ebook img

Design of Analog Circuits in 28nm CMOS Technology for Physics Applications PDF

103 Pages·2017·6.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of Analog Circuits in 28nm CMOS Technology for Physics Applications

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Fisica “G. Occhialini” AUDENTES FORTUNA IUVAT Tesi di Dottorato in Fisica e Astronomia Curriculum: Tecnologie Fisiche Ciclo XXIX Design of Analog Circuits in 28nm CMOS Technology for Physics Applications Autore: Alessandra Pipino Tutor: Prof. MassimoGervasi Supervisore: Prof. AndreaBaschirotto Coordinatore: prof.ssaMartaCalvi AnnoAccademico2015/2016 To Fabrizio 3 i Abstract The exponential trend of the complementary metal-oxide-semiconductor (CMOS) technologiespredictedbyMoore’slawhasbeensuccessfullydemonstratedoverthe lastthreedecades. AconstantdownscalingofCMOStechnologieshasbeendevel- oped,inordertocomplywithrequirementsonspeed,complexity,circuitdensityand powerconsumptionofadvancedhighperformancedigitalapplications. With the arrival of nanoscale (sub-100nm) CMOS technologies, digital perfor- manceimprovefurther,butmanynewchallengeshavebeenintroducedforanalog designers. Infact,forthedigitalcircuitsCMOSscaling-downleadstoseveralbenefits: speedimprovement,reducedpowerconsumption,highintegrationandcomplexity level. Theanalogcircuits,instead,stronglysuffersfromtheScalTechtrend,because theMOSbehaviordramaticallychangesthroughthedifferenttechnologicalnodes.Es- peciallyfortheultra-scalednodes,secondordereffects,previouslynegligible,become veryimportantandstarttobedominant,affectingthetransistorsperformance. For instance,lowerintrinsicDC-gain,reduceddynamicrange,operatingpointissuesand largerparametervariabilityaresomeoftheproblemsduetothescalingofphysical (length, oxide thickness, etc.) and electrical (supply voltage) parameters. Analog designershavetomanagetheseproblemsatdifferentphasesofthedesign,circuital andlayout,inordertosatisfythemarkethigh-performancerequirements. Despitethat,thedesignofanalogcircuitinsub-nmtechnologiesismandatoryin somecasesorcanbeevenstrategicalinothers. Forexample,inmainlymixed-signal systems,theread-outelectronicrequireshighfrequencyperformance,sothechoice ofdeepsubmicrontechnologyismandatory,alsofortheanalogpart. Othertypes ofapplicationsarethehigh-energyphysicsexperiments,whereread-outcircuitsare exposed to very high radiation levels with consequent performance degradation. Sinceradiationdamageisproportionaltogateoxidevolume,smallerdevicesexhibit lowerradiationdetriment. Ithasbeendemonstratedinfact,that28nmCMOStech- nologydevicesarecapabletosustain1Grad-TIDexposure,notpossiblewithprevious technologies. Inthisthesis,themainchallengesinultra-scaledtechnologiesareanalysedand thenintegratedcircuitsdesignedin28nmCMOStechnologyarepresented. Theaim ofthisworkistoshowthedesignapproachandseveralsolutionstobeappliedin ordertooutermostthelimitsofsiliconscaling,addressthemajorscalingproblems andguaranteetherequiredperformance. Thefirstcircuitdesign,presentedinthesecondchapterandintegratedin28nm CMOStechnology,isaFast-Trackerfront-end(FTfe)forchargedetection. Theread- outsystemhasbeendevelopedstartingfromthemainspecificationsandcircuital solutionsalreadyadoptedformuondetectioninATLASexperiment. Theproposed front-end is able to detect an event and soon after to reset the system in order to maketheread-outfront-endalreadyavailableforthefollowingevents,avoidinglong deadtimes. Moreover,exploitingatwothresholdscrossingsolution,therequired ii informationcanbecollected,simplifyingthearchitecturecomparedtothecurrent. The second circuit design presented and always integrated in 28nm CMOS technology,isaChopperinstrumentationamplifier. Instrumentationamplifiersare thekeybuildingblocksinsensorandmonitoringapplications,wheretheyareused tosenseandamplifyusuallyverysmall(sub-mV)andlowfrequencysignals. For thisreasonitisimportanttoreduceoreliminatetheinputoffsetandflickernoise introducedbytheamplifieritself,superimposingthemainsignaltobedetected. The proposedamplifierusetheclassicalmodulationtechnique,calledchopper,inorder tomeetthelowoffsetandlowflickernoiserequirements. Theuseofanultra-scaled technologyensurestheamplifieremploymentineverymixed-signalsystem,with advantagesalsointermsofchargeinjection. Contents Abstract i Contents iv ListofFigures vii ListofTables viii Introduction 1 1 DeviceTrendsofTechnologicalScaling-Down 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 SupplyVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ThresholdVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 PVTVariations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 MismatchVariations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 IntrinsicGainReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 RestrictiveDesignRules . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 IntrinsicTransitionFrequency . . . . . . . . . . . . . . . . . . . . . . . . 11 1.9 RadiationHardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 FastTrackerFront-EndforATLASMDT 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 ATLASMonitoredDriftTubeChambers . . . . . . . . . . . . . . . . . . 15 2.3 ATLASMDTFront-EndElectronics. . . . . . . . . . . . . . . . . . . . . 18 2.4 FastTrackerfront-endArchitecture . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 ChargeSensitivePreamplifier . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.3 Comparatorsandthresholds . . . . . . . . . . . . . . . . . . . . 30 2.4.4 Logicblock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.5 Outputbuffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 FTfeLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 FTfePerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.1 Signalssettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 iii iv CONTENTS 2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 ChopperInstrumentationAmplifier 47 3.1 OffsetCompensationTechniques . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Auto-zeroTechnique . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.2 ChopperTechnique. . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 ChopperAmplifier: Prototype1. . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 Continuous-timeopampdesign . . . . . . . . . . . . . . . . . . 52 3.2.2 Choppedopampdesign . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 ChopperAmplifier: Prototype2. . . . . . . . . . . . . . . . . . . . . . . 65 3.3.1 Four-phaseGenerator . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 Papers 73 4.1 IEEEICECS2015: Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 IEEEICECS2015: Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Conclusions 81 Bibliography 85 Acknowledgements 89 List of Figures 1.1 Supplyvariationwithtransistorlength. . . . . . . . . . . . . . . . . . . 4 1.2 Commonsourcecircuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thresholdvoltagevariationwithtransistorlength. . . . . . . . . . . . . 6 1.4 V mismatchcomparisonbetween40nmand28nmtechnologies.. . 9 TH 1.5 MOSintrinsicgainvs. transistorlength(Voltagegain@5xL ). . . . . 10 min 1.6 ExampleofNMOSlayoutin28nmtechnology(100fingersof3µm/1µm toobtainatotalNMOSof300µm/1µm). . . . . . . . . . . . . . . . . . 11 1.7 MOStransitionfrequencyvstransistorlength. . . . . . . . . . . . . . . 12 1.8 OxidetrappedchargesinNMOStransistorduetoionizationradiation. 13 1.9 Thesource-drainleakagepahcreatedbybuilt-upchargeinoxide. . . . 13 2.1 TheATLASexperimentattheLargeHadronCollider[1]. . . . . . . . . 16 2.2 TheATLASMuonSpectrometer[1]. . . . . . . . . . . . . . . . . . . . . 17 2.3 Illustrationofatypicalsignalinducedforexamplebythreeionization clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 CrosssectionofanMDTtube[2]. . . . . . . . . . . . . . . . . . . . . . . 18 2.5 ElectricalconnectionstoanMDTdrifttube[2]. . . . . . . . . . . . . . . 19 2.6 SchematicdiagramoftheMDTreadoutelectronics[2]. . . . . . . . . . 19 2.7 BlockdiagramofonecurrentASDchannel[2]. . . . . . . . . . . . . . . 20 2.8 FTfeblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.9 SimplifiedtimingdiagramoftheFTfe. . . . . . . . . . . . . . . . . . . . 22 2.10 CSPblockscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.11 CSPOpampschematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.12 SchematicoftheC capacitorarray. . . . . . . . . . . . . . . . . . . . . 27 F 2.13 Thecapacitorvaluesrelatedtothedigitalwords. . . . . . . . . . . . . . 27 2.14 TheCSPoutputvoltagepeakvaluesrelatedtothedigitalwords. . . . 28 2.15 Front-enddeltaresponseforunipolarandbipolarshaping. . . . . . . . 28 2.16 Activeg -RCschematicusedasshaperstage. . . . . . . . . . . . . . . 29 m 2.17 Shaperopampschematic. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.18 TheShapercapacitorsvaluesrelatedtothedigitalwords. . . . . . . . . 31 2.19 TheActiveg -RCpolefrequencyvaluesrelatedtothedigitalwords. . 31 m 2.20 Resistivedividersschematics. . . . . . . . . . . . . . . . . . . . . . . . . 32 2.21 SchematicofthelogicblockwithResetandT signalsgeneration. 33 IME_DIFF v vi LISTOFFIGURES 2.22 FTfelayoutandroutingtopads. . . . . . . . . . . . . . . . . . . . . . . 33 2.23 FTfelayoutindetail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.24 Chippindiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.25 CSPfrequencyresponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.26 Inputcurrentpulse(blue)andCSPoutputvoltage(red)for5fCinput charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.27 Inputcurrentpulse(blue)andCSPoutputvoltage(red)for100fCinput charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.28 CSPoutputpeakamplitudevs. inputcharge. . . . . . . . . . . . . . . . 38 2.29 Shaperfrequencyresponse. . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.30 Input current pulse (blue) and Shaper output voltage (red) for 5fC inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.31 Inputcurrentpulse(blue)andShaperoutputvoltage(red)for100fC inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.32 CSPandShaperoutputsignalsfordifferentinputcharges(5÷100fC). 40 2.33 Shaperoutputpeakamplitudevs. inputcharge. . . . . . . . . . . . . . 40 2.34 Shaperpeakingtimedelayvs. inputcharge. . . . . . . . . . . . . . . . 41 2.35 CSP,Shaper,ComparatorsandResetsignalsat5fCinputcharge. . . . . 41 2.36 CSP,Shaper,ComparatorsandResetsignalsat100fCinputcharge. . . 42 2.37 Timedifferencepulseat5fCinputcharge. . . . . . . . . . . . . . . . . . 42 2.38 Timedifferencepulseat100fCinputcharge. . . . . . . . . . . . . . . . 43 2.39 Sensitivityvs. inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.40 ENCvs. inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.41 SNRvs. inputcharge.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1 Asimplifiedsensorread-outdiagram. . . . . . . . . . . . . . . . . . . . 47 3.2 Amplifierwithinputoffsetsource. . . . . . . . . . . . . . . . . . . . . . 48 3.3 LowfrequencynoisebehaviourofaCMOSamplifier. . . . . . . . . . . 49 3.4 Auto-zerotechniqueblockdiagram. . . . . . . . . . . . . . . . . . . . . 50 3.5 Simplifiedchoppertechniquediagram. . . . . . . . . . . . . . . . . . . 51 3.6 Frequencyoperationofthechoppertechnique. . . . . . . . . . . . . . . 51 3.7 Polarity-reversedswitchschematic.. . . . . . . . . . . . . . . . . . . . . 51 3.8 Continuous-timeamplifierschematic. . . . . . . . . . . . . . . . . . . . 52 3.9 Firststageinputrail-to-railfoldedcascodeschematic. . . . . . . . . . . 53 3.10 Secondandthirdstagesdifferentialamplifiersschematic. . . . . . . . . 53 3.11 Rail-to-railoperationoftheinputstage. . . . . . . . . . . . . . . . . . . 57 3.12 Transferfunctionofthefirststage. . . . . . . . . . . . . . . . . . . . . . 58 3.13 Transferfunctionofthesecondstage. . . . . . . . . . . . . . . . . . . . 58 3.14 Transferfunctionofthethirdstage. . . . . . . . . . . . . . . . . . . . . . 59 3.15 Choppedamplifierschematic. . . . . . . . . . . . . . . . . . . . . . . . . 59 3.16 Transmissiongatestructureusedforchopperswitches. . . . . . . . . . 60 3.17 Chopperamplifierlayout. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.18 Choppedamplifierpindiagram. . . . . . . . . . . . . . . . . . . . . . . 61 3.19 Choppedamplifierbodediagram. . . . . . . . . . . . . . . . . . . . . . 62

Description:
Table 2.3: CSP dimensioning. A zero with time constant approximately equal to CF gm and two poles with time constants in first approximation depending on CFRF (which determines the dominant pole) and CD gm. (which defines the non-dominant pole) are introduced. The output voltage peak in this
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.