ANSYS Conference & 31th CADFEM Users‘ Meeting 2013 June 19-21, 2013 – Rosengarten Mannheim Design of a spatially resolved electro-thermal model for lithium-ion pouch cells S. Stumpp, C. Günther, M.A. Danzer Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Ulm, Germany L. Kostetzer, E.Rudnyi CADFEM GmbH, Grafing bei München, Germany Outline Introduction to lithium-ion cells • Applications and requirements • Theoretical background • Functional principle and basic design • Temperature influence on performance • Safety risks Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Parameterisation • Sensitivity analysis Results of parameterisation -2- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Applications Lithium-ion-technology for rechargeable batteries • Highest energy- and power density of commercially available cells Applications Consumer electronics Power tools and gardening tools • • Mobile phones Drill • • Laptop Chainsaw Energy storage systems Electric vehicles • • Domestic BEV • • Grid services HEV Requirements • Lightweight • Low cost • Long life • Safe operation -3- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Theoretical background Basic design of secondary batteries charge current collector (Al) + cathode soaked with Li+ separator electrolyte Li+ anode - current collector (Cu) discharge Electro-chemical reactions • anode/cathode: graphite/LiCoO 2 Anode: 0.6 C + 0.6 Li+ + 0.6 e-« 0.6 LiC 6 6 Cathode: LiCoO « Li CoO + 0.6 Li++ 0.6 e- 2 0.4 2 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Overall: LiCoO + 0.6 C « Li CoO + 0.6 LiC 2 6 0.4 2 6 Transport mechanisms [1] • Electrons = - s (cid:209) j • Ohmic law j el • Ions • Migration = - m (cid:209) j N z Fc mig • Diffusion N = - D(cid:209) c diff [1]: Newman, “Electrochemical Systems”, Wiley, 2004 -4- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Temperature influence Performance • Temperature-dependent parameters like ionic conductivity [2] • Arrhenius-equation: E 1 1 A - Parameter P P = P e R Tref T 0 Degradation at elevated temperatures • Increase of internal resistance [3,4] • Decrease of capacity [3,5] Safety risks through “Thermal runaway” • Temperature as trigger for exothermic reactions [6] • Rate of reaction R E - A R ~ ce RT • Triggering of reactions with higher activation energy due to temperature rise induced by heat release of reactions [2]: Guet al., J ElectrochemSoc, 147, p. 2910, 2000 [3]: Amine et al., Electrochemistry Comm, 7, p. 669-673, 2005 [4]: Amine et al., J Power Sources, 97-98, p. 684-687, 2001 [5]: Amine et al., J Power Sources, 129, p.14-19, 2004 [6]: Kim et al., J Power Sources, 170, p. 476-489, 2007 -5- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Temperature influence Inhomogeneous degradation caused by cooling strategy: • Accelerated aging in hotter regions of the cell [7] Electro-thermal interaction in cells and modules [8, 9] • Increased current through hotter cells/regions • Inhomogeneous distributions • Current density • State of charge • Cell potential • Heat generation ⇒ Battery management systems with thermal management [10] ⇒ Electro-thermal models for design of battery packs [7]: Gerschleret al., VPPC, Dearborn, 2009 [8]: Fleckenstein et al., J Power Sources, 196, p. 4769-4778, 2011 [9]: Verbrugge, AlChEJournal, 41, p. 1550-1562, 1995 [10]: Bandhauer, J ElectrochemSoc, 158, p. R1, 2011 -6- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Schematic of cell Schematic of electrodes II BBaatt UU BBaatt Electrical model [11,12] R R Network of resistors elec.,i,pos. elec.,j,pos. R • Discretisation of conducting components tab,pos. • Reproduction of current paths Electro-chemical subcells • Lumped model for electro-chemical impedance [7] subcell R tab,neg. R R elec.,i,neg. elec.,j,neg. [7]: Gerschleret al., VPPC, Dearborn, 2009 [11]: Stumppet al., Advanced Battery Power, Münster, 2012 [12]: Stumppet al., Modval, Bad Boll, 2013 -7- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Thermal model [11,13] Geometry of the cell Cell • Geometry • Implemented in ANSYS Mechanical • Thermal analysis • FEM ¶ T ( r ) r c - (cid:209) s (cid:209) T = h + q& Tabs • Heat equation [14] p ¶ vol surf t • Isotropic heat conductivity • Tabs Pouchbag foil • Orthotropic heat conductivity of composite materials • Pouchbag foil • Stack of electrodes Stack of electrodes • Boundaries • Temperatures at tabs • Convection at surface [11]: Stumppet al., Advanced Battery Power, Münster, 2012 [13]: Kostetzer, “Battery Pack Electro-thermal Simulation”, Master thesis, Ingolstadt-Landshut, 2011 [14]: ANSYS Release 14 Theory Reference, 2011 -8- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Electro-thermal model Coupling of electrical and thermal model Transfer of heat release • Calculated by electrical model • Input for thermal model Heat generation • Tabs • Electrode stack Mechanisms • Joule heat • Reversible heat Similar work based on FEM: [15] [15]: Kostetzeret al., Simvec, Baden-Baden, 2012 -9- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Implementation of electro-thermal model Input signals Thermal model • Cell current in ANSYS Mechanical • Temperatures • Tabs • MOR4ANSYS Ambient air Classes of output signals Electro-thermal model { } Q& Thermal model • Cell states in Matlab T MOR-matrices • tab,negfi u Subcell branches Ttab,pos x& = Ax +Bu • Electrode branches T amb = y C x Accessible properties In Out • Temperature • { T } = { T T … } ∫{I}dt • 1 2 {SOC}= +{SOC} Current C i N,Elem • SOC { } • Heat release Electrical parameters T ‹ y • Potential f(SOC,T) -10- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim
Description: