Design of Artificial Seaweeds for Assessment of Hydrodynamic Properties of Seaweed Farms Carina Norvik Marine Technology Submission date: July 2017 Supervisor: Dag Myrhaug, IMT Co-supervisor: Pierre-Yves Henry, IBM Andreas Myskja Lien, SINTEF Ocean Norwegian University of Science and Technology Department of Marine Technology i Preface Thefieldofthebiomechanicsandhydrodynamicsofmacroalgaefirstcametomyattentionin thesummerof2016,whenIworkedforSINTEFOceanundertheMacroSeaproject.Iwastasked with the design of artificial seaweeds for assessment of hydrodynamic properties of seaweed farms. The seaweed in question was Laminaria saccharina, the sugar kelp. Having previously studiedbiotechnology,ataskallowingmetoutilizebothmybackgroundswasveryrewarding. During the summer I realized that there was a lack of knowledge regarding the hydrodynamic propertiesofseaweeds,andinparticularlyforseaweedswithcomplexshapes. Withthelimited timeavailable,itwasthereforenotpossibletomakesimplificationofthecomplexmorphology ofL.saccharinaandstillbeconfidentthatitwouldreproducethehydrodynamicpropertiesof therealseaweed. Thematerialpropertiesandgeometryoftheartificialseaweedweretherefore made to be as similar to the real seaweed properties as possible. The complex shape of the artificial seaweed meant that individual models had to be cast, which is very time consuming andcostly.Itisthereforeofinteresttoreducethecomplexityofthemodels,andtoworktowards nothavingtocastindividualplants,butratherbeabletomassproducethembye.g. stamping outmodelsfrompremadesheetsorcuttingstrips. Theobjectiveofthismasterthesiswastoaddknowledgeregardingthehydrodynamicofsea- weedforfutureassessmentofhydrodynamicpropertiesofseaweedfarmsbycomparingmodels withsimplifiedmorphologyofL.saccharina. Themostsimplifiedmodelisjustaflatbladewith the same outline as the complex models found during the summer 2016. The other model in- cludestheundulateshapeseeninL.saccharina. Trondheim,July9,2017 CarinaNorvik ii Acknowledgment SpecialthanksgotothestaffworkingatthelaboratoriesatTyholtandValgrinda;TorgeirWahl, TrondInnset,OleErikVinje,GustavJacobsen,KristianAgustinJensenandMarcusAlmehagen. Withouttheirhelpandguidance,thedragexperimentscouldnothavebeenperformed.Iwould alsoliketothankmasterstudentsBenedicteEliseFløgum,MarieFløAarsnesandAurélienLiné for helping me during the experiments and looking out for my safety. Additionally, I would like thank Aurélien Liné again for helping me mitigate distortion of the underwater footage. I would also like to thank head of the Marine Technology department Sverre Steen for making timeinhisbusyscheduletomeetmeandanswermyquestionsregardingsimilaritytheoryand scaling.AthanksalsogoesPhD-studentValentinBrunoChabaudfordiscussionregardingpost- processingandfilteringofdisturbanceofdragforcedata. Thesupportgiventomebymyroom- mateAbbaElizabethCoronhasbeenveryimportanttome,andshouldnotgounmentioned. I mustalsothankmymother,JuneBråthen,asshehasalwaysbeenmysupporter.Finally,Iwould liketothankmysupervisors, scientistatSINTEFOceanAndreasMyskjaLien, post-docPierre- YvesHenryandprofessorDagMyrhaug,forgivingmeguidanceandhelpingmethroughoutthe lastyear. List of Symbols δρ Ratioofplantdensityinfullandmodelscale δυ Ratiooffluidkinematicviscosityinfullandmodelscale (cid:178) Strain λ Scaleparameter µ Dynamicviscosity ω Cross-sectionalarea Π Dimensionlessratioi i ψ Vogelexponent ψ ’Bending’-plantVogelexponent b ψ ’Tensile’-plantVogelexponent t ρ Fluiddensity ρ Plantdensity p ρ Plantdensityinfullscale pF ρ Plantdensityinmodelscale pM σ Surfacetension Θ Temperature iii iv υ Kinematicviscosity υ Kinematicviscosityinfullscale F υ Kinematicviscosityinmodelscale M A Characteristicarea AR Aspectratio b Breadth C Arbitrarydimensionlessconstant (cid:48) C Arbitraryconstant C Dragcoefficient D C Liftcoefficient L Ca Cauchynumber E Elasticmodulus E Bendingmodulus b E Elasticmodulusinfullscale F E Elasticmodulusinmodelscale M E Bendingmodulusinfullscale bF E Bendingmodulusinmodelscale bM F Force F Buoyancyforce B F Bendingreactionforce b F Dragforce D v F Gravityforce G F Liftforce L f Naturalfrequency n F Tensilereactionforce T Fr Froudenumber G Modulusofelasticityinshear g Gravitationalacceleration g Gravitationalaccelerationinfullscale F g Gravitationalaccelerationinmodelscale M I Secondmomentofarea I Secondmomentofareainfullscale F I Secondmomentofareainmodelscale M J Flexuralrigidity J Flexuralrigidityinfullscale F J Flexuralrigidityinmodelscale M KC Keulegan-Carpenternumber L Length L Length1 1 L Length2 2 L Lengthinfullscale F L Lengthinmodelscale M vi M Mass M Massinfullscale F M Massinmodelscale M p Pressure q Numericalvalueofquantityi i R Radiusofcurvature r Radius Re Reynoldsnumber St Strouhalnumber T Time t Thickness T Periodofoscillation A T Appliedtorque a T Timeinfullscale F T Timeinmodelscale M U Relativevelocity U Amplitudeofflowvelocityoscillation A U Relativevelocityinfullscale F U Relativevelocityinmodelscale M V Volume V Plantvolume p
Description: