ebook img

Design of a spatially resolved electro-thermal model for lithium-ion pouch cells PDF

20 Pages·2013·2.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of a spatially resolved electro-thermal model for lithium-ion pouch cells

ANSYS Conference & 31th CADFEM Users‘ Meeting 2013 June 19-21, 2013 – Rosengarten Mannheim Design of a spatially resolved electro-thermal model for lithium-ion pouch cells S. Stumpp, C. Günther, M.A. Danzer Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Ulm, Germany L. Kostetzer, E.Rudnyi CADFEM GmbH, Grafing bei München, Germany Outline Introduction to lithium-ion cells • Applications and requirements • Theoretical background • Functional principle and basic design • Temperature influence on performance • Safety risks Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Parameterisation • Sensitivity analysis Results of parameterisation -2- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Applications Lithium-ion-technology for rechargeable batteries • Highest energy- and power density of commercially available cells Applications Consumer electronics Power tools and gardening tools • • Mobile phones Drill • • Laptop Chainsaw Energy storage systems Electric vehicles • • Domestic BEV • • Grid services HEV Requirements • Lightweight • Low cost • Long life • Safe operation -3- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Theoretical background Basic design of secondary batteries charge current collector (Al) + cathode soaked with Li+ separator electrolyte Li+ anode - current collector (Cu) discharge Electro-chemical reactions • anode/cathode: graphite/LiCoO 2 Anode: 0.6 C + 0.6 Li+ + 0.6 e-« 0.6 LiC 6 6 Cathode: LiCoO « Li CoO + 0.6 Li++ 0.6 e- 2 0.4 2 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Overall: LiCoO + 0.6 C « Li CoO + 0.6 LiC 2 6 0.4 2 6 Transport mechanisms [1] • Electrons = - s (cid:209) j • Ohmic law j el • Ions • Migration = - m (cid:209) j N z Fc mig • Diffusion N = - D(cid:209) c diff [1]: Newman, “Electrochemical Systems”, Wiley, 2004 -4- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Temperature influence Performance • Temperature-dependent parameters like ionic conductivity [2] • Arrhenius-equation:   E 1 1 A -  Parameter P   P = P e R Tref T  0 Degradation at elevated temperatures • Increase of internal resistance [3,4] • Decrease of capacity [3,5] Safety risks through “Thermal runaway” • Temperature as trigger for exothermic reactions [6] • Rate of reaction R E - A R ~ ce RT • Triggering of reactions with higher activation energy due to temperature rise induced by heat release of reactions [2]: Guet al., J ElectrochemSoc, 147, p. 2910, 2000 [3]: Amine et al., Electrochemistry Comm, 7, p. 669-673, 2005 [4]: Amine et al., J Power Sources, 97-98, p. 684-687, 2001 [5]: Amine et al., J Power Sources, 129, p.14-19, 2004 [6]: Kim et al., J Power Sources, 170, p. 476-489, 2007 -5- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Introduction to lithium-ion cells Temperature influence Inhomogeneous degradation caused by cooling strategy: • Accelerated aging in hotter regions of the cell [7] Electro-thermal interaction in cells and modules [8, 9] • Increased current through hotter cells/regions • Inhomogeneous distributions • Current density • State of charge • Cell potential • Heat generation ⇒ Battery management systems with thermal management [10] ⇒ Electro-thermal models for design of battery packs [7]: Gerschleret al., VPPC, Dearborn, 2009 [8]: Fleckenstein et al., J Power Sources, 196, p. 4769-4778, 2011 [9]: Verbrugge, AlChEJournal, 41, p. 1550-1562, 1995 [10]: Bandhauer, J ElectrochemSoc, 158, p. R1, 2011 -6- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Schematic of cell Schematic of electrodes II BBaatt UU BBaatt Electrical model [11,12] R R Network of resistors elec.,i,pos. elec.,j,pos. R • Discretisation of conducting components tab,pos. • Reproduction of current paths Electro-chemical subcells • Lumped model for electro-chemical impedance [7] subcell R tab,neg. R R elec.,i,neg. elec.,j,neg. [7]: Gerschleret al., VPPC, Dearborn, 2009 [11]: Stumppet al., Advanced Battery Power, Münster, 2012 [12]: Stumppet al., Modval, Bad Boll, 2013 -7- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Thermal model [11,13] Geometry of the cell Cell • Geometry • Implemented in ANSYS Mechanical • Thermal analysis • FEM  ¶ T  ( r ) r c  - (cid:209) s (cid:209) T = h + q& Tabs • Heat equation [14] p ¶ vol surf  t  • Isotropic heat conductivity • Tabs Pouchbag foil • Orthotropic heat conductivity of composite materials • Pouchbag foil • Stack of electrodes Stack of electrodes • Boundaries • Temperatures at tabs • Convection at surface [11]: Stumppet al., Advanced Battery Power, Münster, 2012 [13]: Kostetzer, “Battery Pack Electro-thermal Simulation”, Master thesis, Ingolstadt-Landshut, 2011 [14]: ANSYS Release 14 Theory Reference, 2011 -8- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Electro-thermal model Coupling of electrical and thermal model Transfer of heat release • Calculated by electrical model • Input for thermal model Heat generation • Tabs • Electrode stack Mechanisms • Joule heat • Reversible heat Similar work based on FEM: [15] [15]: Kostetzeret al., Simvec, Baden-Baden, 2012 -9- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim Spatially resolved electro-thermal model for a large size lithium-ion pouch cell Implementation of electro-thermal model Input signals Thermal model • Cell current in ANSYS Mechanical • Temperatures • Tabs • MOR4ANSYS Ambient air Classes of output signals Electro-thermal model { }  Q&  Thermal model • Cell states in Matlab   T  MOR-matrices •  tab,negfi u Subcell branches Ttab,pos x& = Ax +Bu • Electrode branches  T  amb = y C x Accessible properties In Out • Temperature • { T } = { T T … } ∫{I}dt • 1 2 {SOC}= +{SOC} Current C i N,Elem • SOC { } • Heat release Electrical parameters T ‹ y • Potential f(SOC,T) -10- S. Stumpp | ZSW | ANSYS Conference & 31th CADFEM Users' Meeting 2013 | June 19-21, 2013 | Rosengarten Mannheim

Description:
ANSYS Conference & 31th CADFEM Users' Meeting 2013 . [14]: ANSYS Release 14 Theory Reference, 2011 .. Inhomogeneous Stress Inside the Cells“, in 5th International IEEE Vehicle Power and Propulsion ANSYS,Inc., ANSYS Release 14 Mechanical APDL Theory Reference, 2011. [15].
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.