Design of Airfoils for Wind Turbine Blades Ruud van Rooij ([email protected]) Nando Timmer Delft University of Technology The Netherlands 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 1 Delft University of Technology 13200 Bsc+ Msc students, 4750 employees Delft University Wind Energy Research Institute (Coordinator: Section Wind Energy) Faculties: • Civil Engineering and Geosciences (Wind Energy, Offshore) http://www.windenergy.citg.tudelft.nl/home/flash/index.html • Information Technology and Systems (Electrical group) • Design, Engineering and Production (Systems &Control) • Aerospace Engineering (Aero, Aeroelastics) 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 2 Section Wind Energy (Civil Engineering and Geosciences => Aerospace Engineering) Aerodynamic research - Facilities low speed wind-tunnel open-jet research wind turbine wind tunnel 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 3 Contents • Background • Design goals HAWT airfoils • Design approach • Performance comparison • Airfoil testing • Effect on wind turbine power Cp • Overview HAWT airfoils 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 4 Background Operational area Control: Variable RPM Power restriction 1.2 High Cp Power 80% of Energy 1.0 0.8 0.6 0.4 0.2 Winds speed (m/s) 0.0 0.0 5.0 10.0 15.0 20.0 25.0 Airfoil: High max. L/D Max. lift considerations 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 5 Background Blade geometry Structural: Airfoil: Outboard: t/= .15-18 - High max. L/D - Insensitive to roughness Mid span: t/= .25 - Similar design angle Inboard: t/> .30 - High max. lift (Rot. Effects) No Aerodynamic Transition piece demands 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 6 Background Effect of rotation Stall delay 2.50 RFOIL code cl inboard 2.00 • Integral boundary layer eq. mid-span 1.50 • Extended for radial flow 2d • Radial equations • Cross flow profile 1.00 0.50 DU 91-W2-250 Re = 3.0x10e6 0.00 parameter is c/r (= local solidity) Angle (deg.) -0.50 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 7 Design goals HAWT airfoils steady Thickness-to-chord ratio > .28 .28 - .21 .21 > High maximum lift-to-drag ratio Low max. and benign post stall Insensitivity to roughness Low noise Geometric compatibility Structural demands 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 8 Design approach (example DU 91-W2-250) Main features Small upper surface thickness => reduced roughness sensitivity NACA 63-425 S-Tail DU 91-W2-250 => Aft-loading 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 9 Design approach (pressure distributions DU 91-W2-250, Re = 3.0x106) - 4. 0 Low roughness sensitivity Cp => Transition at nose for Cl_max - 3. 0 11.0o Low drag => Aft transition at Cl_design - 2. 0 7.0o Transition Alpha= 0.0o Separation - 1. 0 0. 0 Aft-loading 1. 0 0.0 0.2 0.4 0.6 x/c 0.8 1.0 03 May, 2004 DUWIND, section Wind Energy, Faculty CiTG 10
Description: