ebook img

Design, model and control of a new type of VTOL aircraft PDF

268 Pages·2017·20.02 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design, model and control of a new type of VTOL aircraft

(cid:53)(cid:41)(cid:181)(cid:52)(cid:38) (cid:38)(cid:79)(cid:1)(cid:87)(cid:86)(cid:70)(cid:1)(cid:69)(cid:70)(cid:1)(cid:77)(cid:8)(cid:80)(cid:67)(cid:85)(cid:70)(cid:79)(cid:85)(cid:74)(cid:80)(cid:79)(cid:1)(cid:69)(cid:86)(cid:1) (cid:37)(cid:48)(cid:36)(cid:53)(cid:48)(cid:51)(cid:34)(cid:53)(cid:1)(cid:37)(cid:38)(cid:1)(cid:45)(cid:8)(cid:54)(cid:47)(cid:42)(cid:55)(cid:38)(cid:51)(cid:52)(cid:42)(cid:53)(cid:178)(cid:1)(cid:37)(cid:38)(cid:1)(cid:53)(cid:48)(cid:54)(cid:45)(cid:48)(cid:54)(cid:52)(cid:38)(cid:1) (cid:37)(cid:207)(cid:77)(cid:74)(cid:87)(cid:83)(cid:207)(cid:1)(cid:81)(cid:66)(cid:83)(cid:1)(cid:27) InstitutSupérieurdel’Aéronautiqueetdel’Espace CotutelleinternationaleavecInstitutoPolitecnicoNacionalMexico (cid:49)(cid:83)(cid:207)(cid:84)(cid:70)(cid:79)(cid:85)(cid:207)(cid:70)(cid:1)(cid:70)(cid:85)(cid:1)(cid:84)(cid:80)(cid:86)(cid:85)(cid:70)(cid:79)(cid:86)(cid:70)(cid:1)(cid:81)(cid:66)(cid:83)(cid:1)(cid:27) AurélienCABARBAYE le lundi30octobre2017 (cid:53)(cid:74)(cid:85)(cid:83)(cid:70)(cid:1)(cid:27) (cid:1) Conception,modélisationetcommanded’unnouveauconceptd’avion convertible Design,modelandcontrolofanewtypeofVTOLaircraft et discipline ou spécialité (cid:178)(cid:68)(cid:80)(cid:77)(cid:70)(cid:69)(cid:80)(cid:68)(cid:85)(cid:80)(cid:83)(cid:66)(cid:77)(cid:70) (cid:1) (cid:27) (cid:1) EDAA:Automatique,Géniecivil (cid:54)(cid:79)(cid:74)(cid:85)(cid:207)(cid:1)(cid:69)(cid:70)(cid:1)(cid:83)(cid:70)(cid:68)(cid:73)(cid:70)(cid:83)(cid:68)(cid:73)(cid:70)(cid:1)(cid:27) Horséquiped'accueilISAE-ONERAetICA,précisez: UMILAFMIA (cid:37)(cid:74)(cid:83)(cid:70)(cid:68)(cid:85)(cid:70)(cid:86)(cid:83)(cid:9)(cid:84)(cid:10)(cid:1)(cid:69)(cid:70)(cid:1)(cid:702)(cid:210)(cid:84)(cid:70)(cid:1)(cid:27) M.PatrickFABIANI(directeurdethèse) M.RogelioLOZANOHEUDIASYC(directeurdethèse) Jury: MmeSabineMONDIÉCUZANGECINESTAV-Rapporteur M.AlfredoARIASMONTANOIPN,EscuelaSuperiordeIngenieríaMecánicayEléctrica Ticomán M.MoisésBONILLAESTRADACINESTAV M.PedroCASTILLOHEUDIASYC-Rapporteur M.PatrickFABIANIISAE-SUPAERO-Directeurdethèse M.RogelioLOZANOHEUDIASYC- Directeurdethèse M.SergioSALAZARLAFMIA Acknowledgement First and foremost, I would like to thank Prof. Rogelio Lozano for inviting me to join the CINVESTAV-IPN / CNRS UMI3175 LAMFIA Cinvestav in Mexico, without whom this thesis would not have been possible. He encouraged me to pursue research on a very innovative concept and assisted me in investigating its feasibility. I appreciate all the time and ideas he contributed. I am very grateful for the scholarship of Mexican government I received thanks to his support. Moreover, this thesis bene(cid:28)ted greatly from the joint supervision between this labora- tory and ISAE SUPAERO (Toulouse, France) under the direction of Dr. Patrick Fabiani. I received advice and guidance from top researchers in both of the scienti(cid:28)c (cid:28)elds the drone concept relies on: Aeronautics and Control Systems. I am very grateful to my thesis super- visors, Prof. Rogelio Lozano, Prof. MoisØs Bonilla Estrada and Dr. Patrick Fabiani for their scienti(cid:28)c follow-up and the thoughtful ideas they gave me throughout this research. My thanks also go to all the sta(cid:27) and colleagues of Cinvestav and ISAE SUPAERO for the help I received throughout the last three years. I particularly appreciated the assistance during the elaboration of the drone demonstrator and the access given to several prototyping machines. I lastly owe my deepest gratitude to my family for their unfailing support during this rich and long adventure. I would like to thank especially my brother Adrien Cabarbaye for his Electronics, Computer Science and English support. iii iv Contents Introduction 1 0.1 Operational objective........................................................................................ 1 0.1.1 Tactical UAV (TUAV) definition . . . . . . . . . . . . . . . . . 1 0.1.2 TUAV benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.1.3 STOL capacity limits . . . . . . . . . . . . . . . . . . . . . . . . 3 0.1.4 VTOL capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0.1.5 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 0.2 Concept.......................................................................................................................... 10 0.2.1 Rotor blade - forewing hybrid . . . . . . . . . . . . . . . . . . 10 0.2.2 Tandem wing configuration . . . . . . . . . . . . . . . . . . . . 10 0.2.3 Propeller powered rotor . . . . . . . . . . . . . . . . . . . . . 11 0.2.4 Landing configuration . . . . . . . . . . . . . . . . . . . . . . . 13 0.2.5 Concept general overview . . . . . . . . . . . . . . . . . . . . . 14 0.3 State of the Art.................................................................................................... 15 0.3.1 Similar concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 0.3.2 Rotor aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 18 0.3.3 Control aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 0.4 Ph. D. Objectives................................................................................................... 20 0.4.1 Hover challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 0.4.2 Transition challenge . . . . . . . . . . . . . . . . . . . . . . . . 21 0.4.3 Conceptual design . . . . . . . . . . . . . . . . . . . . . . . . . . 22 0.4.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1 Model and study of a propeller powered rotor able to comply with aeroplane mode constraints. 23 1.1 Study of the rotor performances.............................................................. 23 1.1.1 Model and study of the hovering rotor. . . . . . . . . . . . 23 1.1.2 Bench test of the demonstrator rotor. . . . . . . . . . . . . 27 1.1.3 Complementary tests performed on dedicated bench. . . . . . . . . . 34 v 1.2 Study of the interactions between the aerodynamic entities.............................. 38 1.2.1 Rotating parts and wing interaction . . . . . . . . . . . . . . 39 1.2.2 Propeller and rotor interaction . . . . . . . . . . . . . . . . 43 1.3 Partial conclusion......................................................................................................... 44 2 Model of the transition between helicopter and aero- plane modes 45 2.1 Theory of the rotor in transition.............................................................. 45 2.1.1 Rotor forward flight theory . . . . . . . . . . . . . . . . . . . 45 2.1.2 Extended theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2 Flight dynamics...................................................................................................... 54 2.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2.2 Dynamics relations . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2.3 Forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.4 Aircraft aerodynamics . . . . . . . . . . . . . . . . . . . . . . . 59 2.3 partial conclusion................................................................................................. 78 3 Control 79 3.1 Aircraft control type....................................................................................... 79 3.2 Control study......................................................................................................... 80 3.2.1 Linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.2.2 Controlability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.3 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3 Partial conclusion................................................................................................ 89 4 Conceptual design 91 4.1 Bill of specifications........................................................................................... 91 4.1.1 Competitors analysis . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.2 Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.1.3 endurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1.4 Altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1.5 Climb performances . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1.6 Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2 Geometry.................................................................................................................... 98 4.2.1 Landing gear design . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.3 Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.4 Electric motor nacelles . . . . . . . . . . . . . . . . . . . . . . 104 vi 4.3 Mission.......................................................................................................................... 105 4.4 Optimisation.............................................................................................................. 112 4.5 Results......................................................................................................................... 114 4.6 partial conclusion................................................................................................. 117 5 Perspectives 119 5.1 Aircraft control................................................................................................... 119 5.2 Electric propulsion system............................................................................. 120 5.3 Mini UAV derivative of the concept: (cid:16)flying rotor(cid:17)......................... 122 General conclusion 125 A Appendix: Rotor hover theory 139 A.1 Momentum theory.................................................................................................. 139 A.1.1 Hover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 A.1.2 In climb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.1.3 Generalized momentum theory . . . . . . . . . . . . . . . . . . 142 A.1.4 Swirl in the wake . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 A.1.5 Profil drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.2 Blade element theory......................................................................................... 146 A.3 Tip loses...................................................................................................................... 148 A.4 Root loses.................................................................................................................. 149 A.5 Generalisation (cf: autorotation).............................................................. 149 B Appendix: extended theory equations 155 B.1 Induced velocity.................................................................................................... 155 B.2 Aerodynamics forces and moment................................................................ 156 B.2.1 Rotor lift t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 B.2.2 Rotor longitudinal force h . . . . . . . . . . . . . . . . . . . . 160 B.2.3 Rotor lateral force y . . . . . . . . . . . . . . . . . . . . . . . 160 B.2.4 Rotor torque Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B.3 Propulsion forces and moments:.................................................................. 161 B.3.1 Propulsion lift T . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 p B.3.2 Propulsion longitudinal force H . . . . . . . . . . . . . . . . 165 p B.3.3 Propulsion lateral force Y . . . . . . . . . . . . . . . . . . . . 165 p B.3.4 Propulsion torque Q . . . . . . . . . . . . . . . . . . . . . . . . 165 p B.4 Overall rotor forces:....................................................................................... 165 B.5 Flap Motion.............................................................................................................. 167 B.5.1 Lift part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 vii B.5.2 propulsion part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 B.5.3 Final flap results . . . . . . . . . . . . . . . . . . . . . . . . . . 173 C Appendix: Dynamics model derivative 175 C.1 Dynamics relations derivative........................................................................ 176 C.1.1 Quaternion model . . . . . . . . . . . . . . . . . . . . . . . . . . 176 C.1.2 Euler angles based model . . . . . . . . . . . . . . . . . . . . . 180 C.2 Stability derivatives............................................................................................ 180 C.2.1 Rotor derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 C.2.2 Steady airframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 C.2.3 Modi(cid:28)ed dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 D Appendix: Conceptual design 195 D.1 Ambient condition................................................................................................. 195 D.1.1 Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 D.1.2 Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 D.2 Weight and balance............................................................................................. 196 D.2.1 Fore plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 D.2.2 Main-Rotor Hubs and Hinges . . . . . . . . . . . . . . . . . . . 197 D.2.3 Main wing Weight . . . . . . . . . . . . . . . . . . . . . . . . . . 198 D.2.4 Vertical Tail Weight . . . . . . . . . . . . . . . . . . . . . . . . 198 D.2.5 Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 D.2.6 Landing Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 D.2.7 Fuel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 D.2.8 Flight Controls System . . . . . . . . . . . . . . . . . . . . . . 201 D.2.9 Propulsion System : . . . . . . . . . . . . . . . . . . . . . . . . . 202 D.3 Aerodynamics........................................................................................................... 203 D.3.1 Induced drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 D.3.2 Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 D.3.3 Electric motor nacelles . . . . . . . . . . . . . . . . . . . . . . 207 D.3.4 Sensor turret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 D.3.5 Landing gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 D.3.6 Engine installation drag . . . . . . . . . . . . . . . . . . . . . . 214 D.4 Stability...................................................................................................................... 215 D.4.1 Longitudinal stability . . . . . . . . . . . . . . . . . . . . . . . 215 D.4.2 Lateral-Directional equilibrium and stability . . . . . . . . 221 D.5 Performances........................................................................................................... 226 D.5.1 Hover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 D.5.2 Climb performances . . . . . . . . . . . . . . . . . . . . . . . . . 227 viii D.5.3 OGI altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 D.5.4 Stall speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 D.5.5 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 D.5.6 Loiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 D.5.7 Max speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 E Appendix: Motor control 233 E.1 BDSM modelisation..................................................................................................... 233 E.1.1 Electrical modelisation . . . . . . . . . . . . . . . . . . . . . . . . . . 233 E.1.2 α β γ transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 E.2 Control construction.................................................................................................... 235 E.2.1 Modi(cid:28)ed d q 0 transformation . . . . . . . . . . . . . . . . . . . . . . 236 E.2.2 Adaptive control design . . . . . . . . . . . . . . . . . . . . . . . . . 236 E.3 Simulation results......................................................................................................... 239 F Appendix: (cid:16)Flying-rotor(cid:17) control 243 F.1 Model.............................................................................................................................. 243 F.1.1 Rotor forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 F.1.2 Propellers forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 F.1.3 (cid:16)(cid:29)ying rotor(cid:17) UAV dynamics . . . . . . . . . . . . . . . . . . . . . . . 247 F.2 Control............................................................................................................................ 248 ˙ F.2.1 X control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 ˙ F.2.2 Y Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 ˙ F.2.3 Z and Ω controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 F.3 Simulation...................................................................................................................... 251 F.4 Motors acceleration issues:........................................................................................ 252 ix List of Figures 1 MALE ground equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Take-o(cid:27) / landing footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Ground vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Comparison of helicopter and aeroplane (cid:29)ight envelopes . . . . . . . . . . . . 6 5 German project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Focke-Wulf FW-860 (1957) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7 Brennan / Curtiss-Bleecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8 Nagler-Rolz NR 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 9 blended landing gear / vertical tailplane ( Courtesy of Lockheed Martin) . . 14 10 Landing con(cid:28)gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 11 MALE ground equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 12 Vertical rotor hub aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 13 StopRotor Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 14 Spinwing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 15 Tilting rotor hub aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 16 T-wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 17 Tilting-rotor tail-sitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.1 Un-dimentioned power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2 Propeller e(cid:30)ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.3 Diagram of a brushless motor . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Demonstrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6 First motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.7 Second motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.8 Motor observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.9 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.10 Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.11 Propeller e(cid:30)ciency for various blade pitch . . . . . . . . . . . . . . . . . . . 34 1.12 Propeller bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 x

Description:
convertible. Design, model and control of a new type of VTOL aircraft .. Mini UAV derivative of the concept: flying rotor . 122. General
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.