreatmentstructures 189 10.9.1 Conditionsontreatmentfactors 189 10.9.2 Collectionsofexpectationmodels 190 10.10 Orthogonalplotstructures 193 10.10.1 Conditionsonplotfactors 193 10.10.2 Varianceandcovariance 194 10.10.3 Matrixformulation 195 10.10.4 Strata 196 10.11 Randomization 196 10.12 Orthogonaldesigns 197 10.12.1 Desirableproperties 197 10.12.2 Generaldefinition 198 10.12.3 Locatingtreatmentsubspaces 198 10.12.4 Analysisofvariance 200

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.