DESIGN AND OPTIMIZATION OF ELECTRICALLY SMALL ANTENNAS FOR HIGH FREQUENCY (HF) APPLICATIONS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING DECEMBER 2014 By James M. Baker Dissertation Committee: Magdy F. Iskander, Chairperson Zhengqing Yun David Garmire Victor Lubecke John Madey Keywords: Compact HF, Coastal Radar, Electrically Small Antennas Copyright By James M. Baker 2014 ii ABSTRACT This dissertation presents new concepts and design approaches for the development and optimization of electrically small antennas (ESA) suitable for high frequency (HF) radio communications and coastal surface wave radar applications. For many ESA applications, the primary characteristics of interest (and limiting factors) are lowest self- resonant frequency achieved, input impedance, radiation resistance, and maximum bandwidth achieved. The trade-offs between these characteristics must be balanced when reducing antenna size in order to retain acceptable performance. The concept of “inner toploading” is introduced and utilized in traditional and new designs to reduce antenna ka and resonant frequencies without increasing physical size. Two different design approaches for implementing the new concept were pursued and results presented. The first design approach investigated toroidal and helical designs, including combinations of toroidal helical antennas, helical meandering line antennas, and additional designs incorporating toploading and folding to improve performance. The other approach investigated fractal-based designs in two and three dimensions to improve performance, reduce size, and lower resonant frequency. The performance characteristics of fractal geometries were analyzed and compared with non-fractal designs of similar height, total wire length, and ka. Inner toploading was also applied in the two design approaches and shown to reduce antenna Q by up to a factor of 4 with a corresponding increase in input resistance by up to a factor of 10, when properly applied. When folded arms were applied to various designs, Q was further decreased by a factor of 2 with a corresponding increase in input resistance proportional to the number of arms. Genetic algorithms were developed for optimizing antenna designs and used in custom programs, including a new iii cost function for better comparison of ESA performance. Antenna performance was modeled, analyzed, and optimized using set performance criteria. Several unique antenna designs were simulated and experimentally tested in field measurements. Experimentation was conducted using full-size prototypes with performance measured using vector network analyzers and HF transceivers. Experimental performance measurements were reproduced in simulation models with a high degree of correlation. Successful two-way radio communications were established with amateur radio stations around the world using prototype antennas. iv TABLEOF CONTENTS ABSTRACT ................................................................................................................................................. iii LIST OF TABLES ......................................................................................................................................vii LIST OF FIGURES .................................................................................................................................. viii ACRONYMS ...............................................................................................................................................xii CHAPTER 1 INTRODUCTION ................................................................................................................. 1 A. BACKGROUND ....................................................................................................................................... 1 B. OBJECTIVE ............................................................................................................................................ 3 C. ORGANIZATION...................................................................................................................................... 4 CHAPTER 2 ELECTRICALLY SMALL ANTENNAS............................................................................ 6 A. BACKGROUND ....................................................................................................................................... 6 B. PROPERTIES .......................................................................................................................................... 7 C. DESIGN PRINCIPLES .............................................................................................................................. 14 CHAPTER 3 METHODS OF SOLUTION .............................................................................................. 17 A. NUMERICAL ELECTROMAGNETICS CODE (NEC) .......................................................................................... 17 B. LABVIEW .......................................................................................................................................... 18 C. FEKO ................................................................................................................................................ 20 CHAPTER 4 EVALUATION OF ESTABLISHED DESIGNS AND METHODS ............................... 21 A. ESTABLISHED DESIGNS .......................................................................................................................... 21 B. TOPLOADING ....................................................................................................................................... 23 C. FOLDING ............................................................................................................................................ 28 D. SUMMARY .......................................................................................................................................... 31 CHAPTER 5 NEW CONCEPT AND DESIGN APPROACHES ........................................................... 32 A. BACKGROUND ..................................................................................................................................... 32 B. INNER TOPLOADING.............................................................................................................................. 33 C. NEW DESIGN METHODOLOGY ................................................................................................................ 38 D. NOVEL DESIGNS FOR ELECTRICALLY SMALL HF ANTENNAS ........................................................................... 39 v E. INVESTIGATION OF FRACTAL GEOMETRIES ................................................................................................. 53 F. SUMMARY .......................................................................................................................................... 72 CHAPTER 6 ALGORITHMS FOR DESIGN OPTIMIZATION .......................................................... 74 A. RANDOM SEARCH ................................................................................................................................ 74 B. NELDER-MEAD DOWNHILL SIMPLEX ALGORITHM ....................................................................................... 74 C. SIMULATED ANNEALING (SA) ................................................................................................................. 75 D. GENETIC ALGORITHMS (GA) .................................................................................................................. 75 E. SUMMARY .......................................................................................................................................... 83 CHAPTER 7 EXPERIMENTAL VERIFICATION ................................................................................ 84 A. FIELD TEST CONFIGURATIONS ................................................................................................................. 84 B. FIELD MEASUREMENTS ......................................................................................................................... 85 CHAPTER 8 SUMMARY AND CONCLUSIONS .................................................................................. 98 CHAPTER 9 FUTURE WORK ............................................................................................................... 101 REFERENCES .......................................................................................................................................... 102 APPENDIX A – ENGLISH TRANSLATION OF HILBERT (1891) ...................................................A-1 APPENDIX B – FRACTAL GEOMETRY ............................................................................................. B-1 vi List of Tables Table 1. Shortened Monopole Performance ..................................................................... 14 Table 2. Toploaded λ/4 Monopole Performance .............................................................. 25 Table 3. MLA Performance .............................................................................................. 30 Table 4. Design Analysis for Inner Toploading................................................................ 34 Table 5. Helical MLA Performance.................................................................................. 41 Table 6. Performance for three-arm HMLA, direction of helical coils modified ............. 45 Table 7. Helical MLA and Toroidal Helical Performance ............................................... 52 Table 8. Fractal Tree Performance at 20 MHz, one meter height ..................................... 63 Table 9. Fractal Tree and Helical Fractal Tree Performance ............................................ 66 Table 10. Hilbert Curve Simulated Performance .............................................................. 70 Table 11. Baseline and GA Optimized Performance ........................................................ 80 vii List of Figures Figure 1: Landing Craft Air Cushion (LCAC) .................................................................. 2 Figure 2: Normalized wave resistance ............................................................................. 12 Figure 3: Normalized wave reactance .............................................................................. 12 Figure 4: Current distribution for λ/4, λ/8, and λ/20 monopole antennas ....................... 15 Figure 5: Chu and Hansen/Collin limits with shortened monopoles from Table 1 ......... 16 Figure 6: LabVIEW program for Genetic Algorithms .................................................... 19 Figure 7: LabVIEW program for controlling HP8753B Network Analyzer ................... 19 Figure 8: FEKO display for early ESA prototype ........................................................... 20 Figure 9: Performance of established designs, Q(ka) ...................................................... 22 Figure 10: NEC model of Marconi’s 1904 toploaded antenna ........................................ 23 Figure 11: Monopole antenna over PEC ground (left) and with mesh toploading (right)25 Figure 12: Current distribution for monopole with and without toploading ................... 26 Figure 13: Two-arm and three-arm folded monopole antennas ....................................... 29 Figure 14: Folded meandering line antenna with three arms ........................................... 30 Figure 15: The concept of inner toploading ..................................................................... 33 Figure 16: One-turn helical with inner toploading. ......................................................... 35 Figure 17: Current Magnitude, helical antenna with and without inner toploading. ....... 35 Figure 18: One-turn helical with inner toploading. ......................................................... 36 Figure 20: Simulated and measured S11with and without inner toploading ................... 37 Figure 19: Prototype helical antenna with inner toploading ............................................ 37 Figure 21: Helical meandering line antenna .................................................................... 39 Figure 22: Impedance, helical MLA, 3 – 30 MHz ........................................................... 40 viii Figure 23: Impedance, helical MLA, 30 – 100 MHz ....................................................... 40 Figure 24: Far-field radiation pattern ............................................................................... 42 Figure 25: Current magnitude in three-arm helical MLA ................................................ 43 Figure 26: Current Magnitude in one arm ....................................................................... 44 Figure 27: Current Phase in one arm ............................................................................... 44 Figure 28: HMLA single arm, original (left), modified with alternating turns (right) .... 45 Figure 29: One-turn toroidal helical antenna ................................................................... 46 Figure 30: Impedance for one-turn toroidal helical antenna ............................................ 47 Figure 31: Gain for one-turn toroidal helical antenna ..................................................... 47 Figure 32: One-turn toroidal helical antenna with two-turn inner toploading ................. 48 Figure 33: Impedance for one-turn toroidal helical antenna with inner toploading ........ 49 Figure 34: Gain for one-turn toroidal helical antenna with inner toploading .................. 49 Figure 35: Toroidal helical antenna with four half-turn folded arms .............................. 50 Figure 36: Impedance for half-turn toroidal helical antenna, four folded arms............... 51 Figure 37: Gain for half-turn toroidal helical antenna, four folded arms ........................ 51 Figure 38: Generator for a Koch curve ............................................................................ 54 Figure 39: Koch antennas after one and two iterations .................................................... 54 Figure 40: Sierpinski Triangle from IFS .......................................................................... 55 Figure 41: Fractal tree from IFS ...................................................................................... 55 Figure 42: Fractal tree antennas, iteration #2 and #3 ....................................................... 56 Figure 43: Fractal tree antenna with two arms, iteration #4 ............................................ 57 Figure 44: Fractal tree antenna with three arms, iteration #4 .......................................... 58 Figure 45: Fractal tree antenna with four arms, iteration #4............................................ 59 ix Figure 46: Helical fractal tree with two arms, iteration #1 .............................................. 60 Figure 47: Helical fractal tree with two arms, iteration #2 .............................................. 61 Figure 48: Comparison of fractal tree geometries ........................................................... 62 Figure 49: Impedance for four-arm fractal tree ............................................................... 64 Figure 50: Current Magnitude for four-arm fractal tree .................................................. 64 Figure 51: Gain pattern for four-arm fractal tree ............................................................. 65 Figure 52: Hilbert curves ................................................................................................. 67 Figure 53: Antenna, Hilbert curve, one iteration ............................................................. 68 Figure 54: Antenna, Hilbert curve, second iteration ........................................................ 69 Figure 55: Antenna Prototype, Hilbert curve, second iteration ....................................... 70 Figure 56: Simulated and measured S11 for Hilbert prototype ....................................... 71 Figure 57: Simulated and measured Impedance for Hilbert prototype ............................ 71 Figure 58: GA optimized model ...................................................................................... 79 Figure 59: Q and input resistance for four-arm GA ......................................................... 80 Figure 60: Impedance, baseline design ............................................................................ 81 Figure 61: Impedance, GA optimized design .................................................................. 81 Figure 62: Improvement in Q .......................................................................................... 82 Figure 63: Improvement in effective radius..................................................................... 82 Figure 64: Simulated and measured S11, open circuit mode over lossy ground ............. 87 Figure 65: Simulated and measured S11, short circuit mode over lossy ground ............. 87 Figure 66: Simulated and measured HPBW .................................................................... 88 Figure 67: Measuring antenna patterns near Hanauma Bay ............................................ 89 Figure 68: Received power measured over azimuth ........................................................ 90 x
Description: