ebook img

Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles using Multi-Objective PDF

181 Pages·2008·0.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles using Multi-Objective

Abstract Barlow,GregoryJohn. DesignofAutonomous Navigation Controllers forUnmannedAerial VehiclesUsingMulti-objective GeneticProgramming. (underthedirectionofEdwardGrant.) Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, includingsearchandrescue,surveillance,andelectronicwarfare,butalmostallUAVsarecon- trolled remotely by humans. Methods of control must be developed before UAVs can become trulyautonomous. Whilethe(cid:2)eldofevolutionaryrobotics(ER)hasmadestridesinusingevo- lutionary computation (EC) to develop controllers for wheeled mobile robots, little attention has been paid to applying EC to UAV control. EC is an attractive method for developing UAV controllers because it allows the human designer to specify the set of high level goals that are to be solved by arti(cid:2)cial evolution. In this research, autonomous navigation controllers were developed using multi-objective genetic programming (GP) for (cid:2)xed wing UAV applications. Four behavioral (cid:2)tness functions were derived from (cid:3)ight simulations. Multi-objective GP used these (cid:2)tness functions to evolve controllers that were able to locate an electromagnetic energy source, to navigate the UAV to that source ef(cid:2)ciently using on-board sensor measure- ments, and to circle around the emitter. Controllers were evolved in simulation. To narrow the gap between simulated and real controllers, the simulation environment employed noisy radar signals and a sensor model with realistic inaccuracies. All computations were performed on a 92-processor Beowulf cluster parallel computer. To gauge the success of evolution, baseline (cid:2)tness values for a successful controller were established by selecting values for a minimally successful controller. Two sets of experiments were performed, the (cid:2)rst evolving controllers directly from random initial populations, the second using incremental evolution. In each set of experiments, autonomous navigation controllers were evolved for a variety of radar types. Boththedirectevolutionandincrementalevolutionexperimentswereabletoevolvecontrollers thatperformedacceptably. However,incrementalevolutionvastlyincreasedthesuccessrateof incrementalevolutionoverdirectevolution. The(cid:2)nalincrementalevolutionexperimentonthe mostcomplexradarinvestigatedinthisresearchevolvedcontrollersthatwereabletohandleall oftheradartypes. EvolvedUAVcontrollersweresuccessfullytransferredtoawheeledmobile robot. An acoustic array on-board the mobile robot replaced the radar sensor, and a speaker emitting a tone was used as the target. Using the evolved navigation controllers, the mobile robot moved to the speaker and circled around it. Future research will include testing the best evolvedcontrollersbyusingthemto(cid:3)yrealUAVs. DESIGN OF AUTONOMOUS NAVIGATION CONTROLLERS FOR UNMANNED AERIAL VEHICLES USING MULTI-OBJECTIVE GENETIC PROGRAMMING BY GREGORY J. BARLOW A THESIS SUBMITTED TO THE GRADUATE FACULTY OF NORTH CAROLINA STATE UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE ELECTRICALANDCOMPUTERENGINEERING RALEIGH MARCH 2004 APPROVED BY: Dedicated to myparents,JohnBlackBarlow,Jr. andCherylStevensBarlow. ii Biography Gregory John Barlow was born June 14, 1980 in Greensboro, North Carolina to John Black Barlow, Jr. and Cheryl Stevens Barlow. He graduated from the North Carolina School of Sci- enceandMathematics,Durham,NorthCarolinainMay1999. HereceivedBachelorofScience degrees in Electrical Engineering and Computer Engineering from North Carolina State Uni- versity, Raleigh, North Carolina in May 2003. He received the Master of Science Degree in Electrical Engineering from North Carolina State University, Raleigh, North Carolina in May 2004. Asanundergraduate,GregorywasaBarryM.GoldwaterScholar,aJohnT.CaldwellScholar, a Caldwell Fellow, and a University Scholar. He received a North Carolina State University UndergraduateResearchAwardforthespringof2001,aNationalScienceFoundationSummer Undergraduate Fellowship in Sensor Technologies at the University of Pennsylvania for the summerof2001,andwasawinnerofthe2001NorthCarolinaStateUniversityUndergraduate ResearchSymposium andthe2001SigmaXiStudentResearchSymposium. Gregory is a member of Eta Kappa Nu Electrical and Computer Engineering Honor Society, Tau Beta Pi Engineering Honor Society, the Honor Society of Phi Kappa Phi, the Institute of Electrical and Electronics Engineers, and the International Society for Genetic and Evolution- aryComputation. iii Acknowledgments I would like to thank the members of my committee, Dr. Edward Grant, Dr. Choong K. Oh, Dr. Mark W. White, and Dr. H. Troy Nagle. I would like to thank Dr. Edward Grant for all of his support and encouragement. In all the years I’ve been privileged to work with him, he has givenmesomanyopportunitiestolearnandgrow. Dr. Granthashelpedmetobecomeabetter researcher and a better person. I would also like to especially thank Dr. Choong Oh for giving metheopportunity tobecomeinvolved inthisresearch. Dr. Ohhasbeenawonderful mentor. Iwouldliketoacknowledgethe(cid:2)nancialsupportofthisworkprovidedbytheOf(cid:2)ceofNaval Research(ONR)throughtheUnitedStatesNavalResearchLaboratory(NRL)underDr. Mari- bel Soto (ONR) and Dr. Choong Oh (NRL). Computer time on the 92 processor Beowulf clusterwasfurnishedbyNRL(Code5732). I would like to thank all the members of the Center of Robotics and Intelligent Machines (CRIM),pastandpresent,fortheircollaborationandsupport. Ihavespentsixwonderfulyears intheCRIMandhavehadthechancetoworkwithmanygreatpeople. Iwouldespeciallylike tothankAndrewNelson,JohnGaleotti,LeonardoMattos,andMarcEdwards. Most of all, I would like to thank my parents, John and Cheryl Barlow. Their persistent and wholehearted commitment to my education and growth as a person have made me what I am today. I am forever grateful. I would also like to thank my three sisters, Logan, Lindsey, and Gwendolyn,LiddyGerchman,andallofmyfamilyandfriends. iv Contents ListofFigures ix ListofTables xiii ListofAbbreviations xv 1 Introduction 1 1.1 MotivationandResearchGoals . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 OverviewofThesisChapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 LiteratureReview 4 2.1 Evolutionary Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 History ofEvolutionary RoboticsResearch . . . . . . . . . . . . . . . 6 2.1.2 Evolutionary RoboticsController Architectures . . . . . . . . . . . . . 8 2.1.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 RobotTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 GeneticProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Evolutionary Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 ConcernsandStrategies . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 PerformanceEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 v 2.3.1 FunctionalFitnessFunctions . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Aggregate FitnessFunctions . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 Competitive FitnessEvaluation . . . . . . . . . . . . . . . . . . . . . 18 2.3.4 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.5 Incremental Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 UnmannedAerialVehicleControl 25 3.1 SimulationEnvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 UnmannedAerialVehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.4 Controller Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.5 Simulation FlightModel . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1 RadarTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 RadarModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 ProblemDif(cid:2)culty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 TransferencetorealUAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 EvolutionandFitnessEvaluation 40 4.1 Multi-objective GeneticProgramming . . . . . . . . . . . . . . . . . . . . . . 42 4.1.1 GeneticProgramming Parameters . . . . . . . . . . . . . . . . . . . . 42 4.1.2 FunctionsandTerminals . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.3 ParallelEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 vi 4.2 FitnessFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1 Normalized distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.2 Circling distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.3 Leveltime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.4 Turncost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.5 Combining theFitnessMeasures . . . . . . . . . . . . . . . . . . . . . 55 4.3 IncrementalEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 FunctionalIncrementalEvolution . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Environmental IncrementalEvolution . . . . . . . . . . . . . . . . . . 58 5 ExperimentsandResults 60 5.1 EffectivenessofFitnessFunctions . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 MetricsforPost-evolution Controller Evaluation . . . . . . . . . . . . . . . . . 63 5.3 DirectEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.1 Continuously Emitting, StationaryRadar . . . . . . . . . . . . . . . . 65 5.3.2 Intermittently Emitting, StationaryRadarwithRegularPeriod . . . . . 70 5.3.3 Intermittently Emitting, StationaryRadarwithIrregular Period . . . . . 78 5.3.4 Continuously Emitting, MobileRadar . . . . . . . . . . . . . . . . . . 86 5.3.5 Intermittently Emitting, MobileRadarwithRegularPeriod . . . . . . . 94 5.4 IncrementalEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.1 SeedPopulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.2 Intermittently Emitting, StationaryRadar . . . . . . . . . . . . . . . . 103 5.4.3 Continuously Emitting, MobileRadar . . . . . . . . . . . . . . . . . . 106 5.4.4 Intermittently Emitting, StationaryRadarwithMultipleIncrements . . 108 5.4.5 Intermittently Emitting, MobileRadarwithMultipleIncrements . . . . 111 5.4.6 AnalysisofIncrementally EvolvedControllers . . . . . . . . . . . . . 112 5.5 TransferencetoaWheeledMobileRobot . . . . . . . . . . . . . . . . . . . . 116 vii 6 ConclusionandFutureResearch 125 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2 FutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7 References 129 Appendices 135 A ExperimentalResults 136 A.1 DirectEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A.1.1 Continuously Emitting, StationaryRadar . . . . . . . . . . . . . . . . 136 A.1.2 Intermittently Emitting, StationaryRadarwithRegularPeriod . . . . . 137 A.1.3 Intermittently Emitting, StationaryRadarwithIrregular Period . . . . . 138 A.1.4 Continuously Emitting, MobileRadar . . . . . . . . . . . . . . . . . . 139 A.1.5 Intermittently Emitting, MobileRadarwithRegularPeriod . . . . . . . 140 A.2 IncrementalEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.2.1 SeedPopulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.2.2 Intermittently Emitting, StationaryRadar . . . . . . . . . . . . . . . . 142 A.2.3 Continuously Emitting, MobileRadar . . . . . . . . . . . . . . . . . . 143 A.2.4 Intermittently Emitting, StationaryRadarwithMultipleIncrements . . 144 A.2.5 Intermittently Emitting, MobileRadarwithMultipleIncrements . . . . 145 B SampleResultsfromEvolutionaryRuns 147 B.1 Continuously Emitting,StationaryRadar . . . . . . . . . . . . . . . . . . . . . 147 B.2 Intermittently Emitting,MobileRadar . . . . . . . . . . . . . . . . . . . . . . 156 viii

Description:
Methods of control must be developed before UAVs can become developed using multi-objective genetic programming (GP) for fixed wing UAV
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.