energies Article Design of an Energy Efficient Future Base Station with Large-Scale Antenna System ByungMooLee1andYoungokKim2,* 1 SchoolofIntelligentMechatronicEngineering,SejongUniversity,Seoul05006,Korea;[email protected] 2 DepartmentofElectronicEngineering,KwangwoonUniversity,Seoul01897,Korea * Correspondence:[email protected];Tel.:+82-2-940-5404 AcademicEditor:K.T.Chau Received:6October2016;Accepted:12December2016;Published:17December2016 Abstract: Duetothecontinuousincreaseindatademandedbyend-users,anenergy-efficientbase station(BS)isavitaltopicofinterestthatwouldnotonlyresultinasubstantialeconomicimpacton serviceproviders,butwouldalsoreducethecarbonfootprintofoperatinganetwork. Inthisregard, weproposethestructureandsystematicoperationofaBSwithalarge-scale(LS)antennasystem thatcanincreasetheenergyefficiency(EE)ofcellularsystems. TheproposedBSstructureincludes variouspower-relatedunits,suchasacentralmanagementapparatus,powercontroller,EEcalculator, radiosite-dependentparameterspace(RSD-PS)anddeterminer. Withtheinformationprovidedfrom eachunit,thedecisionunitdetermineshowtoadjusteachcomponentoftheBSinordertomaximize theEE.ExtensivesimulationsshowthattheproposedBSimprovestheEEperformancebyabout 83.05%relativetothereferenceBS. Keywords: energyefficiency(EE);large-scale(LS)antennasystem;basestation(BS) 1. Introduction Communicationtechnologiesthatcanincreasechannelcapacity,aswellasenergyefficiency(EE) wouldbeakeyfactorforfuturewirelesssystems. AnincreaseinEEisveryimportantbecausethe continuousincreaseindatademandedbyend-usersresultsinahighcostbothfromanenvironmental andtechnologicalperspective. Itiswellknownthatbasestations(BS)consumearound60%–80%of powerconsumptionincellularnetworks[1–3]. Thus,reducingthepowerconsumptionofaBSisquite importanttoreducetheoperationalcosts,aswellasthecarbonfootprint. Forthisreason,researchers haveactivelyinvestigatedthisproblem[1,2,4–15].MostworkhasconcentratedonimplementingtheBS on/offtechnique,whichmeansthattheBSisturnedoffwhenthereisnonearbytraffic[1,2,9,10,12,14], aswellasonconductingtheoreticalhigh-levelanalysesandoptimizationstoreducetheBSpower consumption[7,8,11,13]. However,theBSon/offtechniqueisonlybeneficialforanemptynetwork, whichrarelyhappensinactualnetworks. Furthermore, therecouldbemanyrealimplementation obstaclesfortheoretical,high-leveloptimizationtechniques. Inthispaper,ratherthanpresentingaBSon/offmechanismorsolvingthetheoreticaloptimization problem,wefocusonmorepracticalimplementationaspectstoimprovetheEEofcellularsystems. Weproposeafutureenergy-efficientBSstructureanditsrelatedoperationusingarealisticpowermodel forrealimplementation. Duetothelimitedspectrumresources,itisalsoinevitableforthenumber oftransmitter(TX)antennasintheBStocontinuouslyincrease[11]. Thus,weassumethatafuture BShasalargenumberofTXantennas,thatisalarge-scale(LS)antennasystemorLSmultiple-input multiple-output(MIMO)[16–18]. Actually,inthecaseofaBSwithLS-MIMO,theresourceallocation problemsareeasiertosolveifthechannelpropertiesprovidedbyLS-MIMOsystemsareexploited smartly[19,20]. Energies2016,9,1083;doi:10.3390/en9121083 www.mdpi.com/journal/energies Energies2016,9,1083 2of17 The proposed energy-efficient BS consists of five main components: a central management apparatus, power controller, EE calculator, radio site-dependent parameter space (RSD-PS) and determiner. Thecentralmanagementapparatusmanagestheappropriatepowerconsumptionofeach BSlocatedinapre-definedrange. Thepowercontrollercontrolsthepowercontrolofeachrelated device. TheEEcalculator,whichoperatesbasedonthepowerconsumptionanddatarateestimator, providesthepowercontrolmetric. TheRSD-PSaccumulatesinformationandsupportstheincrease in EE according to past operation information. The determiner for each decision unit decides the operationpointsofthepower-relateddevicesforapre-definedtimeduration. Eachcomponentcan alsobedividedintoseveralsub-components. Withthesecomponents,weshowhowtosystematically increasetheEEoftheproposedfutureBS.TheBScouldalsobeusedasahubforaLSsensorsystem forasmartcityorsuch. Inwhatfollows,weintroducethesystemmodelinSection2.InSection3,wepresenttheproposed BSstructureandthemethodusedtosystematicallyincreasetheEEoftheBS.InSection4,wepresent numericalresultsbasedonareferencefutureBSmodel,showingtheeffectivenessoftheproposed structureandmethod. Finally,theconclusionsaredrawninSection5. 2. SystemModel ThissectiondescribesthepowerconsumptionmodelandtheLS-MIMOmodel,whicharethe coremodelsusedintheperformanceanalysisoftheproposedBS. 2.1. PowerConsumptionModel Modeling the BS power consumption is an important problem to measure the EE. A typical BS is composed of many power consumption components, including a supply, cooling, baseband (BB),radiofrequency(RF),poweramplifier(PA),lossfactorsforDC-DC,feedingcable,andsoon[5]. Somestudieshaveroughlydividedthisintostaticpoweranddynamicpower[21]. Itisdifficultto estimatehowtechnologywouldevolve,anddesigninganexactmodelisbeyondthescopeofthis paper. However,arealisticmodelcouldbehelpfulinanalyzingtheproposedmethods. Inthispaper, wedefinethetotalpowerP foratractablepowerconsumptionmodelthatincludessomeofthe total importantBSpowerconsumptioncomponents. WedefineP as: total P = P +P (1) total PA Cir whereP isthePApowerconsumptionandP isthecircuitpowerconsumptionexceptforthePA PA Cir powerconsumption,includingtheBBpowerconsumption,P ,andRFfront-endpowerconsumption, BB P . Inthismodel,sincemaximumradiationpowerislimitedregardlessofthenumberofTXantennas RF N,weshouldkeepinmindthat P canbereducedwiththehelpofabeamformingeffect,while t PA P increases as N increases. We describe below each of the power consumption components in Cir t furtherdetail. 2.1.1. PowerAmplifier ThePAisoneofthemostpower-hungrydevicesinthecurrentBS.Currentcellularstandards, i.e., 3GPP-LTE-A,IEEE802.16(e/m), useorthogonalfrequencydivisionmultiplexing(OFDM)for downlinktransmission. TheOFDMhasaveryhighpeak-to-averagepowerratio(PAPR),andthis significantlyreducesthePAefficiency[22]. Ifweassumea10-MHzBWwitha1024IFFTsize,withless thana1%distortionprobabilityorcomplementarycumulativedistributionfunction(CCDF),PAPRis knowntobehigherthan11dB.Basedonthis,wechooseaninput-back-off(IBO)=11dB[22]. Wealso simply assume the use of the maximum efficiency of the Class-B amplifier (78.5%). Then, the PA efficiency,η(%),canberepresentedas[23,24]: π η(%) = (2) 4p Energies2016,9,1083 3of17 √ wherethe pisthe IBO. Dependingontheparametersthatwementioned,thePAefficiencycanbe η =22%. However,variousadvancedtechnologiescanbeappliedtoobtainanincreasebymorethan that,andthus,wereasonablychooseη =25%. Thesimplerelationbetweenthetransmissionpower P andP canberepresentedas: tx PA P = ηP (3) tx PA It is possible for the TX power to be reduced if we increase the N, due to the channel gain t increment. Note that we assume the system does not adopt any predistortion and/or PAPR reductiontechniques. 2.1.2. CircuitsPowerConsumption Thecircuitpowerconsumptioncanalsobedividedasfollows: P = P +N P (4) Cir BB t RF Eachparameterisafunctionofbandwidth,B,andweuseB =10MHz. P canalsobedividedas: RF P = P +P +P (5) RF DAC m filt where P is the digital-to-analog converter (DAC) power consumption, P is the mixer power DAC m consumptionandP istheTXfilterpowerconsumption[25]. filt In this paper, we assume that we can adjust the RF power consumption. It would then be obvious for fine DAC/filtering to be difficult if we reduce the RF power consumption. Based on this assumption, we propose the RF power consumption model shown in Figure 1. This model indicatesthattheperformanceoftheRFfront-endcircuitsdependsonthepowerconsumptionof those. Forexample,assumingwecanadjusttheRFpowerconsumptionfrom0.1to1W,whenthe RFpowerconsumption=0.1W,thenoisefromcoarseprocessingistoohigh,andSNR ,thesignal RF toRFnoiseratioduetocoarseprocessing,is0dB,i.e.,thenoiselevelandsignallevelarethesame. Meanwhile, SNR is20dB,whenRFpowerconsumption=0.7W,andarelativeleveloffineRF RF processingispossible. RegardingtheBBpowerconsumption, P ,wealreadymentionedthatwe BB assumeafutureBStohaveLS-MIMOcapability. Withthatinmind,H.YangandT.Marzettapresented anLS-MIMOBBcomputationmodel,χ(Gflops),whichisdenotedasfollows[26–28]: (T B) (T B) χ(Gflop) = N × u ×log (T B)+N × d ×τ ×log (τ ) t T 2 u t T r 2 r s sl (T B) (T B) +N ×K×(T−τ )× d +M×K2× d (6) t r T T sl sl whereτ isthelengthinthesamplesoftheuplinkpilotsequences,whichareusedtoacquirechannel r stateinformation(CSI),andadescriptionofeachparameterisshowninTable1.Wetooktheparameters from[29]andfromacurrentLTEsystem[30]. ThefirstpartofEquation(6)istooperatetheFFT/IFFT operation; the second part is to implement precoding/decoding; the third part is to correlate the pilot signals with pilot sequences; and the last part is to have the additional pseudo inverse for zero-forcing(ZF). TherelationshipbetweenP andχ(Gflops)canberepresentedas: BB χ(Gflops) P = (7) BB (cid:36)(Gflops/W) where(cid:36)isthevery-large-scaleintegration(VLSI)processingefficiency. WeassumeT = T ,ashortguardinterval(GI)andfastpilotcorrelation. Threepilotsymbols g d are dedicated to one slot for the channel estimation [29]. Note that this model does not include a Energies2016,9,1083 4of17 channelcodingpart,andthelastpartofEquation(6)becomeszero,whenweusematchedfiltering (MF)precoding. 1 40 el v e L se B) ed Noi0.5 20 R (dRF z N ali S m or N 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 RF Power Consumption per N t Figure1.Radiofrequency(RF)powerconsumptionmodel. Table1.Baseband(BB)powerconsumptionparameters.GI:guardinterval. Parameters Description PowerConsumption B Bandwidth 10MHz T Slotlength 0.5ms sl Tp Pilotlengthinoneslot 0.214ms Ts Symbolduration 71.4µs Tg GI 4.7µs Tu SymbolwithoutGI 66.7µs T Delayspread 4.7µs d 2.2. Large-ScaleMultiple-InputMultiple-OutputModel In this subsection, we summarize the LS-MIMO model since the LS-MIMO would be a very importantcharacteristicofafutureBS.AnLS-MIMOisanantennasystemwithalargenumberof TXantennas. ItwasfirstintroducedbyMarzetta[29],andafterthat,muchresearchhasbeencarried out [19,20,28]. Due to its desirable improvements in throughput (TP) and EE, it has already been discussed by the important standardization body, i.e., the the 3rd Generation Partnership Project (3GPP), as one of the core technologies for 5 G. In 3GPP, the LS-MIMO is usually referred to as full-dimension MIMO (FD-MIMO). Therefore, it is unquestionable for the LS-MIMO to be a key technologyforfutureBS. TheantennastructureofaBSequippedwithLS-MIMOcouldbeofvariousshapesdependingon theimplementation. Oneexampleofahigh-levelconceptualfigureofanLS-MIMOsystemisshown inFigure2. EachantennahasitsownRFcomponent,asshowninFigure3,andthestructureinFigures2and3 canbeusedtogenerateaverysharpbeam.Thedesignercanchoosetoputmoreantennasinthevertical directionorhorizontaldirection. Ifweputmoreantennasintheverticaldirection,theresolutionofthe verticalbeamseparationisverygood,andthus,userswhoarelocatedoneachfloorofabuildingcan benefit. Ifweputmoreantennasinthehorizontaldirection,itcanprovideahorizontalseparation effect,andthus,userslocatedindifferenthorizontalanglescanbenefit. Energies2016,9,1083 5of17 Figure2.Anexampleofahighlevelconceptualfigureofalarge-scalemultiple-inputmultiple-output (LS-MIMO)system. Antenna RF component Figure3.AnimplementationexampleoftheantennaandRFinanLS-MIMOsystem. However,therearesomeobstaclestorealizeLS-MIMO.First,theantennaspacingshouldbeat leastλ/2,whichmeansthatitrequiresaquitelargespaceforinstallationandusewithcellularbands. Eventhoughhigherfrequencybandscouldbeagoodoption,thepoorchannelconditionshouldbe overcame. Second,itrequiresmanyRFchains,whichareveryexpensive. Goodantennaselection algorithmscanbeveryhelpfultoreducethenumberofRFchains[16]. Thus,implementingLS-MIMO withalowcomplexityandcostisabigresearchtopic. TointroducetheoperationoftheLS-MIMOsystem,letusthinkofasingleisolatedcellwithone BS and Kuser terminals. The BS has N TX antennas, and each user terminal has one RX antenna. t Thereceivedsignalvectorattheterminalscanberepresentedasfollows: √ y = P Hs+n (8) tx where y is the K×1 received signal vector for K user terminals, P is the total TX power for the tx downlink,HistheK×N channelmatrixbetweenN BSantennasandKterminals,sistheN ×1TX t t t Energies2016,9,1083 6of17 signalvectorandnistheK×1noise(AWGN)vectorattheterminals. Theelementofthechannel matrixbetweenthem-thBSantennaandthek-thterminal,h canbedecomposedas: km h = g ·χ (9) km km k whereg isthezero-meanandunitvariancei.i.d. Rayleighfadingchannelcoefficientandχ isthe km k path loss component. We only consider the narrowband signal, since the OFDM can successfully changethewidebandsignalintoanarrowbandsignal. TheTXisassumedtohaveperfectCSI.Toshow thechannelhardeningeffectwithLS-MIMO,itisusuallyrequiredforN >10K,whichmeansthat t thenumberofTXantennasintheBSshouldbemuchmorethanthenumberofusers[16]. 2.2.1. PrecodingMethod PrecodingisanMIMOTXsignalprocessingmethodthatreducestheinterferenceamongtheusers. Since N wouldbeverylargeinafutureBSequippedwithLS-MIMO,linearprecodingistractable t forrealsystems. ZFandregularizedzero-forcing(RZF)arewellknownaseffectivelinearprecoding techniques[31,32]. Furthermore, T.Marzettasuggestedanevensimplerprecodingtechnique, MF precoding[29]. MFprecodingisonlyeffectiveforLS-MIMO,whileZF/RZFprecodingisalsouseful fortraditionalMIMO.TherelationbetweentheTXsignalvector,s,andthemassagesignalvector,x,is expressedasfollows: s = ζFx (10) whereζ istheTXpowernormalizationfactorandFistheN ×Kprecodingmatrix. t Then,(8)canberewrittenas: √ y = P HζFx+n (11) tx AllthreeprecodingmatricesarepresentedinTable2. Table 2. The precoding matrices of matched filtering (MF), zero-forcing (ZF) and regularized zero-forcing(RZF). MF ZF RZF F N−1HH HH(HHH)−1 HH(HHH+νI )−1 t K Inthetable,superscript“H(cid:48)(cid:48) denotestheconjugatetranspose,(·)−1istheinverseoperatorandI K istheK×K identitymatrix. RZFprecodingcanbethesameasZFand/orminimummeansquare error(MMSE)precodingifwechooseν =0and/orν = KN0 . NtPtx As N grows without bounds, the autocorrelation of the channel vectors can be simplified as t follows[29]: HHH → NI (12) t K Simply,wecall(12)anLS-MIMOchannelcharacteristic. Ifweapply(12)totheMMSEandtheZF, theMMSEandtheZFcanbesimplifiedas[16]: KN HH(HHH+ 0 I )−1 ≈ HH(HHH)−1 → N−1HH (13) N P K t t tx ThismeansthatwithanexcessivenumberofTXantennaswithalimitednumberofRXantennas, allrepresentativelinearprecodingtechniquesshowsimilarperformance. ZFiswellknowntobenear optimalinaregionwithveryhighSNR.Ifweconsiderthecomplexityofthenonlinearprecoding techniquesandhigheffectivesignal-to-interferenceplusnoiseratio(SINR)oftheLS-MIMOsystems, linearprecodingwouldshowsufficientperformancewithlowcomplexity. Energies2016,9,1083 7of17 Now,letusdeterminethenormalizationfactorζ. Thenormalizationfactorshouldbedetermined suchthatthetotaltransmitpowerbecomesP . Thismeans: tx (cid:107)ζFx(cid:107)2 =1 (14) F where(cid:107)(cid:107) standsfortheFrobeniusnorm. F SinceFandxareindependent,andwealreadychoosetheaveragepowerofthesignalconstellation inunity,ζ canberepresentedas[16]: (cid:114) N ζ ≈ t (15) K TheZFandMMSEprecodingshowaverysimilarperformance,evenwitharelativelypractical numberofLSTXantennas(i.e., N ≈ 10K).Forthisreason,weonlyuseMFandZFasprecoding t techniquesinthispaper. 2.2.2. ThroughputandEnergyEfficiency TheTPandEEaretwoimportantmetricsthatcanbeusedtoconductaperformanceanalysis. Basedontheanalysisfromprevioussubsections,thesymbolreceivedbythek-thuserisgivenas follows[29]: (cid:114) (cid:114) y = PtxNth f x +n + PtxNt ∑h f x (16) k K k k k k K k l l l(cid:54)=k whereh isthe1×N channelvectorforthei-thuserandf istheN ×1precodingvectorforthei-th i t i t user. Thelasttermof(16)isinter-userinterference(IUI).Then,theeffectiveSINRforuserk,γ ,canbe k representedasfollows[4]: PtxNt|h f |2 γ = K k k (17) k PtxNt|∑ h f |2+N B K l(cid:54)=k k l 0 whereN BisthenoisepowerinthegivenbandwidthB. 0 IfweincreasethenumberofTXantennasorreducethenumberofusers,itisobviousthatwe cangetbetterchannelgainand/oraneffectiveSINR.However,weshouldkeepinmindthat,inthe practicalnumberofTXantennas,MFprecodingdoesnotremovetheIUIcompletely. Basedon(17),wecandefineTPasfollows: (cid:34) (cid:32) (cid:33)(cid:35) TP = αB× ∑K E log 1+ PtxKNt|hkfk|2 (18) 2 PtxNt|∑ h f |2+N B k=1 K l(cid:54)=k k l 0 whereα = (cid:16)Tsl−Tp(cid:17)×(cid:16)Tu(cid:17)isthescalingfactorforthepilotoverheadandguardinterval[29]. Tsl Ts EEcanbedefinedas: EE = TP/P (19) total Wewilluse(19)asthemetricfortheperformanceanalysisinthefollowingsections. 3. Energy-EfficientBSStructureandRelatedOperation ToachieveahighEEfortheBS,itisessentialtocontrolsomeoftheimportantTXparameters there. WecandividethemainBSpowerconsumptioncomponentsinPA,RF(exceptPA)andBBand makeouteachcomponenttobeapower-adjustingcomponent. ThePAisthemostpower-hungry device in the current BS, but this could change depending on the situation of a future BS. Since a futureBScouldhavealargeamountofRFchainsconnectedtoeachantenna,itisalsopossiblefor theRFchaintoconsumemorepowerthanthePA.IncontrasttothePA,whichcanreducethepower consumptionbyusingabeamformingeffect,therearenodistinctsourcestoreducetheRFchainpower consumption. TheBBmayconsumelesspowerwhencomparedtothePAandRF.However,itisbetter Energies2016,9,1083 8of17 toincludeitasoneoftheadjustableparameterstoenhancetheEE.Thethreemaincomponentscanbe controlledasshowninFigure4. User 1 RF PA RF PA User 2 Baseband User 3 RF PA User K Power Control Unit Figure4.Thehighlevelconceptualfigureoftheenergy-efficientfuturebasestation(BS). Anenergy-efficientfutureBSisquiteobviouslyafeedbacksystem. Itmainlyreceivesinformation of the power consumption from the BS TX unit and information regarding the data rate from the userterminals. Asshowninthefigure,thepowercontrolunitcontrolseachcomponentbasedonthe measuredEEparameters. TheproposedBSmeasuresthedatarate,andifitisnotinasatisfactory range,itprovidesaninputtopowertheadjustableunittoincreasethepowerconsumptionofsomeof thecomponents. Then,basedonthepoweradjustmentofeachcomponent,thedatarateestimation unitmeasuresthedatarateagainandchecksifitisinthesatisfactoryrange,andsoon. Ifthepower consumptionistoohighoverapre-definedthreshold, thenthedataratecouldalsobereducedto obtainsatisfactoryEEperformance. Basedonthehigh-levelconceptofafutureBS,thedetailedblockdiagramoftheproposedBS structureisdescribedinFigure5. Central BS Management Unit Radio Site Dependent User Parameter Space (RSD-PS) Terminal EE RSD-PS Data rate RSD-PS BS TX/RX Power Consumption RSD-PS Power control unit Power consumption estimation unit Data rate estimation unit Decision Unit Energy Efficiency (EE) (bps/W) Computation unit Figure5.BlockdiagramoftheproposedBSstructure. Energies2016,9,1083 9of17 First,letusobservetwounits,thepowerconsumptionestimationunitandthedatarateestimation unit, which are tightly connected with the fundamental TX/RXunit of the BS. The BS provides information for the units based on feedback from self-measurement and user terminals, then EE (bps/W)canbederivedbasedontheresults. Allinformation(powerconsumption,datarate,EE)is giventothedecisionunit,whichcanthendecideeachcomponent’spowerconsumption,i.e.,PA,RF andBB.ThedecisionunitprovidesfeedbackonthedecisiontothefundamentalTX/RXunitoftheBS. Then,theBSperformspowercontrolbasedonthefeedbackinformation. Therearethreemorecomponentsinthisstructure,asshowninthefigure. Thefirstoneisthe centralBSmanagementunit. Thisapparatuscanbeusedformulti-BSpowercontrol/optimization. The central BS management unit monitors all nearby BSs and adaptively allocates the allowable maximumpowerforeachBS.Then,eachBSonlyallocatespowerforeachcomponentbasedonthe totalallowablepowerconsumptioncriterion.Thesecondoneistheuserterminal.Inparticular,thedata ratecanbeeasilymeasuredwithauserterminal. Furthermore,itisbeneficialfortheuserterminal togivefeedbackregardingthecurrentchannelcondition. ThelastoneistheRSD-SP.TheRSD-SP istheapparatusthataccumulatesthehistoryofoptimumBSoperation,andsupportsthedecision unittodeterminetheoperatingpointsofBSbasedontheaccumulatedhistorywhenevernecessary. For example, RSD-PSmonitors theBS operation, suchas thelevel ofradiation power, the levelof theresolutionoftheRFchain,thelevelofBBprocessingbasedonoperatingparameters,suchasthe numberofTXantennas,thenumberofusers,systembandwidth,thechannelcondition,andsoon. Afterhavingaccumulatedenough,theRSD-PScanassisttomaintainthehighEEBSbyprovidingthe historyofoptimumEEoperationpointsbasedonoperationparameters. TheBScangetevenhigher energy savings by skipping the real calculation of operation points for some interval. The system parametersfortheoperationofanenergy-efficientBSissummarizedinTable3. Table3.Thesystemparametersfortheoperationofenergy-efficientBS.PA:poweramplifier. OperationMetrics Parameters ChannelInformation(fromTerminal) SystemBandwidth(fromBS) DataRate Radiationpower(fromBS) NumberofOperatingTXantenna(fromBS) NumberofCo-ScheduledUserTerminals(fromBS) PApowerconsumption(fromBS) PowerConsumption RFpowerconsumption(fromBS) BBpowerconsumption(fromBS) Note that the performance of the proposed power control scheme critically depends on the thresholdofthedatarateandpowerconsumption. Thethresholdisabandwidth-limitedregimeanda power-limitedregimeinShannon’schannelcapacity. Increasingpowerguaranteesincreasingthedata ratesignificantlyuptothepower-limitedregimeinchannelcapacity. However,ifthesystemgoesto thebandwidth-limitedregimeinchannelcapacity,thedatarateisnolongerincreasedsignificantly, evenifweincreaseitwithlargeamountsofthepower. TherearevariouswaystoadjusttheTPordatarateandEEusingthepowercontrol,asshownin Table4. Thereisatrade-offbetweentheEEandTP.However,ifweappropriatelyallocatepowerfor eachcomponent,itcouldbepossibletoincreasebothEEandTP,suchaswhenusingbigdata/machine learning-basedRSD-PS.ToshowthesystematicoperationoftheproposedBS,weprovideoneexample usingaflowchart,asshowninFigure6. AftergatheringimportantparametersfromtheBSTXpartsanduserterminals,theproposedBS canderivetheEEbasedonthepowerconsumptionestimationanddatarateestimation. Wesetthe numberofiterationsfortheparameteradjustmentbetweenthedatarateandthepowerconsumption toobtaintheexpectedperformance,aswellastoreducethecomplexity. Ifthepre-definednumber Energies2016,9,1083 10of17 of iterations is smaller than the current number of iterations, then the iteration stops, and the BS findstheoperationpointbasedontheinformationofthecurrentparametersandtheRSD-PS.Ifnot, theproposedBSestimateswhetherthecurrentpowerconsumptionislargerthanthethresholdfor thepowerconsumption. Ifthecurrentpowerconsumptionislargerthanthethreshold,theproposed BSreducesthepowerconsumptioninappropriatewaysbyusingtheRSD-PS.Then,theproposed BScheckstheTP.IftheTPiswithinthesatisfactoryrange,withthehelpofRSD-PS,theproposedBS determinestheoperatingpoint. IftheTPisnotinasatisfactoryrange,theproposedBSgoestothe loopandincreasesthepowerconsumptiontoobtainabetterTP,andsoon. Table4.ExamplesofBSoperation.TP:throughput;EE:energyefficiency. (1) MethodtoincreaseTPwhiledecreasingEE (2) MethodtoincreaseEEwhiledecreasingTP (3) MethodtomaintainEEwhileincreasingTP (4) MethodtomaintainTPwhiledecreasingEE (5) MethodtoincreasebothTPandEEandincreaseTPfurther (6) MethodtodecreasebothTPandEEanddecreaseEEfurther Start Getting BS operation parameters Power consumption estimation Data rate estimation Current EE (bps/W) computation Yes iteration iteration ? th No No iteration iteration 1 power power th ? Yes Increase power consumption Reduce power consumption Refer RSD-PS Refer RSD-PS No bps bps ? th Yes Refer RSD-PS Operation point Decision Control Power of the component End Figure6.ExampleofthesystematicoperationoftheproposedBS. A proper power control algorithm should be included to reduce inter-cell interference. Afterachievinganoperatingpoint,theBScouldoperatewiththeoperatingpointforawhile.Afterthat, theprocesscouldbeperformedagainbecausetheoptimumpointcanchangeanytimeinadynamic wirelessenvironment. Notethattheoperatingprocedurecanbedeterminedinvariouswaysbasedon theproposedBSstructure.
Description: