UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Fisica “G. Occhialini” AUDENTES FORTUNA IUVAT Tesi di Dottorato in Fisica e Astronomia Curriculum: Tecnologie Fisiche Ciclo XXIX Design of Analog Circuits in 28nm CMOS Technology for Physics Applications Autore: Alessandra Pipino Tutor: Prof. MassimoGervasi Supervisore: Prof. AndreaBaschirotto Coordinatore: prof.ssaMartaCalvi AnnoAccademico2015/2016 To Fabrizio 3 i Abstract The exponential trend of the complementary metal-oxide-semiconductor (CMOS) technologiespredictedbyMoore’slawhasbeensuccessfullydemonstratedoverthe lastthreedecades. AconstantdownscalingofCMOStechnologieshasbeendevel- oped,inordertocomplywithrequirementsonspeed,complexity,circuitdensityand powerconsumptionofadvancedhighperformancedigitalapplications. With the arrival of nanoscale (sub-100nm) CMOS technologies, digital perfor- manceimprovefurther,butmanynewchallengeshavebeenintroducedforanalog designers. Infact,forthedigitalcircuitsCMOSscaling-downleadstoseveralbenefits: speedimprovement,reducedpowerconsumption,highintegrationandcomplexity level. Theanalogcircuits,instead,stronglysuffersfromtheScalTechtrend,because theMOSbehaviordramaticallychangesthroughthedifferenttechnologicalnodes.Es- peciallyfortheultra-scalednodes,secondordereffects,previouslynegligible,become veryimportantandstarttobedominant,affectingthetransistorsperformance. For instance,lowerintrinsicDC-gain,reduceddynamicrange,operatingpointissuesand largerparametervariabilityaresomeoftheproblemsduetothescalingofphysical (length, oxide thickness, etc.) and electrical (supply voltage) parameters. Analog designershavetomanagetheseproblemsatdifferentphasesofthedesign,circuital andlayout,inordertosatisfythemarkethigh-performancerequirements. Despitethat,thedesignofanalogcircuitinsub-nmtechnologiesismandatoryin somecasesorcanbeevenstrategicalinothers. Forexample,inmainlymixed-signal systems,theread-outelectronicrequireshighfrequencyperformance,sothechoice ofdeepsubmicrontechnologyismandatory,alsofortheanalogpart. Othertypes ofapplicationsarethehigh-energyphysicsexperiments,whereread-outcircuitsare exposed to very high radiation levels with consequent performance degradation. Sinceradiationdamageisproportionaltogateoxidevolume,smallerdevicesexhibit lowerradiationdetriment. Ithasbeendemonstratedinfact,that28nmCMOStech- nologydevicesarecapabletosustain1Grad-TIDexposure,notpossiblewithprevious technologies. Inthisthesis,themainchallengesinultra-scaledtechnologiesareanalysedand thenintegratedcircuitsdesignedin28nmCMOStechnologyarepresented. Theaim ofthisworkistoshowthedesignapproachandseveralsolutionstobeappliedin ordertooutermostthelimitsofsiliconscaling,addressthemajorscalingproblems andguaranteetherequiredperformance. Thefirstcircuitdesign,presentedinthesecondchapterandintegratedin28nm CMOStechnology,isaFast-Trackerfront-end(FTfe)forchargedetection. Theread- outsystemhasbeendevelopedstartingfromthemainspecificationsandcircuital solutionsalreadyadoptedformuondetectioninATLASexperiment. Theproposed front-end is able to detect an event and soon after to reset the system in order to maketheread-outfront-endalreadyavailableforthefollowingevents,avoidinglong deadtimes. Moreover,exploitingatwothresholdscrossingsolution,therequired ii informationcanbecollected,simplifyingthearchitecturecomparedtothecurrent. The second circuit design presented and always integrated in 28nm CMOS technology,isaChopperinstrumentationamplifier. Instrumentationamplifiersare thekeybuildingblocksinsensorandmonitoringapplications,wheretheyareused tosenseandamplifyusuallyverysmall(sub-mV)andlowfrequencysignals. For thisreasonitisimportanttoreduceoreliminatetheinputoffsetandflickernoise introducedbytheamplifieritself,superimposingthemainsignaltobedetected. The proposedamplifierusetheclassicalmodulationtechnique,calledchopper,inorder tomeetthelowoffsetandlowflickernoiserequirements. Theuseofanultra-scaled technologyensurestheamplifieremploymentineverymixed-signalsystem,with advantagesalsointermsofchargeinjection. Contents Abstract i Contents iv ListofFigures vii ListofTables viii Introduction 1 1 DeviceTrendsofTechnologicalScaling-Down 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 SupplyVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ThresholdVoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 PVTVariations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 MismatchVariations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 IntrinsicGainReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 RestrictiveDesignRules . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 IntrinsicTransitionFrequency . . . . . . . . . . . . . . . . . . . . . . . . 11 1.9 RadiationHardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 FastTrackerFront-EndforATLASMDT 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 ATLASMonitoredDriftTubeChambers . . . . . . . . . . . . . . . . . . 15 2.3 ATLASMDTFront-EndElectronics. . . . . . . . . . . . . . . . . . . . . 18 2.4 FastTrackerfront-endArchitecture . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 ChargeSensitivePreamplifier . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.3 Comparatorsandthresholds . . . . . . . . . . . . . . . . . . . . 30 2.4.4 Logicblock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.5 Outputbuffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 FTfeLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 FTfePerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.1 Signalssettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 iii iv CONTENTS 2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 ChopperInstrumentationAmplifier 47 3.1 OffsetCompensationTechniques . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Auto-zeroTechnique . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.2 ChopperTechnique. . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 ChopperAmplifier: Prototype1. . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 Continuous-timeopampdesign . . . . . . . . . . . . . . . . . . 52 3.2.2 Choppedopampdesign . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 ChopperAmplifier: Prototype2. . . . . . . . . . . . . . . . . . . . . . . 65 3.3.1 Four-phaseGenerator . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 Papers 73 4.1 IEEEICECS2015: Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 IEEEICECS2015: Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Conclusions 81 Bibliography 85 Acknowledgements 89 List of Figures 1.1 Supplyvariationwithtransistorlength. . . . . . . . . . . . . . . . . . . 4 1.2 Commonsourcecircuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thresholdvoltagevariationwithtransistorlength. . . . . . . . . . . . . 6 1.4 V mismatchcomparisonbetween40nmand28nmtechnologies.. . 9 TH 1.5 MOSintrinsicgainvs. transistorlength(Voltagegain@5xL ). . . . . 10 min 1.6 ExampleofNMOSlayoutin28nmtechnology(100fingersof3µm/1µm toobtainatotalNMOSof300µm/1µm). . . . . . . . . . . . . . . . . . 11 1.7 MOStransitionfrequencyvstransistorlength. . . . . . . . . . . . . . . 12 1.8 OxidetrappedchargesinNMOStransistorduetoionizationradiation. 13 1.9 Thesource-drainleakagepahcreatedbybuilt-upchargeinoxide. . . . 13 2.1 TheATLASexperimentattheLargeHadronCollider[1]. . . . . . . . . 16 2.2 TheATLASMuonSpectrometer[1]. . . . . . . . . . . . . . . . . . . . . 17 2.3 Illustrationofatypicalsignalinducedforexamplebythreeionization clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 CrosssectionofanMDTtube[2]. . . . . . . . . . . . . . . . . . . . . . . 18 2.5 ElectricalconnectionstoanMDTdrifttube[2]. . . . . . . . . . . . . . . 19 2.6 SchematicdiagramoftheMDTreadoutelectronics[2]. . . . . . . . . . 19 2.7 BlockdiagramofonecurrentASDchannel[2]. . . . . . . . . . . . . . . 20 2.8 FTfeblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.9 SimplifiedtimingdiagramoftheFTfe. . . . . . . . . . . . . . . . . . . . 22 2.10 CSPblockscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.11 CSPOpampschematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.12 SchematicoftheC capacitorarray. . . . . . . . . . . . . . . . . . . . . 27 F 2.13 Thecapacitorvaluesrelatedtothedigitalwords. . . . . . . . . . . . . . 27 2.14 TheCSPoutputvoltagepeakvaluesrelatedtothedigitalwords. . . . 28 2.15 Front-enddeltaresponseforunipolarandbipolarshaping. . . . . . . . 28 2.16 Activeg -RCschematicusedasshaperstage. . . . . . . . . . . . . . . 29 m 2.17 Shaperopampschematic. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.18 TheShapercapacitorsvaluesrelatedtothedigitalwords. . . . . . . . . 31 2.19 TheActiveg -RCpolefrequencyvaluesrelatedtothedigitalwords. . 31 m 2.20 Resistivedividersschematics. . . . . . . . . . . . . . . . . . . . . . . . . 32 2.21 SchematicofthelogicblockwithResetandT signalsgeneration. 33 IME_DIFF v vi LISTOFFIGURES 2.22 FTfelayoutandroutingtopads. . . . . . . . . . . . . . . . . . . . . . . 33 2.23 FTfelayoutindetail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.24 Chippindiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.25 CSPfrequencyresponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.26 Inputcurrentpulse(blue)andCSPoutputvoltage(red)for5fCinput charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.27 Inputcurrentpulse(blue)andCSPoutputvoltage(red)for100fCinput charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.28 CSPoutputpeakamplitudevs. inputcharge. . . . . . . . . . . . . . . . 38 2.29 Shaperfrequencyresponse. . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.30 Input current pulse (blue) and Shaper output voltage (red) for 5fC inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.31 Inputcurrentpulse(blue)andShaperoutputvoltage(red)for100fC inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.32 CSPandShaperoutputsignalsfordifferentinputcharges(5÷100fC). 40 2.33 Shaperoutputpeakamplitudevs. inputcharge. . . . . . . . . . . . . . 40 2.34 Shaperpeakingtimedelayvs. inputcharge. . . . . . . . . . . . . . . . 41 2.35 CSP,Shaper,ComparatorsandResetsignalsat5fCinputcharge. . . . . 41 2.36 CSP,Shaper,ComparatorsandResetsignalsat100fCinputcharge. . . 42 2.37 Timedifferencepulseat5fCinputcharge. . . . . . . . . . . . . . . . . . 42 2.38 Timedifferencepulseat100fCinputcharge. . . . . . . . . . . . . . . . 43 2.39 Sensitivityvs. inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.40 ENCvs. inputcharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.41 SNRvs. inputcharge.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1 Asimplifiedsensorread-outdiagram. . . . . . . . . . . . . . . . . . . . 47 3.2 Amplifierwithinputoffsetsource. . . . . . . . . . . . . . . . . . . . . . 48 3.3 LowfrequencynoisebehaviourofaCMOSamplifier. . . . . . . . . . . 49 3.4 Auto-zerotechniqueblockdiagram. . . . . . . . . . . . . . . . . . . . . 50 3.5 Simplifiedchoppertechniquediagram. . . . . . . . . . . . . . . . . . . 51 3.6 Frequencyoperationofthechoppertechnique. . . . . . . . . . . . . . . 51 3.7 Polarity-reversedswitchschematic.. . . . . . . . . . . . . . . . . . . . . 51 3.8 Continuous-timeamplifierschematic. . . . . . . . . . . . . . . . . . . . 52 3.9 Firststageinputrail-to-railfoldedcascodeschematic. . . . . . . . . . . 53 3.10 Secondandthirdstagesdifferentialamplifiersschematic. . . . . . . . . 53 3.11 Rail-to-railoperationoftheinputstage. . . . . . . . . . . . . . . . . . . 57 3.12 Transferfunctionofthefirststage. . . . . . . . . . . . . . . . . . . . . . 58 3.13 Transferfunctionofthesecondstage. . . . . . . . . . . . . . . . . . . . 58 3.14 Transferfunctionofthethirdstage. . . . . . . . . . . . . . . . . . . . . . 59 3.15 Choppedamplifierschematic. . . . . . . . . . . . . . . . . . . . . . . . . 59 3.16 Transmissiongatestructureusedforchopperswitches. . . . . . . . . . 60 3.17 Chopperamplifierlayout. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.18 Choppedamplifierpindiagram. . . . . . . . . . . . . . . . . . . . . . . 61 3.19 Choppedamplifierbodediagram. . . . . . . . . . . . . . . . . . . . . . 62
Description: