ebook img

Design and Optimization of Low-power Level-crossing ADCs PDF

148 Pages·2012·8.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design and Optimization of Low-power Level-crossing ADCs

Design and Optimization of Low-power Level-crossing ADCs Colin Weltin-Wu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 ©2012 ColinWeltin-Wu AllRightsReserved Abstract Mixed-Signal Circuit Techniques for Low Power and High Speed Level Crossing ADCs Colin Weltin-Wu This thesis investigates some of the practical issues related to the implementation of level- crossingADCsinnanometerCMOS.Alevel-crossingADCtargetingminimumpowerisdesigned and measured. Three techniques to circumvent performance limitations due to the zero-crossing detectorattheheartoftheADCareproposedanddemonstrated: anadaptiveresolutionalgorithm, an adaptive bias current algorithm, and automatic offset cancelation. The ADC, fabricated in 130 nm CMOS, is designed to operate over a 20 kHz bandwidth while consuming a maximum of 8.5 µW. A peak SNDR of 54 dB for this 8-bit ADC demonstrates a key advantage of level-crossing sampling,namelySNDRhigherthantheclassicNyquistlimit. Contents ListofFigures iii ListofTables x 1 Level-CrossingSamplingSystems 1 1.1 ThesisOutlineandGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 ConsiderationsforLowPower 8 2.1 TopologyandSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 FeedbackDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 ZeroCrossingDetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 DigitalLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 InterconnectCapacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 DelayDistortionandNoiseAnalysis 25 3.1 Input-DependentZCDDelay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 i 3.1.1 AModelForZCDDelay . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 HarmonicDistortionofaLevelCrossingQuantizer . . . . . . . . . . . . . 33 3.1.3 Delay-Dispersion-InducedHarmonicDistortion . . . . . . . . . . . . . . . 39 3.2 NoiseAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 ZCDNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 DesignofaµWProgrammableLCADC 55 4.1 AdaptiveResolutionAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 ProgrammableAsynchronousTimingGeneration . . . . . . . . . . . . . . . . . . 66 4.3 ZeroCrossingDetectorswithDynamicCurrentBias . . . . . . . . . . . . . . . . 69 4.3.1 Three-StageZeroCrossingDetector . . . . . . . . . . . . . . . . . . . . . 69 4.3.2 CurrentBiasDACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 SegmentedCapacitorFeedbackDAC . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5 AutomaticOffsetCalibrationwithOscillator . . . . . . . . . . . . . . . . . . . . . 81 4.5.1 RelaxationOscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.6 OtherCircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.6.1 BootstrappedInputSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.6.2 Current-SteeringReconstructionDAC . . . . . . . . . . . . . . . . . . . . 87 4.6.3 AsynchronousController . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.6.4 SPIandCalibrationLogic . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 LCADCMeasurements 90 ii 5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 LCADCSystemPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4 CalibrationAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.5 DelayElements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.6 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 ConclusionsandSuggestionsforFutureWork 113 6.1 PerformanceComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.1.1 Level-CrossingADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.1.2 SynchronousADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2 SuggestionsforFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 A DerivationofDistortionEquations 123 A.1 TheFourierComponentsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 m,n A.2 Non-UniformDelayImpactonHarmonicDistortion . . . . . . . . . . . . . . . . 125 A.3 InputSlopeatTR (t)Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 127 m B SiliconErrata 129 iii List of Figures 1.1 A2-bit(4-level)level-crossingsampler,withuniformquantizationlevels. . . . . . 2 2.1 AsimpleLCADCimplementedasaflash. . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Transfercharacteristicofan(a)mid-riseand(b)mid-treadquantizeraround0. . . . 10 2.3 The digital output x (t) of the LCADC contains the information of the samples, q shown as the circles in the graph. The continuous-time DAC generates a zero- order-held-likereconstructionoftheanaloginputfromthesamples. . . . . . . . . 11 2.4 FeedbackLCADCtopology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Feedback LCADC topology with a capacitive DAC. The capacitive DAC recon- structs v (t) as before, and subtracts it from v (t) capacitively so that the ZCD xq x inputrangeisreduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Schematic of the capacitive DAC, using a classic charge-redistribution array. The operationofthedacRST anddacEN signalswillbeexplainedshortly. . . . . . . . 16 iv 2.7 Timing diagram of the control signals for the capacitive DAC. The ZCD signal referstothevaryingZCDinput,eitherV+fortheupperZCDorV−forthelower ZCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8 Differentconfigurationsofabinarybus. . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 AZCDstagemodeledwithasaturatingtransconductorandsingleoutputpole. . . . 26 3.2 On the left, the ZCD input can be approximated as a series of voltage ramps. The dashed horizontal grey lines indicate the input range of the ZCD where the output is not saturated. On the right, the actual ZCD response is superimposed over an idealresponseingrey. TheactualZCDzerocrossingattimet isdelayedfromthe c ideal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Reducing bandwidth and increasing gain proportionally cause the first-order sys- temtobehavemoreandmorelikeanidealintegrator. . . . . . . . . . . . . . . . . 30 3.4 Delayvs. inputslope,andthetwoapproximationsin(3.5)and(3.12). . . . . . . . 31 3.5 Delay of a three stage cascaded amplifier, by stage. Also shown is the delay of singlestagethathasthesameoverallgainandbandwidthasthecascade. . . . . . . 32 3.6 With symmetric quantization levels, it is possible to express the quantized signal with2N−1 signalsTR (t). Foranodd-symmetricinput,eachoftheTR (t)signals m m isalsooddsymmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7 TheFourierseriesapproximationofv (t)foranalmostfull-scaletime-normalized xq sinusoidinput,for150,800,and4000Fourierterms. . . . . . . . . . . . . . . . . 37 v 3.8 Wide variation in SFDR for small changes in input amplitude. The solid vertical line represents a level of the reconstructed quantized signal, and the dotted lines arethequantizerthresholds. ThefigurespanstwoLSBofthequantizerinputrange. 38 3.9 The first harmonics of the LCADC output with ZCD delay variation. The input is a20kHz1Vpeaksinewave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.10 Impact of dispersion on SDR, 500 harmonics considered. The input is a full scale sinusoidofthespecifiedfrequency. . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.11 Dispersion as a function of stage bandwidth for a 3-stage cascade of identical single-time-constantstages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.12 Visualizationofthefunction p (∆,t)definedforallreal∆. . . . . . . . . . . . . . 45 0 3.13 Within one period of a full-scale sine wave there are 2N+1 level crossings, which occurattimess relativetothebeginningofeachperiod. . . . . . . . . . . . . . . 45 i 3.14 Decomposition of a noisy TR (t) signal (a) into the ideal noiseless TR (t) signal m m (b)andapulsesequencerepresentingjitterduetonoise(c). . . . . . . . . . . . . 46 3.15 NoisecorruptsthepathoftheZCDoutputvoltage,causingthezerocrossingtobe disturbedrandomly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.16 Simulated LCADC noise with ZCD jitter, over a 100 MHz span with a 10 kHz input. Resolutionbandwidthis100Hz. . . . . . . . . . . . . . . . . . . . . . . . 51 3.17 Detail of Fig. 3.16 over a 2 MHz span with the same RBW = 100 Hz. At low frequencies,theimpulseapproximationisstillvalid. . . . . . . . . . . . . . . . . 52 vi 3.18 SimulatedLCADCnoisewithZCDjitter,overa100MHzspanwitha1kHzinput. Resolutionbandwidthis10Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.19 Detail of Fig. 3.18 over a 2 MHz span, with RBW = 10 Hz. Note the LCADC distortion components have moved closer in, but other than that the impulse ap- proximationstillpredictsthenoiselevel. . . . . . . . . . . . . . . . . . . . . . . . 54 4.1 ToplevelLCADCblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Twomethodsforreducingthesamplingrate. . . . . . . . . . . . . . . . . . . . . . 60 4.3 Thebehaviorofanidealadaptiveresolutionscheme(a)andtheproposed(b). . . . 61 4.4 If the input slope changes, the trailing boundary can catch the input leading to oscillations, shown in (a). The alternative trailing boundary behavior shown in (b) doesnotsufferthisproblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5 If the input crosses a threshold during a resolution change, there is a quantization error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6 Asynchronous timing generator formed with an 11-tap delay line, each with 4-bit control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.7 The timing edges from the delay line are launched by either anUP trigger or DN trigger. If the line has not finished propagating when then next trigger arrives, it restartsfromthebeginning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 vii

Description:
shop area as my little playpen and the experience fostered my interest in nerve action potentials, signals in the brain, and ECG waveforms are all
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.