DESIGN OF A HIGH EFFICIENCY S-BAND POWER AMPLIFIER FOR A CUBESAT by MOISE SAFARI MUGISHO Thesis submitted in partial fulfilment of the requirements for the degree Master of Engineering: Electrical Engineering at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY Supervisor: Mr. Clive Whaits Co-supervisor: Dr. Gérard Orjubin Bellville November 2016 CPUT copyright information The thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University. Declaration I, MOISE SAFARI MUGISHO, declare that the contents of this thesis represent my own unaided work and that the thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology. Signed Date i Abstract In all radio frequency (RF) electronic communication systems, power amplifiers (PAs) are used to generate the final transmitted signal. Specifically, these PAs are used to increase the output power of the transmitted signal. The PA accomplishes this by converting the applied direct current (DC) power to the PA into RF power, while being driven by a RF input signal. The portion of DC power that is not converted into RF power is dissipated as heat. The power conversion mechanism that takes place in a PA is described by the power conversion efficiency (PE) and the power added efficiency (PAE). A CubeSat is a small satellite in the shape of a 10 × 10 × 10 cm cube, weighing less than 1 kg and contains a RF electronic communication system which allows communication with the satellite. A CubeSat requires a PA with high PE in order to increase the lifetime of the on-board battery, facilitate thermal management on-board the satellite, increase system reliability, and reduce the size and manufacturing cost of the satellite. To maximize the theoretical PE of a RF PA, several design techniques and classes of operation were investigated, the basis of which lies in the fulfilment of the necessary and sufficient conditions for a maximum PE. A PA, which uses the Class-F-1 (inverse Class-F) mode of operation, fulfils the necessary and sufficient conditions for a maximum theoretical PE, and therefore presents itself as a good option for a high efficiency PA. This thesis presents the design of a Class-F-1 PA, using the Cree CGH40010F GaN power active device. An optimum output matching network is used to terminate the drain of the GaN power active device with the required load impedances at the fundamental, 2nd and 3rd harmonic frequencies of operation. The designed PA delivers a maximum PE of 95 % at an operating frequency of 2.2 GHz, a maximum PAE of 82 % at an operating frequency of 2.2 GHz and a maximum output power of 40.6 dBm at an operating frequency of 2.2 GHz. ii Acknowledgements First and foremost, I would like to thank my Lord and saviour, Jesus Christ, for all that he is for me and has been for me during the completion of this research. He is all I have, all I have ever wanted and all that I need. Many thanks to my parents, brothers and sisters for their prayers and support during this research. Thanks to my supervisor and mentor Mr. Clive Whaits for his guidance, motivation and unwavering support. I could not have imagined having a better supervisor and mentor for my studies. My sincere thanks goes also to my co-supervisor Dr. Gérard Orjubin for his advice and contribution toward the completion of this research. My gratitude goes also to Cree for providing samples of the active device used in this research, especially Ryan Baker, for availing the ADS model for the active device and related application notes. Thanks to AMCAD Engineering for providing a free licence for the STAN tool, especially Dr. Dellier Stéphane, for his endless support on how to use the STAN tool and for his advice on the stability of RF power amplifiers. The financial assistance of the National Research Foundation towards this research is acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are those of the author, and are not necessarily to be attributed to the National Research Foundation. Last but not least, my sincere gratitude goes to the Zanga family, the Mputu family and the Panzu family for welcoming me into their homes as a friend, a brother, an uncle and a son. iii Dedication I dedicate this thesis to my beloved dad, Mr. SAFARI CÔME CHAMBA KASENGO. May you find in the work presented in this thesis one of the fruits of your career and may you have a peaceful and healthy retirement. iv Contents Declaration ................................................................................................................................. i Abstract ..................................................................................................................................... ii Acknowledgements .................................................................................................................. iii Dedication ................................................................................................................................. iv List of Figures ........................................................................................................................ viii List of Tables ............................................................................................................................ xi Abbreviations and Acronyms ................................................................................................ xii Introduction .............................................................................................................................. 1 1.1. Motivation ................................................................................................................... 1 1.2. Objectives ................................................................................................................... 2 1.3. Research Methodology .............................................................................................. 2 1.4. Delineation .................................................................................................................. 2 1.5. Synopsis ....................................................................................................................... 3 1.6. Conclusions ................................................................................................................. 3 Overview of RF Power Amplifiers .......................................................................................... 4 2.1. History of RF Power Amplification ......................................................................... 4 2.2. Theory of Operation .................................................................................................. 4 2.3. Performance Parameters of a RF Power Amplifier ............................................... 5 2.3.1. Power Conversion Efficiency ............................................................................. 5 2.3.2. Power Added Efficiency ..................................................................................... 5 2.3.3. Output Power ...................................................................................................... 5 2.3.4. Power Gain .......................................................................................................... 6 2.3.5. Linearity .............................................................................................................. 6 2.3.5.1. Adjacent Channel Power Ratio .................................................................. 7 2.3.5.2. Gain Compression ....................................................................................... 7 2.3.5.3. Third-Order Intercept Point ...................................................................... 7 2.3.5.4. Carrier-to-Intermodulation Ratio ............................................................. 8 2.3.5.5. Error Vector Magnitude (EVM) ................................................................ 8 2.4. Power Balance in a RF Power Amplifier ................................................................. 9 2.5. Classification of RF Power Amplifiers ................................................................... 11 2.5.1. Linear Power Amplifiers.................................................................................. 11 v 2.5.1.1. Class-A Power Amplifiers ........................................................................ 12 2.5.1.2. Class-B Power Amplifiers ......................................................................... 12 2.5.1.3. Class-AB Power Amplifiers ...................................................................... 13 2.5.1.4. Class-C Power Amplifiers ........................................................................ 13 2.5.1.5. Summary of Linear Power Amplifiers .................................................... 14 2.5.2. Switching Power Amplifiers ............................................................................ 15 2.5.2.1. Class-D Power Amplifiers ........................................................................ 15 2.5.2.2. Class-E Power Amplifiers ......................................................................... 16 2.5.2.3. Class-F and Class-F-1 Power Amplifiers .................................................. 18 2.6. Design Principles and Requirements ..................................................................... 20 2.6.1. Design Techniques ............................................................................................ 20 2.6.1.1. Load-Line Theory ..................................................................................... 20 2.6.1.2. Load-Pull Technique ................................................................................. 21 2.6.2. RF Power Device Technology .......................................................................... 22 2.7. Summary ................................................................................................................... 22 2.8. Conclusions ............................................................................................................... 23 Class-F and Class-F-1 RF Power Amplifiers ........................................................................ 24 3.1. Introduction .............................................................................................................. 24 3.2. Description of a Class-F PA Based on the Drain Waveforms .............................. 24 3.3. Description of a Class-F-1 PA Based on the Drain Waveforms ........................... 29 3.4. Factors Limiting the Maximum PE ....................................................................... 33 3.5. Class-F vs Class-F-1 PA ............................................................................................ 33 3.6. Wave-Shaping Networks for a Class-F-1 PA ......................................................... 34 3.6.1. Series Resonant Circuit with a Quarter Wavelength Transmission Line ... 34 3.6.2. Transmission Line Wave-Shaping Networks ................................................. 37 3.6.2.1. The Proposed New Wave-Shaping Topology ......................................... 37 3.7. Conclusions ............................................................................................................... 40 Design of a Class-F-1 PA at 2.2 GHz ..................................................................................... 42 4.1. Introduction .............................................................................................................. 42 4.2. Specifications of the PA ........................................................................................... 42 4.3. Selection of an Active Device .................................................................................. 42 4.4. DC Bias Simulations ................................................................................................ 43 4.5. Design of the Wave-Shaping Network ................................................................... 43 vi 4.6. Design of the Input Matching Network ................................................................. 47 4.7. Initial Simulated Performance Parameters ........................................................... 49 4.8. PCB Layout and Momentum Simulations. ............................................................ 51 4.9. Stability Analysis of the Class-F-1 PA .................................................................... 54 4.9.1. Linear Stability Analysis .................................................................................. 54 4.9.1.1. Nonlinear Stability Analysis Using ADS and the STAN Tool ............... 56 4.10. Conclusions ........................................................................................................... 59 The Constructed Class-F-1 PA ............................................................................................... 60 5.1. Introduction .............................................................................................................. 60 5.2. Measurement Set-Up ............................................................................................... 60 5.3. Measured Performance Parameters of the PA ..................................................... 64 5.4. Comparisons ............................................................................................................. 67 5.5. Conclusions ............................................................................................................... 68 Conclusions, Recommendations and Future Work ............................................................. 69 6.1. Final Conclusions ..................................................................................................... 69 6.2. Recommendations .................................................................................................... 69 6.3. Future Work ............................................................................................................. 69 Appendix A .............................................................................................................................. 70 Appendix B .............................................................................................................................. 72 Appendix C .............................................................................................................................. 74 References................................................................................................................................ 89 vii List of Figures Figure 1: Basic circuit diagram of a power amplifier (Adapted from Colantonio et al., 2009: 179) 4 Figure 2: 1 dB compression point (Adapted from Colantonio et al., 2009: 3) ............... 7 Figure 3: Third order intercept point (Adapted from Colantonio et al., 2009: 13) ...... 8 Figure 4: Error vector magnitude and related quantities (Adapted from Colantonio et al., 2009: 3) ............................................................................................................................ 8 Figure 5: Power flow and balance diagram in a typical PA (Adapted from Prodanov & Banu, 2007: 351) ................................................................................................................... 9 Figure 6: PA family tree (Adapted from Prodanov & Banu, 2007: 354) ..................... 11 Figure 7: Basic topology of a linear power amplifier (Adapted from Berglund et al., 2006: 93) 11 Figure 8: Drain voltage and current waveforms for a Class-A PA (Adapted from Prodanov & Banu, 2007: 355) ............................................................................................... 12 Figure 9: Drain voltage and current waveforms for a Class-B PA (Adapted from Prodanov & Banu, 2007: 355) ............................................................................................... 12 Figure 10: Drain voltage and current waveforms for a Class-AB PA (Adapted from Prodanov & Banu, 2007: 355) ............................................................................................... 13 Figure 11: Drain voltage and current waveforms for a Class-C PA (Adapted from Prodanov & Banu, 2007: 355) ............................................................................................... 14 Figure 12: Output power and efficiency as a function of conduction angle of linear PAs (Adapted from Cripps, 2006:46) ........................................................................................... 14 Figure 13: Basic topology of a VMCD PA (Adapted from Berglund et al., 2006: 94) .. 15 Figure 14: Basic topology of a CMCD PA (Adapted from Berglund et al., 2006: 94) .. 16 Figure 15: Drain voltage and current waveforms for a Class-D PA (Adapted from Prodanov & Banu, 2007: 360) ............................................................................................... 16 Figure 16: Topology of a Class-E PA (Adapted from Berglund et al., 2006: 94) .......... 17 Figure 17: Drain voltage and current waveforms for a Class-E PA (Adapted from Prodanov & Banu, 2007: 360) ............................................................................................... 17 Figure 18: Measured performance of a Class-E PA (Adapted from Cripps, 2006:199) 18 Figure 19: Drain voltage and current waveforms for a Class-F PA (Adapted from Prodanov & Banu, 2007: 360) ............................................................................................... 19 Figure 20: Basic topology of a Class-F PA (Adapted from Kim et al., 2008: 1177) ...... 19 Figure 21: Load-line match (Adapted from MacPherson & Whaits, 2007: 12-16) ...... 20 Figure 22: Load-pull measurement setup (Adapted from Chiang &Chuang, 1997: 1150) 21 Figure 23: Basic circuit of a Class-F PA (Adapted from Grebennikov & Sokal, 2007:104) 24 Figure 24: Ideal drain waveforms of a Class-F PA .......................................................... 25 Figure 25: Magnitude spectrum of a half sine wave ........................................................ 26 viii Figure 26: Magnitude spectrum of a square wave ........................................................... 26 Figure 27: Drain waveforms of a Class-F PA with only the second and third harmonics present (Adapted from Grebennikov & Sokal, 2007:98) .................................................... 28 Figure 28: Basic circuit of a Class-F-1 PA (Adapted from Grebennikov & Sokal, 2007:158) 29 Figure 29: Ideal drain waveforms of a Class-F-1 PA ........................................................ 29 Figure 30: Magnitude spectrum of the square wave drain current ............................... 30 Figure 31: Magnitude spectrum of the half sine wave drain voltage ............................. 31 Figure 32: Drain waveforms of a Class-F-1 PA with second and third harmonics (Adapted from Grebennikov & Sokal, 2007: 152) ............................................................... 33 Figure 33: Quarter-wave impedance transformer with a RLC series circuit ................ 34 Figure 34: Magnitude of impedance of a series resonant circuit .................................... 35 Figure 35: Magnitude of input impedance and input reflection coefficient of the wave- shaping network ...................................................................................................................... 36 Figure 36: The proposed new wave-shaping network ..................................................... 37 Figure 37: Equivalent circuit of the wave-shaping network at the fundamental frequency 38 Figure 38: Equivalent circuit of the wave-shaping network at the second harmonic frequency 39 Figure 39: Equivalent circuit of the wave-shaping network at the third harmonic frequency 40 Figure 40: The Cree CGH40010F 10 W GaN HEMT power transistor ........................ 42 Figure 41: Selected DC operating point ............................................................................ 43 Figure 42: Simulated input and output return loss at f0 .................................................. 44 Figure 43: Final optimised wave-shaping network .......................................................... 45 Figure 44: Simulated input impedance of the wave-shaping network ........................... 45 Figure 45: Simulated transfer function of the wave-shaping network ........................... 46 Figure 46: Initial circuit of the designed PA ..................................................................... 47 Figure 47: Simulated input impedance of the PA ............................................................ 47 Figure 48: Topologies of input matching network ........................................................... 48 Figure 49: Input return loss and TF (transfer function) of the input matching networks 48 Figure 50: Initial circuit schematic of the PA with input matching network ................ 49 Figure 51: Simulated drain waveforms ............................................................................. 49 Figure 52: Initial simulated PE, PAE, PRFout and PDC. ..................................................... 50 Figure 53: Final schematic diagram of the designed PA ................................................. 50 Figure 54: PCB layout of the designed PA ........................................................................ 51 Figure 55: Simulated drain voltage and current waveforms .......................................... 51 Figure 56: Simulated PE, PAE, PRFout and PDC ................................................................ 52 Figure 57: Simulated IP1dB and OP1dB of the optimised PA ............................................ 52 Figure 58: Simulated load voltage and current waveforms. ........................................... 53 Figure 59: Simulated performance parameters of the optimised PA vs. frequency ..... 53 Figure 60: Simulated performance parameters of the optimised PA vs the DC supply voltage 54 ix
Description: