ebook img

Design of a Robotic Arm for Laboratory Simulations of Spacecraft Proximity Navigation and Docking PDF

247 Pages·2013·7.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of a Robotic Arm for Laboratory Simulations of Spacecraft Proximity Navigation and Docking

Università degli Studi di Padova Dipartimento di Ingegneria Industriale     Corso di Laurea Magistrale in Ingegneria Aerospaziale Tesi di Laurea Magistrale in Ingegneria Aerospaziale Design of a Robotic Arm for Laboratory Simulations of Spacecraft Proximity Navigation and Docking Relatore: Prof. Alessandro Francesconi Laureando: Andrea Antonello ANNO ACCADEMICO 2012-2013 To my families, in Italy and California. To you, Silvia. Contents 1 Introduction 1 1.1 A long journey . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and state of the art . . . . . . . . . . . . . . . . . 3 1.3 Robot preliminary design . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.2 Mechanical structure . . . . . . . . . . . . . . . . . . . 12 1.3.3 End-effector configuration . . . . . . . . . . . . . . . . 17 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Kinematics 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Denavit-Hartenberg convention . . . . . . . . . . . . . . . . . 22 2.3 Direct Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Pieper’s solution . . . . . . . . . . . . . . . . . . . . . 28 2.4.2 Alternate algebraic solution . . . . . . . . . . . . . . . 32 2.4.3 Methods comparison . . . . . . . . . . . . . . . . . . . 34 2.5 Differential kinematics . . . . . . . . . . . . . . . . . . . . . . 35 2.5.1 Geometric approach . . . . . . . . . . . . . . . . . . . 36 2.5.2 Inverse differential kinematics . . . . . . . . . . . . . . 39 2.5.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.1 Rectilinear trajectory . . . . . . . . . . . . . . . . . . . 44 2.6.2 Circular trajectory . . . . . . . . . . . . . . . . . . . . 47 2.7 Model verification: Simulink’s SimMechanics toolbox. . . . . . 51 3 Trajectory definition 57 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Main approaches . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Joint space planning . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.1 Point-to-point motion with intermediate via points . . 61 3.4 Operational space planning . . . . . . . . . . . . . . . . . . . 62 3.4.1 Predefined analytical path . . . . . . . . . . . . . . . . 63 3.4.2 Corrected on the go . . . . . . . . . . . . . . . . . . . . 69 4 Dynamics 71 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Euler-Lagrange method . . . . . . . . . . . . . . . . . . . . . . 71 4.3 Euler-Newton method . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1 The Euler-Newton routine . . . . . . . . . . . . . . . . 73 4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Rectilinear trajectory . . . . . . . . . . . . . . . . . . . 78 4.4.2 Circular trajectory . . . . . . . . . . . . . . . . . . . . 83 4.5 Model verification: Simulink’s SimMechanics toolbox. . . . . . 87 5 Linear Feedback Control 93 5.1 Joint space control . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.1 Decentralized control . . . . . . . . . . . . . . . . . . . 94 5.1.2 Design of the PD compensator . . . . . . . . . . . . . . 99 5.1.3 Design of the PID compensator . . . . . . . . . . . . . 105 5.1.4 Extension to a multibody system . . . . . . . . . . . . 109 5.2 Operational space control . . . . . . . . . . . . . . . . . . . . 110 5.2.1 An overview . . . . . . . . . . . . . . . . . . . . . . . . 111 6 Space trajectory analyis 115 6.1 Orbital mechanics review . . . . . . . . . . . . . . . . . . . . . 116 6.1.1 Relative motion in orbit . . . . . . . . . . . . . . . . . 116 6.2 CW equations: main applications . . . . . . . . . . . . . . . . 121 6.2.1 Relative free motion simulation . . . . . . . . . . . . . 121 6.2.2 Relative motion with quasi-constant disturbances . . . 122 6.2.3 Relative motion with impulsive disturbances . . . . . . 123 6.2.4 Relative motion with ADCS control . . . . . . . . . . . 126 6.3 Force sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.4 Matlab simulation . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.4.1 Rendezvous maneuver . . . . . . . . . . . . . . . . . . 131 6.4.2 Rendez-vous maneuver with impulsive disturbance . . . 134 6.4.3 Rendezvous approach with on the go corrections . . . . 138 7 Sizing 143 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Link design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.2.1 Material choice . . . . . . . . . . . . . . . . . . . . . . 145 7.2.2 Load analysis . . . . . . . . . . . . . . . . . . . . . . . 146 7.2.3 Buckling analysis . . . . . . . . . . . . . . . . . . . . . 155 7.3 Motor choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.3.1 Motor types . . . . . . . . . . . . . . . . . . . . . . . . 162 7.3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . 164 7.3.3 Hardware selection . . . . . . . . . . . . . . . . . . . . 170 7.4 Final data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.5 SolidWorks renders . . . . . . . . . . . . . . . . . . . . . . . . 174 CAD Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Assembly 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Assembly 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Assembly 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Assembly 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Assembly 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 8 Conclusions and future work 191 Appendices 205 A Matlab Scripts 207 Matlab Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 B Jacobian expression 229 C Datasheets 231 EC 90 datsheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 EC 45 datsheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 ATI Nano 17 datsheet . . . . . . . . . . . . . . . . . . . . . . . . . 236 Abstract The increasing number of human objects in space has laid the foundation of a novel class of orbital missions for servicing and maintenance. The main goal of this thesis is the de- velopment of a robot manipulator for the simulation of close approach orbital maneuvers, with particular attention to docking and capture. There are currently very few facilities able to simulate relative motion between orbiting objects: DLR’s EPOS experiment is the leading edge of European research on RvD ground simulations. The 25m long test- ing site consists in two industrial anthropomorphic robots that can reproduce docking and berthing scenarios, taking into account dynamic contacts, gravity and even sunlight illumination for utmost realistic simulations. This project tries to propose a viable alter- native to these huge and costly RvD structures; the addition of force sensing transducers and the possibility to dynamically scale the simulations makes the manipulator a cheap and portable hardware-in-the-loop testing bench for orbital phenomena. After selecting the most dexterous robotic configuration, the kinematic and dynamic problems were ana- lyzed; a basic PID controller was then implemented and its stability to step response and disturbances successfully verified. An extended simulation campaign, comprising Matlab and SimMechanics environments, confirmed the theoretical models and allowed to repro- duce typical rendezvous and docking maneuvers (providing useful data for the sizing). By integrating a force sensor, it was possible to impose and simulate orbital motion and to account for any force disturbance. With information deriving on structural analyses and dynamics extrapolations, a preliminary design was carried out, and led to the translation ofthetheoreticalrequirementsintothesizingandselectionofthestructure, thehardware and the actuators. The final robot is able to simulate RvDs inside a spherical working space of 1.3m radius, with a total mass of just 7.5kg. This thesis sets the foundations for the physical realization of the arm, which will serve as an innovative platform for a multidisciplinary satellite testing facility.

Description:
Sep 27, 2013 1.1 A long journey The history of robots has in fact its roots as far back as ancient . operations before other OSS activities can take place.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.