ebook img

Design, Fabrication and Testing of Angled Fiber Suspension for Electrostatic Actuators PDF

118 Pages·2012·5.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design, Fabrication and Testing of Angled Fiber Suspension for Electrostatic Actuators

Design, Fabrication and Testing of Angled Fiber Suspension for Electrostatic Actuators Bryan Edward Schubert Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2012-51 http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-51.html May 1, 2012 Copyright © 2012, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design,FabricationandTestingofAngledFiberSuspensionforElectrostaticActuators by BryanEdwardSchubert Adissertationsubmittedinpartialsatisfactionofthe requirementsforthedegreeof DoctorofPhilosophy in Engineering-ElectricalEngineeringandComputerSciences inthe GraduateDivision ofthe UniversityofCalifornia,Berkeley Committee incharge: ProfessorRonaldS.Fearing,Chair ProfessorAliJavey ProfessorRoyaMaboudian Spring2011 Design,FabricationandTestingofAngledFiberSuspensionforElectrostaticActuators Copyright 2011 by BryanEdwardSchubert 1 Abstract Design,FabricationandTestingofAngledFiberSuspensionforElectrostaticActuators by BryanEdwardSchubert DoctorofPhilosophyinEngineering-ElectricalEngineeringandComputer Sciences UniversityofCalifornia,Berkeley ProfessorRonaldS.Fearing,Chair Asuspensioncomprisedofangledfibersisproposedasanewmeansforachievinghighstrain, high stress, energy dense electrostatic actuators. Angled fiber arrays have low density and can be placed between the electrodes of a parallel plate or comb-drive type actuator to create a self- contained actuator sheet with low mass and volume. Angled fibers also have a Poisson’s ratio of zero,allowingtheuseofrobust,rigidelectrodes,andtheycanbecomposedofstiffmaterialswith lowviscoelasticproperties. Thisisincontrasttothealternativetechnologyofdielectricelastomers that depend on unreliable compliant electrodes and highly viscoelastic dielectrics. Performance limitsofanidealnanometer-scaleactuator,suchasenergydensity,stressandstrain,andefficiency are considered through theoretical modeling. A micrometer scale prototype is fabricated using a novel fiber peeling technique that easily produces high-aspect-ratio (1.8 µm radius, 66 µm long), angled microfibers. The microfibers are used as a suspension for a parallel plate actuator. The prototype actuator is characterized through static and dynamic tests, to reveal a maximum static strainof3.4%atastaticstressof0.8kPa(electricfieldof13.9V/µm),afastunloadedstepresponse of< 2ms,aQof12.9andapowerdensityof12.8W/kgwhendrivinganinertialloadinresonance at845Hz. i Tomyamazingwife,Jessica. ii Contents ListofFigures iv ListofTables x 1 Introduction 1 1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 SurveyofActuators 4 2.1 PiezoelectricCeramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 ElectroactivePolymers(EAPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 ElectronicEAPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 IonicEAPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 CarbonNanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 ShapeMemoryAlloys(SMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 ThermalActuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 MagneticActuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 Electromagnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.2 Magnetostrictive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 ElectrostaticActuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7.1 ParallelPlateActuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7.2 CombDriveActuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7.3 ElectrostaticInductionLinearActuator . . . . . . . . . . . . . . . . . . . 23 2.8 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 DesignandModellingofElectrostaticActuator 26 3.1 Dielectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.1 DielectricBreakdowninAir . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 DielectricBreakdowninPorousMaterial . . . . . . . . . . . . . . . . . . 28 3.1.3 DielectricLosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 IdealStiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 iii 3.2.2 ViscoelasticLosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.3 PorousSupports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 AngledFiberSupports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.1 Squeeze-FilmDamping . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 ForceControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Performance-Stress,StrainandWorkDensity . . . . . . . . . . . . . . . 52 3.4 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Fabrication 58 4.1 FabricationinCombDriveActuator . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Methodsandmaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 Fabricationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4.1 Radiusandlengthlimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 CharacterizationandTesting 76 5.1 TestSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 BreakdownLimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 DCTesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Displacementvs. ElectricField . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.2 DCStepResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.5 ACResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 Conclusion 90 6.1 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Bibliography 93 A Fiberpullingangles 101 iv List of Figures 2.1 (a) Reference axes for piezoelectric subscripts. (b) Example hysteresis curve for PZT [91]. Marked positions correspond to a. unpolarized, b. polarized to satura- tionandc. defaultstateafterpolarization. . . . . . . . . . . . . . . . . . . . . . . 6 2.2 (a)Comparisonofapproximatehysteresisloopsforanormalferroelectric(dashed line)andarelaxorferroelectric(P(VDF-TrFE))(solidline)[19]. (b)Illustrationof crystallized,polarpolymersgraftedtoaflexibleelastomerbackbone. . . . . . . . . 9 2.3 Illustration of trapped charge in a cellular polymer foam with bonded electrodes. Avoltageappliedtotheelectrodeswillcausethisstructuretocompress. . . . . . . 10 2.4 Illustrationofdielectricelastomerwithcompliantelectrodescompressinginthick- nessandexpandingtransverselyunderanappliedvoltage. . . . . . . . . . . . . . 11 2.5 A sample of dielectric elastomer actuator configurations. (a) Spring roll actua- tor with elastomer peeled back to show spring. (b) Folded actuator. (c) Bowtie actuator. (d)Bimorph (top)andunimorph (bottom). . . . . . . . . . . . . . . . . . 14 2.6 IPMC actuation. Top figure is the neutral state. Middle figure is the state just after a voltage is applied to the electrodes, causing cations to move toward the cathode. Bottomfigureisafterthepressuregradientcausesflowtowardstheanode, relievingsomestress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7 CNT actuator in aqueous solution of NaCl. Two gray regions are SWNT sheets bonded together by double-sided tape. The polarity of the applied voltage causes theionstoformachargeddoublelayerontheSWNTs. Thechargeinjectioncauses mechanicaldeformations intheSWNTs,makingthecantileverbend[9]. . . . . . . 17 2.8 ToprowshowscrystalstructureofthematerialduringthedifferentstagesofSMA actuator use. (a) SMA spring in low-temperature, undeformed martensite state. (b)SMAspringinlow-temperature,deformedmartensitestate. (c)SMAspringin hightemperatureaustenitestate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.9 Parallelplateactuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 v 2.10 (a) Integrated force array. The polyimide beams are t = 0.35 µm thick, the metal p layers are t = 30 nm thick, and the air gap between beams is t = 1.2 µm thick. m g The support spacing is d = 22 µm long. This actuator is only 2 to 4 µm thick into the page [11, 43]. (b) Macroscale, distributed electrostatic micro actuator. This actuator is composed of flexible 7.5 µm thick polyimide film coated with 12.5 nm ofnickel. Thedouble-sidedtapeis25µmthick. Thisactuatoris28mmthickinto thepage[58]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.11 Comb drive actuator shown at an angled perspective, and detail of a single finger fromthetopview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.12 Linearinductionmotor. In(1)chargesareinducedonthesliderbytherotor. In(2) the charge on the rotor is switched, causing it to repel the slider and force it over byonestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 Electrical limits based on Paschen effect and field emission in air. (a) Maximum voltage versus gap spacing. (b) Maximum field strength versus gap spacing. The shadedregionsdenotethesafedesignlimits. . . . . . . . . . . . . . . . . . . . . . 27 3.2 Electrostatic actuators using angled fibers and porous foam as support structures. (a,b) Parallel plate. (c,d) Comb drive. Drawings on left side show the actuators in theirdefaultstate,anddrawingsontherightshowtheactuatorscompressingunder electrostaticpressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 (a) Spring force for linear spring and buckling spring plotted with electrostatic force for a parallel plate actuator with arbitrary units. The filled dots are unsta- ble points and the open dots are stable points. The arrow shows the direction of increasingvoltage. (b)Illustration ofspringbetweenparallelplates. . . . . . . . . 33 3.4 Models for linear viscoelasticity in a material, and plots showing approximate displacement behavior for a constant applied force. (a) Voigt-Kelvin model. (b) Maxwell model. (c) Combined Voigt-Kelvin and Maxwell model called the Stan- dardSolid[72] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Example compressive stress-strain behavior for different cellular foams. (a) Elas- tomeric foam, where plateau region is from elastic buckling of cell walls. (b) Polymeric foam that shows a plateau region as a result of plastic yielding of cell walls. (c) Brittle foam with jagged plateau region resulting from brittle fracture of cellwalls[31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Normalized stress as a function of strain for an elastic open cell foam with m = 1 andD = 1. Thevaluesonthelinesaretherelativedensitiesρ /ρ . . . . . . . . . . 40 f s

Description:
List of Figures iv. List of Tables x. 1 Introduction 2.7.3 ElectrostaticInductionLinearActuator . with fiber optic displacement sensors. The x probe is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.