ebook img

DESIGN AND SIMULATION OF A LAGGED CABLE ANGLE FEEDBACK CONTROL SYSTEM PDF

96 Pages·2013·4.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DESIGN AND SIMULATION OF A LAGGED CABLE ANGLE FEEDBACK CONTROL SYSTEM

ThePennsylvaniaStateUniversity TheGraduateSchool DESIGNANDSIMULATIONOFALAGGEDCABLEANGLEFEEDBACKCONTROLSYSTEM FORHELICOPTERSLUNGLOADS AThesisin AerospaceEngineering by JayanthKrishnamurthi ©2013JayanthKrishnamurthi SubmittedinPartialFulfillment oftheRequirements fortheDegreeof MasterofScience August2013 ThethesisofJayanthKrishnamurthiwasreviewedandapproved∗bythefollowing: JosephF.Horn AssociateProfessor,DepartmentofAerospaceEngineering ThesisAdvisor GeorgeA.Lesieutre Professor,DepartmentofAerospaceEngineering DepartmentHead ChristopherD.Rahn Professor,DepartmentofMechanicalandNuclearEngineering ∗SignaturesareonfileintheGraduateSchool. Abstract A control design method to address stability and handling qualities issues associated with helicopter slungloadoperationsinhoverandlowspeedispresented. Asimplemodelwasdevelopedusingfirst principlephysics, withapplicationofbasiccontroltechniques. Subsequently, anon-linearslungload model was developed and integrated with the GenHel-PSU simulation of the UH-60A. Linear model frequency responses were verified against AFDD OVERCAST models and flight data, showing good correlation in the relevant frequency ranges. A control architecture based on dynamic inversion was developed,combiningfuselageandloadstatefeedback. Slungloadstateswereincorporatedinfeedback linearizationandlaggedcableanglefeedbackwasintroduced. Acontrollerthatusesonlylaggedcable anglefeedback(andnoloadstatesinfeedbacklinearization)wasalsoinvestigated. Sensitivitytoload parameter variations and optimization methodologies were considered in aiding the design process. Preliminarybatchandreal-timesimulationswereconductedtoevaluateperformanceofthecontroller. Thecontrolleranditsvariationsdemonstratedkeytrade-offsbetweenloadswingdampingandpiloted response. Laggedcableanglefeedbackwasfoundtobeeffectiveinloadstabilizationwithouttheuse of noisy cable angle or rate sensor signals but exclusive usage distorted pilot response considerably. Thecontrollerwasrobustandmaintainedclosed-loopstabilityforawiderangeofloadmassandcable lengthvalues. iii Table of Contents ListofFigures vi ListofTables viii ListofSymbols ix Acknowledgments xiii Chapter1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 GoalandOrganizationofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter2 FirstPrinciplesAnalysis 5 2.1 BasicModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 PitchAutopilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 CableStateFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 ProportionalCableAngleFeedback . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Proportional-DerivativeCableAngle/RateFeedback . . . . . . . . . . . . . . . 11 2.3.3 LaggedCableAngleFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter3 SimulationModel 14 3.1 SystemMetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 SlungLoadEquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 ReferenceFramesandNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 EquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 High-OrderLinearModelandValidation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 GenHel-PSUvsAFDDOVERCASTLinearModel . . . . . . . . . . . . . . . . . 22 3.3.2 GenHel-PSUvsAFDDFlightTest . . . . . . . . . . . . . . . . . . . . . . . . . . 22 iv Chapter4 ControlSystemDesign 37 4.1 Low-OrderLinearModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 BaselineControlLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.1 CommandFiltersandErrorDynamics . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 ControlMixingandFeedbackLinearization . . . . . . . . . . . . . . . . . . . . 41 4.3 LoadStatesinFeedbackLinearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 LaggedCableAngleFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter5 Closed-LoopLinearModelAnalysis 47 Chapter6 RobustnessAnalysisandDesignMaps 51 6.1 LoadParameterVariations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 DesignMaps-LoadDampingvsPilotResponse . . . . . . . . . . . . . . . . . . . . . . 53 6.2.1 CSF+LCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2.2 LCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Chapter7 GenHelSimulation 59 7.1 BatchSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2 PreliminaryPilotedSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Chapter8 ConclusionsandFutureResearch 64 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.2 FutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 AppendixA DynamicInversionController-Simulink®Diagrams 67 AppendixB LinearModelAnalysis-MATLAB®Script 76 Bibliography 80 v List of Figures 1.1 AUH-60withslungload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.1 Simplifiedslungloadschematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Cart/PendulumSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 AircraftPitchSAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 CableStateFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 ProportionalFeedbackofCableAngle,G (s)=K . . . . . . . . . . . . . . . . . . . . 11 c P 2.6 Proportional-DerivativeCableAngle/RateFeedback,G (s)=K +K s . . . . . . . 11 c P D 2.7 Proportional-DerivativeCableAngle/RateFeedbackwithinertialcableangle,G (s) = c K +K s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 P D 2.8 LaggedCableAngleFeedback,Gc(s)= τcKs+c1 . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 SlungLoadConfigurationandReferenceFrames . . . . . . . . . . . . . . . . . . . . . . 17 3.2 LateralCableAngletoLateralStickFrequencyResponse,Hover,3000lbs,14ftcable. . 23 3.3 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 3000 lbs, 14ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 LateralCableAngletoLateralStickFrequencyResponse,Hover,3000lbs,51ftcable. . 25 3.5 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 3000 lbs, 51ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 LateralCableAngletoLateralStickFrequencyResponse,Hover,6000lbs,14ftcable. . 27 3.7 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 6000 lbs, 14ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.8 LateralCableAngletoLateralStickFrequencyResponse,Hover,6000lbs,51ftcable. . 29 3.9 Longitudinal Cable Angle to Longitudinal Stick Frequency Response, Hover, 6000 lbs, 51ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.10 RollRatetoLateralStickFrequencyResponse,Hover,4567lbs,16ftcable . . . . . . . . 31 3.11 PitchRatetoLongitudinalStickFrequencyResponse,Hover,4567lbs,16ftcable . . . . 32 3.12 RollRatetoLateralStickFrequencyResponse,Hover,5990lbs,81ftcable . . . . . . . . 33 3.13 PitchRatetoLongitudinalStickFrequencyResponse,Hover,5990lbs,81ftcable . . . . 34 3.14 RollAttitudetoLateralStickFrequencyResponse,Hover,5100lbs,33ftcable . . . . . 35 3.15 RollRatetoLateralStickFrequencyResponse,Hover,5100lbs,33ftcable . . . . . . . . 36 4.1 BaselineControlSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 RollAttitudeCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . . 41 4.3 PitchAttitudeCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . 41 4.4 VerticalSpeedCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . 42 4.5 YawRateCommandFilterandErrorCompensation . . . . . . . . . . . . . . . . . . . . 42 vi 4.6 ControlSystemwithLoadStatesinFeedbackLinearization . . . . . . . . . . . . . . . . 44 4.7 ControlSystemwithLaggedCableAngleFeedbackandloadstatesinfeedbacklineariza- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.8 Control System with only Lagged Cable Angle Feedback, no load states in feedback linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1 AircraftRollAttitudetoLateralStick(φ/δ )FrequencyResponse,LMR=0.25,51ftcable 48 lat 5.2 LateralCableAngletoLateralStick(φ /δ )FrequencyResponse,LMR=0.25,51ftcable 49 c lat 5.3 AircraftPitchAttitudetoLongitudinalStick(θ/δ )FrequencyResponse,LMR=0.25, long 51ftcable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 LongitudinalCableAngletoLongitudinalStick(θ /δ )FrequencyResponse,LMR= c long 0.25,51ftcable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1 CSF+LCFClosed-looppoleswithloadmassvariations,51ftcable,LMR=0.15to0.29 . 52 6.2 CSF+LCFClosed-looppoleswithcablelengthvariations,LMR=0.25,l=10to200ft . 53 6.3 ∆ metricillustration,Ref. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 dB 6.4 HandlingQualities(HQ)Ratingcorrelationwith∆ metric,Ref. [1] . . . . . . . . . . 55 dB 6.5 LateralSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,51ftcable . . . . . . . . 56 dB 6.6 LongitudinalSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,51ftcable . . . . 56 dB 6.7 LateralSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,33ftcable . . . . . . . . 56 dB 6.8 LongitudinalSwingDampingand∆ Maps,CSF+LCF,LMR=0.25,33ftcable . . . . 57 dB 6.9 LateralSwingDampingand∆ Maps,LCF,LMR=0.25,51ftcable . . . . . . . . . . . 57 dB 6.10 LongitudinalSwingDampingand∆ Maps,LCF,LMR=0.25,51ftcable . . . . . . . 57 dB 6.11 LateralSwingDampingand∆ Maps,LCF,LMR=0.25,33ftcable . . . . . . . . . . . 58 dB 6.12 LongitudinalSwingDampingand∆ Maps,LCF,LMR=0.25,33ftcable . . . . . . . 58 dB 7.1 Longitudinalaccel/decelmaneuver,CSF,LMR=0.25,51ftcable . . . . . . . . . . . . . 60 7.2 Longitudinalaccel/decelmaneuver,CSF+LCF,LMR=0.25,51ftcable . . . . . . . . . . 60 7.3 Longitudinalaccel/decelmaneuver,LCF,LMR=0.25,51ftcable . . . . . . . . . . . . . 61 7.4 Longitudinalaccel/decelmaneuver,LCFengagedatendofmaneuver,LMR=0.25,51ft cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.5 PSUVLRCOESimulatorFacility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.6 PrecisionHoverManeuver,CSF+LCF,LMR=0.25,51ftcable . . . . . . . . . . . . . . . 63 7.7 Longitudinalaccel/decelmaneuver,LCF,LMR=0.25,51ftcable . . . . . . . . . . . . . 63 A.1 DynamicInversionControllerwithSlungLoad. . . . . . . . . . . . . . . . . . . . . . . 68 A.2 OverviewofCommandFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A.3 PitchCommandFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A.4 RollCommandFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A.5 YawCommandFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 A.6 OverviewofCableCompensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.7 CableStateFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.8 CablePitchAngleLagFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A.9 CableRollAngleLagFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 A.10 EulerRateCalculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.11 InitializationCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.12 ErrorIntegrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.13 TurnCoordinationCommandLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.14 u,v,wWashoutFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 vii List of Tables 4.1 CommandFilterFrequencyandDamping . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 DisturbanceRejectionFrequency,DampingandIntegratorPoles . . . . . . . . . . . . . 40 4.3 ErrorCompensatorGainValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 viii List of Symbols Inthisthesis,allboldlettersarevectors,unlessotherwisespecified. Anyvariablewithonedotoverhead isthefirstderivativewithrespecttotime, twodotsoverheadisthesecondderivativewithrespectto time, and so on. In some instances, a variable may have more than one definition depending on the context. Insuchcases,eachdefinitionisseparatedbyasemicolon. Allsymbols,whetherdefinedhereornot,aredefinedatthefirstusagefortheconvenienceofthe reader. A systemmatrix a accelerationofpointBintheinertialframe,ft/sec2 B/n a accelerationofpointLinthecableframe,ft/sec2 L/c a accelerationofpointLintheinertialframe,ft/sec2 L/n a accelerationofloadattachmentpointinthebodyframe,ft/sec2 hook B controlmatrix;aircraftCGinFigure3.1 bˆ ,bˆ ,bˆ aircraftbodyaxes x y z blcgb aircraftCGbutt-linelocation,in blhook loadhookbutt-linelocation,in (cid:20) (cid:21) C C,C1,C2 outputmatrices,C = 1 C 2 C cablestretchdampingcoefficient,lbs/(ft/sec) cable C loadviscousdampingcoefficient,lbs/(ft/sec) visc C rotationmatrixfrominertialtoaircraftbodyframe b/n C rotationmatrixfromcabletoaircraftbodyframe b/c ix C rotationmatrixfromaircraftbodytocableframe c/b C rotationmatrixfromaircraftbodytoinertialframe n/b C rotationmatrixfromcabletoinertialframe n/c cˆ ,cˆ ,cˆ load/cablereferenceframe x y z e trackingerrorvector F appliedlongitudinalforceinsimplifiedmodel,lbs F tensionforceonthecable,lbs cable F dragforceontheload,lbs drag F gravitationalforceontheload,lbs gravitational F resultantforceontheload,lbs load f equivalentflatplatedragarea,ft2 D fscgb aircraftCGfuselage-stationlocation,in fshook loadhookfuselage-stationlocation,in G (s) cablestatefeedbacktransferfunction c g,gn gravitationalaccelerationintheinertialframe,ft/sec2 gc gravitationalaccelerationinthecableframe,ft/sec2 I loadinertia,slugs-ft2 L I aircraftinertia,slugs-ft2 M K laggedcableanglefeedbackgain c K cablestretchspringconstant,lbs/ft cable K ,K ,K derivative,integral,andproportionalfeedbackgains D I P K derivativegaininaircraftpitchSAS q K proportionalgaininaircraftpitchSAS θ L center-of-massofload LMR load-mass-ratio,LMR= mL M+mL l lengthofcable,ft l un-stretchedcablelength,ft 0 M massofthecart;massoftheaircraft,slugs M pitchdampingderivative,1/sec q x

Description:
FOR HELICOPTER SLUNG LOADS. A Thesis in slung load operations in hover and low speed is presented. gine electric control unit (ECU).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.