ThePennsylvaniaStateUniversity TheGraduateSchool DESIGNANDSIMULATIONOFALAGGEDCABLEANGLEFEEDBACKCONTROLSYSTEM FORHELICOPTERSLUNGLOADS AThesisin AerospaceEngineering by JayanthKrishnamurthi ©2013JayanthKrishnamurthi SubmittedinPartialFulfillment oftheRequirements fortheDegreeof MasterofScience August2013 ThethesisofJayanthKrishnamurthiwasreviewedandapproved∗bythefollowing: JosephF.Horn AssociateProfessor,DepartmentofAerospaceEngineering ThesisAdvisor GeorgeA.Lesieutre Professor,DepartmentofAerospaceEngineering DepartmentHead ChristopherD.Rahn Professor,DepartmentofMechanicalandNuclearEngineering ∗SignaturesareonfileintheGraduateSchool. Abstract A control design method to address stability and handling qualities issues associated with helicopter slungloadoperationsinhoverandlowspeedispresented. Asimplemodelwasdevelopedusingfirst principlephysics, withapplicationofbasiccontroltechniques. Subsequently, anon-linearslungload model was developed and integrated with the GenHel-PSU simulation of the UH-60A. Linear model frequency responses were verified against AFDD OVERCAST models and flight data, showing good correlation in the relevant frequency ranges. A control architecture based on dynamic inversion was developed,combiningfuselageandloadstatefeedback. Slungloadstateswereincorporatedinfeedback linearizationandlaggedcableanglefeedbackwasintroduced. Acontrollerthatusesonlylaggedcable anglefeedback(andnoloadstatesinfeedbacklinearization)wasalsoinvestigated. Sensitivitytoload parameter variations and optimization methodologies were considered in aiding the design process. Preliminarybatchandreal-timesimulationswereconductedtoevaluateperformanceofthecontroller. Thecontrolleranditsvariationsdemonstratedkeytrade-offsbetweenloadswingdampingandpiloted response. Laggedcableanglefeedbackwasfoundtobeeffectiveinloadstabilizationwithouttheuse of noisy cable angle or rate sensor signals but exclusive usage distorted pilot response considerably. Thecontrollerwasrobustandmaintainedclosed-loopstabilityforawiderangeofloadmassandcable lengthvalues. iii Table of Contents ListofFigures vi ListofTables viii ListofSymbols ix Acknowledgments xiii Chapter1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 GoalandOrganizationofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter2 FirstPrinciplesAnalysis 5 2.1 BasicModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 PitchAutopilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 CableStateFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 ProportionalCableAngleFeedback . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Proportional-DerivativeCableAngle/RateFeedback . . . . . . . . . . . . . . . 11 2.3.3 LaggedCableAngleFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter3 SimulationModel 14 3.1 SystemMetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 SlungLoadEquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 ReferenceFramesandNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 EquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 High-OrderLinearModelandValidation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 GenHel-PSUvsAFDDOVERCASTLinearModel . . . . . . . . . . . . . . . . . 22 3.3.2 GenHel-PSUvsAFDDFlightTest . . . . . . . . . . . . . . . . . . . . . . . . . . 22 iv Chapter4 ControlSystemDesign 37 4.1 Low-OrderLinearModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 BaselineControlLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.1 CommandFiltersandErrorDynamics . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 ControlMixingandFeedbackLinearization . . . . . . . . . . . . . . . . . . . . 41 4.3 LoadStatesinFeedbackLinearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 LaggedCableAngleFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter5 Closed-LoopLinearModelAnalysis 47 Chapter6 RobustnessAnalysisandDesignMaps 51 6.1 LoadParameterVariations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 DesignMaps-LoadDampingvsPilotResponse . . . . . . . . . . . . . . . . . . . . . . 53 6.2.1 CSF+LCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2.2 LCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Chapter7 GenHelSimulation 59 7.1 BatchSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2 PreliminaryPilotedSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Chapter8 ConclusionsandFutureResearch 64 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.2 FutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 AppendixA DynamicInversionController-Simulink®Diagrams 67 AppendixB LinearModelAnalysis-MATLAB®Script 76 Bibliography 80 v List of Figures 1.1 AUH-60withslungload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.1 Simplifiedslungloadschematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Cart/PendulumSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 AircraftPitchSAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 CableStateFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 ProportionalFeedbackofCableAngle,G (s)=K . . . . . . . . . . . . . . . . . . . . 11 c P 2.6 Proportional-DerivativeCableAngle/RateFeedback,G (s)=K +K s . . . . . . . 11 c P D 2.7 Proportional-DerivativeCableAngle/RateFeedbackwithinertialcableangle,G (s) = c K +K s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 P D 2.8 LaggedCableAngleFeedback,Gc(s)= τcKs+c1 . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 SlungLoadConfigurationandReferenceFrames . . . . . . . . . . . . . . . . . . . . . . 17 3.2 LateralCableAngletoLateralStickFrequencyResponse,Hover,3000lbs,14ftcable. . 23 3.3 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 3000 lbs, 14ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 LateralCableAngletoLateralStickFrequencyResponse,Hover,3000lbs,51ftcable. . 25 3.5 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 3000 lbs, 51ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 LateralCableAngletoLateralStickFrequencyResponse,Hover,6000lbs,14ftcable. . 27 3.7 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 6000 lbs, 14ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.8 LateralCableAngletoLateralStickFrequencyResponse,Hover,6000lbs,51ftcable. . 29 3.9 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 6000 lbs, 51ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.10 RollRatetoLateralStickFrequencyResponse,Hover,4567lbs,16ftcable . . . . . . . . 31 3.11 PitchRatetoLongitudinalStickFrequencyResponse,Hover,4567lbs,16ftcable . . . . 32 3.12 RollRatetoLateralStickFrequencyResponse,Hover,5990lbs,81ftcable . . . . . . . . 33 3.13 PitchRatetoLongitudinalStickFrequencyResponse,Hover,5990lbs,81ftcable . . . . 34 3.14 RollAttitudetoLateralStickFrequencyResponse,Hover,5100lbs,33ftcable . . . . . 35 3.15 RollRatetoLateralStickFrequencyResponse,Hover,5100lbs,33ftcable . . . . . . . . 36 4.1 BaselineControlSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 RollAttitudeCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . . 41 4.3 PitchAttitudeCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . 41 4.4 VerticalSpeedCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . 42 4.5 YawRateCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . . . . 42 vi 4.6 ControlSystemwithLoadStatesinFeedbackLinearization . . . . . . . . . . . . . . . . 44 4.7 ControlSystemwithLaggedCableAngleFeedbackandloadstatesinfeedbacklineariza- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.8 Control System with only Lagged Cable Angle Feedback, no load states in feedback linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1 AircraftRollAttitudetoLateralStick(φ/δ )FrequencyResponse,LMR=0.25,51ftcable 48 lat 5.2 LateralCableAngletoLateralStick(φ /δ )FrequencyResponse,LMR=0.25,51ftcable 49 c lat 5.3 AircraftPitchAttitudetoLongitudinalStick(θ/δ )FrequencyResponse,LMR=0.25, long 51ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 LongitudinalCableAngletoLongitudinalStick(θ /δ )FrequencyResponse,LMR= c long 0.25,51ftcable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1 CSF+LCFClosed-looppoleswithloadmassvariations,51ftcable,LMR=0.15to0.29 . 52 6.2 CSF+LCFClosed-looppoleswithcablelengthvariations,LMR=0.25,l=10to200ft . 53 6.3 ∆ metricillustration,Ref. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 dB 6.4 HandlingQualities(HQ)Ratingcorrelationwith∆ metric,Ref. [1] . . . . . . . . . . 55 dB 6.5 LateralSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,51ftcable . . . . . . . . 56 dB 6.6 LongitudinalSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,51ftcable . . . . 56 dB 6.7 LateralSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,33ftcable . . . . . . . . 56 dB 6.8 LongitudinalSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,33ftcable . . . . 57 dB 6.9 LateralSwingDampingand∆ Maps,LCF,LMR=0.25,51ftcable . . . . . . . . . . . 57 dB 6.10 LongitudinalSwingDampingand∆ Maps,LCF,LMR=0.25,51ftcable . . . . . . . 57 dB 6.11 LateralSwingDampingand∆ Maps,LCF,LMR=0.25,33ftcable . . . . . . . . . . . 58 dB 6.12 LongitudinalSwingDampingand∆ Maps,LCF,LMR=0.25,33ftcable . . . . . . . 58 dB 7.1 Longitudinalaccel/decelmaneuver,CSF,LMR=0.25,51ftcable . . . . . . . . . . . . . 60 7.2 Longitudinalaccel/decelmaneuver,CSF+LCF,LMR=0.25,51ftcable . . . . . . . . . . 60 7.3 Longitudinalaccel/decelmaneuver,LCF,LMR=0.25,51ftcable . . . . . . . . . . . . . 61 7.4 Longitudinalaccel/decelmaneuver,LCFengagedatendofmaneuver,LMR=0.25,51ft cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.5 PSUVLRCOESimulatorFacility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.6 PrecisionHoverManeuver,CSF+LCF,LMR=0.25,51ftcable . . . . . . . . . . . . . . . 63 7.7 Longitudinalaccel/decelmaneuver,LCF,LMR=0.25,51ftcable . . . . . . . . . . . . . 63 A.1 DynamicInversionControllerwithSlungLoad. . . . . . . . . . . . . . . . . . . . . . . 68 A.2 OverviewofCommandFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A.3 PitchCommandFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A.4 RollCommandFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A.5 YawCommandFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A.6 OverviewofCableCompensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.7 CableStateFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.8 CablePitchAngleLagFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A.9 CableRollAngleLagFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A.10 EulerRateCalculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.11 InitializationCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.12 ErrorIntegrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.13 TurnCoordinationCommandLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.14 u,v,wWashoutFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 vii List of Tables 4.1 CommandFilterFrequencyandDamping . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 DisturbanceRejectionFrequency,DampingandIntegratorPoles . . . . . . . . . . . . . 40 4.3 ErrorCompensatorGainValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 viii List of Symbols Inthisthesis,allboldlettersarevectors,unlessotherwisespecified. Anyvariablewithonedotoverhead isthefirstderivativewithrespecttotime, twodotsoverheadisthesecondderivativewithrespectto time, and so on. In some instances, a variable may have more than one definition depending on the context. Insuchcases,eachdefinitionisseparatedbyasemicolon. Allsymbols,whetherdefinedhereornot,aredefinedatthefirstusagefortheconvenienceofthe reader. A systemmatrix a accelerationofpointBintheinertialframe,ft/sec2 B/n a accelerationofpointLinthecableframe,ft/sec2 L/c a accelerationofpointLintheinertialframe,ft/sec2 L/n a accelerationofloadattachmentpointinthebodyframe,ft/sec2 hook B controlmatrix;aircraftCGinFigure3.1 bˆ ,bˆ ,bˆ aircraftbodyaxes x y z blcgb aircraftCGbutt-linelocation,in blhook loadhookbutt-linelocation,in (cid:20) (cid:21) C C,C1,C2 outputmatrices,C = 1 C 2 C cablestretchdampingcoefficient,lbs/(ft/sec) cable C loadviscousdampingcoefficient,lbs/(ft/sec) visc C rotationmatrixfrominertialtoaircraftbodyframe b/n C rotationmatrixfromcabletoaircraftbodyframe b/c ix C rotationmatrixfromaircraftbodytocableframe c/b C rotationmatrixfromaircraftbodytoinertialframe n/b C rotationmatrixfromcabletoinertialframe n/c cˆ ,cˆ ,cˆ load/cablereferenceframe x y z e trackingerrorvector F appliedlongitudinalforceinsimplifiedmodel,lbs F tensionforceonthecable,lbs cable F dragforceontheload,lbs drag F gravitationalforceontheload,lbs gravitational F resultantforceontheload,lbs load f equivalentflatplatedragarea,ft2 D fscgb aircraftCGfuselage-stationlocation,in fshook loadhookfuselage-stationlocation,in G (s) cablestatefeedbacktransferfunction c g,gn gravitationalaccelerationintheinertialframe,ft/sec2 gc gravitationalaccelerationinthecableframe,ft/sec2 I loadinertia,slugs-ft2 L I aircraftinertia,slugs-ft2 M K laggedcableanglefeedbackgain c K cablestretchspringconstant,lbs/ft cable K ,K ,K derivative,integral,andproportionalfeedbackgains D I P K derivativegaininaircraftpitchSAS q K proportionalgaininaircraftpitchSAS θ L center-of-massofload LMR load-mass-ratio,LMR= mL M+mL l lengthofcable,ft l un-stretchedcablelength,ft 0 M massofthecart;massoftheaircraft,slugs M pitchdampingderivative,1/sec q x
Description: