ebook img

Design and Analysis of a Cable-Driven Test Apparatus for Flapping-Flight Research PDF

85 Pages·2017·6.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design and Analysis of a Cable-Driven Test Apparatus for Flapping-Flight Research

Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Fall 2014 Design and Analysis of a Cable-Driven Test Apparatus for Flapping-Flight Research Stephen J. Musick Purdue University Follow this and additional works at:https://docs.lib.purdue.edu/open_access_theses Part of theMechanical Engineering Commons, and theRobotics Commons Recommended Citation Musick, Stephen J., "Design and Analysis of a Cable-Driven Test Apparatus for Flapping-Flight Research" (2014).Open Access Theses. 357. https://docs.lib.purdue.edu/open_access_theses/357 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. (cid:42)(cid:85)(cid:68)(cid:71)(cid:88)(cid:68)(cid:87)(cid:72)(cid:3)(cid:54)(cid:70)(cid:75)(cid:82)(cid:82)(cid:79)(cid:3)(cid:41)(cid:82)(cid:85)(cid:80)(cid:3)30 (cid:11)(cid:53)(cid:72)(cid:89)(cid:76)(cid:86)(cid:72)(cid:71) 08(cid:18)14(cid:12)(cid:3) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance (cid:55)(cid:75)(cid:76)(cid:86)(cid:3)(cid:76)(cid:86)(cid:3)(cid:87)(cid:82)(cid:3)(cid:70)(cid:72)(cid:85)(cid:87)(cid:76)(cid:73)(cid:92)(cid:3)(cid:87)(cid:75)(cid:68)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:87)(cid:75)(cid:72)(cid:86)(cid:76)(cid:86)(cid:18)(cid:71)(cid:76)(cid:86)(cid:86)(cid:72)(cid:85)(cid:87)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:83)(cid:85)(cid:72)(cid:83)(cid:68)(cid:85)(cid:72)(cid:71)(cid:3) StephenJ.Musick (cid:37)(cid:92)(cid:3) (cid:40)(cid:81)(cid:87)(cid:76)(cid:87)(cid:79)(cid:72)(cid:71)(cid:3)(cid:3) (cid:3)DesignandAnalysisofaCable-DrivenTestApparatusforFlapping-FlightResearch MasterofScienceinMechanicalEngineering (cid:41)(cid:82)(cid:85)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:71)(cid:72)(cid:74)(cid:85)(cid:72)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:3)(cid:3) (cid:44)(cid:86)(cid:3)(cid:68)(cid:83)(cid:83)(cid:85)(cid:82)(cid:89)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:73)(cid:76)(cid:81)(cid:68)(cid:79)(cid:3)(cid:72)(cid:91)(cid:68)(cid:80)(cid:76)(cid:81)(cid:76)(cid:81)(cid:74)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:76)(cid:87)(cid:87)(cid:72)(cid:72)(cid:29)(cid:3) XinyanDeng (cid:3) (cid:3) GeorgeChiu JustinSeipel To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of (cid:3)copyrighted material. XinyanDeng (cid:36)(cid:83)(cid:83)(cid:85)(cid:82)(cid:89)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:48)(cid:68)(cid:77)(cid:82)(cid:85)(cid:3)(cid:51)(cid:85)(cid:82)(cid:73)(cid:72)(cid:86)(cid:86)(cid:82)(cid:85)(cid:11)(cid:86)(cid:12)(cid:29)(cid:3)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:3) (cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:3) (cid:3)(cid:36)(cid:83)(cid:83)(cid:85)(cid:82)(cid:89)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:29)GaneshSubbarayan 12/04/2014 (cid:43)(cid:72)(cid:68)(cid:71)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)Department (cid:42)(cid:85)(cid:68)(cid:71)(cid:88)(cid:68)(cid:87)(cid:72)(cid:3)(cid:51)(cid:85)(cid:82)(cid:74)(cid:85)(cid:68)(cid:80)(cid:3) (cid:3)(cid:3)(cid:3)(cid:39)(cid:68)(cid:87)(cid:72) i DESIGN AND ANALYSIS OF A CABLE-DRIVEN TEST APPARATUS FOR FLAPPING-FLIGHT RESEARCH A Thesis Submitted to the Faculty of Purdue University by Stephen J. Musick In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering i December 2014 Purdue University West Lafayette, Indiana ii To Matthew, Catherine, and Joseph The Traceurs and Freerunners of Team Momenta The Archers of the Purdue University Archery Club i i iii ACKNOWLEDGEMENTS With gratitude and appreciation to Professor Xinyan Deng, Yi Wang, and all former and current researchers with the Bio-Robotics Lab of Purdue University i i i iv TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ABSTRACT ....................................................................................................................... ix CHAPTER 1. INTRODUCTION .................................................................................... 1 CHAPTER 2. BACKGROUND ...................................................................................... 3 2.1 Experimental Research .............................................................................................. 3 2.1.1 Robotic Fly Apparatus ..................................................................................... 4 2.1.2 Tow Tanks ....................................................................................................... 6 2.2 Robotic Manipulators ................................................................................................ 8 2.2.1 IPAnema ........................................................................................................ 12 2.2.2 WDPSS-8 ....................................................................................................... 14 2.2.3 Skycam .......................................................................................................... 15 CHAPTER 3. DESIGN REQUIREMENTS .................................................................. 18 3.1 Ground Frame ......................................................................................................... 18 3.2 Workspace ............................................................................................................... 18 3.3 Cables ...................................................................................................................... 19 3.4 End Effector ............................................................................................................ 19 i v 3.5 Fluid Immersion ...................................................................................................... 21 CHAPTER 4. WORKSPACE DERIVATION .............................................................. 23 4.1 Geometric Workspace ............................................................................................. 26 4.2 Wrench-Feasible, Static, and Dynamic Workspaces .............................................. 27 4.3 Visualization ............................................................................................................ 28 v Page CHAPTER 5. CABLE CONFIGURATION STUDY ................................................... 31 5.1 Cable Specifications ................................................................................................ 31 5.2 Cable Configurations ............................................................................................... 32 5.2.1 Straight Configuration ................................................................................... 32 5.2.2 Twist Configuration ....................................................................................... 33 5.2.3 B-Twist Configuration ................................................................................... 34 5.3 Static Workspace Analysis ...................................................................................... 35 5.4 Singular Rotation Trials .......................................................................................... 37 5.5 Compound Rotation Trials ...................................................................................... 40 CHAPTER 6. ATTACHMENT FRAME OPTIMIZATION ......................................... 43 6.1 Neutral Orientation .................................................................................................. 44 6.2 Forty-Five Degree Roll Rotation ............................................................................. 45 6.3 Forty-Five Degree Pitch Rotation ........................................................................... 47 6.4 Forty-Five Degree Yaw Rotation ............................................................................ 48 6.5 Six-Degree-of-Freedom Configuration ................................................................... 49 CHAPTER 7. CASE STUDIES ..................................................................................... 51 7.1 Case 1: Robotic Fly Apparatus Yaw Rotation ....................................................... 51 7.2 Case 2: Tow Tank Forward Flight ......................................................................... 55 7.3 Case 3: Hawkmoth Pitching Maneuver .................................................................. 57 7.4 Case 4: Advanced Six-Degree-of-Freedom Motion ............................................... 62 v CHAPTER 8. CONCLUSION ....................................................................................... 67 LIST OF REFERENCES .................................................................................................. 68 vi LIST OF TABLES Table .............................................................................................................................. Page 5.1. Workspace volume percentages VP under singular rotations. ................................... 37 5.2. Workspace volume percentages VP under compound roll and yaw rotations. .......... 41 6.1. Optimum dimensions for a neutrally-oriented end effector platform. ...................... 44 6.2. Optimum dimensions for a roll rotation φ = 45°. ..................................................... 46 6.3. Optimum dimensions for a pitch rotation θ = 45°. ................................................... 47 6.4. Optimum dimensions for a yaw rotation ψ = 45°. .................................................... 48 6.5. Workspace volume and relative workspace volume for the designed attachment frame. .............................................................................................................. 50 v i vii LIST OF FIGURES Figure ............................................................................................................................. Page 2.1. The Robotic Fly Appartus and its capable degrees of freedom: A) yaw, B) stroke, C) deviation, and D) rotation [10]. .......................................................................... 5 2.2. The schematics and image of a tow tank equipped with a pair of dragonfly wings [2]. ............................................................................................................................ 6 2.3. Schematic diagram for a two-degree-of-freedom hawkmoth tow tank [4]. ................ 7 2.4. RoboCut serial manipulator designed by USG Robotics for the fabrication of granite and marble products [14]. ....................................................................................... 9 2.5. MotionSim3 Twin Piston and Twin Turboprop flight simulator from CKAS Mechatronics [15]. ............................................................................................................ 10 2.6. A) The physical IPAnema manipulator and B) a conceptual variation of IPAnema [17, 18]. ............................................................................................................. 13 2.7. THE WDPSS-8 deployed in a wind tunnel [20]. ...................................................... 15 2.8. Skycam hovering over Heinz Field, the NFL stadium for the Pittsburgh Steelers [22]. ..................................................................................................................... 16 3.1. Proposed mechanical flapper of a dipterous insect. .................................................. 20 4.1. The manipulator frame with global coordinate system and a standard representation of the end effector platform with moving coordinate system. .................. 24 v i i 4.2. Visualization examples in the MATLAB program. .................................................. 29 5.1. The Straight cable configuration with the end effector positioned at (25, 25, 19) in. ................................................................................................................................ 33 5.2. The Twist cable configuration with the end effector positioned at (25, 25, 19) in. ...................................................................................................................................... 34 5.3. The B-Twist cable configuration with the end effector positioned at (25, 25, 19) in. ................................................................................................................................ 35 viii Figure Page 5.4. Static workspaces for the given end effector in pure translation, using different cable configurations. ......................................................................................................... 38 5.5. Workspace samples for the Twist cable configuration with the given end effector exhibiting the specified rotations......................................................................... 38 5.6. Symmetry of compound rotations for the Twist cable configuration. ...................... 42 7.1. Plot of sample experimental data from the Robotic Fly Apparatus [10]. ................. 52 7.2. Replication of the Robotic Fly Apparatus experiment at several yaw rotations (time instances). ................................................................................................................ 53 7.3. Necessary cable tensions for replicating a yaw rotation. .......................................... 54 7.4. Replication of a tow tank’s one-dimensional translation. ......................................... 55 7.5. Necessary cable tensions for replicating one-dimensional translation. .................... 57 7.6. Kinematics plot used for the original hawkmoth pitching experiment [4]. .............. 58 7.7. Simulation of a six-degree-of-freedom hawkmoth pitching maneuver. ................... 59 7.8. Necessary cable tensions for performing the hawkmoth pitching experiment. ........ 62 7.9. End effector position and orientation during an advanced flight maneuver. ............ 63 7.10. Simulation of an advanced six-degree-of-freedom maneuver. ............................... 64 7.11. Necessary cable tensions for an advanced six-degree-of-freedom maneuver. ....... 66 v i i i

Description:
Part of the Mechanical Engineering Commons, and the Robotics Commons .. Workspace volume and relative workspace volume for the designed .. manipulator dynamics, large strength-to-weight ratio, and no actuator-error sexta; the fruit fly, Drosophila melanogaster; and the blowfly, Calliphora
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.