ebook img

Descriptive Set Theoretic Methods in Automata Theory: Decidability and Topological Complexity PDF

212 Pages·2016·3.149 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Descriptive Set Theoretic Methods in Automata Theory: Decidability and Topological Complexity

Michał Skrzypczak Descriptive 2 0 Set Theoretic Methods 8 9 S in Automata Theory C N L Decidability and Topological Complexity 123 Lecture Notes in Computer Science 9802 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison, UK Takeo Kanade, USA Josef Kittler, UK Jon M. Kleinberg, USA Friedemann Mattern, Switzerland John C. Mitchell, USA Moni Naor, Israel C. Pandu Rangan, India Bernhard Steffen, Germany Demetri Terzopoulos, USA Doug Tygar, USA Gerhard Weikum, Germany FoLLI Publications on Logic, Language and Information Subline of Lectures Notes in Computer Science Subline Editors-in-Chief Valentin Goranko, Technical University, Lynbgy, Denmark Michael Moortgat, Utrecht University, The Netherlands Subline Area Editors Nick Bezhanishvili, Utrecht University, The Netherlands Anuj Dawar, University of Cambridge, UK Philippe de Groote, Inria-Lorraine, Nancy, France Gerhard Jäger, University of Tübingen, Germany Fenrong Liu, Tsinghua University, Beijing, China Eric Pacuit, University of Maryland, USA Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India More information about this series at http://www.springer.com/series/7407 ł Micha Skrzypczak Descriptive Set Theoretic Methods in Automata Theory Decidability and Topological Complexity 123 Author Michał Skrzypczak University of Warsaw Warsaw Poland Thiswork wascarried out at: Faculty of Mathematics, Informatics, andMechanics, University of Warsaw, Warsaw,Poland andaccepted there asaPhD thesis. ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notesin Computer Science ISBN 978-3-662-52946-1 ISBN978-3-662-52947-8 (eBook) DOI 10.1007/978-3-662-52947-8 LibraryofCongressControlNumber:2016944816 LNCSSublibrary:SL1–TheoreticalComputerScienceandGeneralIssues ©Springer-VerlagBerlinHeidelberg2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHBerlinHeidelberg Preface This thesis is devoted to the study of problems of automata theory from the point of view of descriptive set theory. The analyzed structures are x-words and infinite trees. Mostoftheresultspresentedherehavetheformofaneffectivedecisionprocedurethat operates on representations of regular languages. Specialeffortisputintoprovidingeffectivecharacterizationsofregularlanguagesof infinite trees that are definable in weak monadic second-order logic (WMSO). Although no such characterization is known for all regular languages of infinite trees, the thesis provides characterizations in some special cases: for game automata, for languages of thin trees (i.e., trees with countably many branches), and for Büchi automata. Addi- tionally,certainrelationsbetweenWMSO-definablelanguagesandBorelsetsareproved. Another problem studied in the thesis is the alternating index problem (also called the Rabin–Mostowski index problem). Again, the problem in its full generality seems tobeoutofthereachofcurrentlyknownmethods.However,adecisionprocedurefor the class of game automata is proposed in the thesis. These automata form the widest class of automata for which the problem is currently known to be decidable. The thesis also addresses the problem of providing an algebraic framework for regular languages of infinite trees. For this purpose, the notion of prophetic thin algebrasisintroduced.Itisprovedthatfinitepropheticthinalgebrasrecognizeexactly thebi-unambiguouslanguages—languagesLsuchthatbothLandthecomplementLc canberecognizedbyunambiguousautomata.Additionally,anewconjectureaboutthe definability of choice functions is stated. It is proved that this conjecture is strongly related to the class of prophetic thin algebras. In particular, the conjecture implies an effective characterization of the class of bi-unambiguous languages. Finally, the thesis studies contemporary quantitative extensions of the class of regular languages. First, lower bounds (that match upper bounds) on the topological complexity of MSO+U-definable languages of x-words are given. These lower bounds can be used to prove that MSO+U logic is undecidable on infinite trees in a specific sense. It is also shown that languages of x-words recognizable by certain counter automata have a separation property with respect to x-regular languages. The proof relies on topological methods in the profinite monoid. June 2016 Michał Skrzypczak Acknowledgements IwouldliketoemphasizemygratitudetomysupervisorsMikołajBojańczykandIgor Walukiewicz for their assistance, without which this thesis would not have been possible. Both of them were always helpful and ready to discuss scientific problems, share their experience, and exchange new ideas. Additionally, I would like to thank themforencouragingmetoattendanumberofconferences,workshops,andscientific visitsthatallowedmetoestablishinternationalcooperation.Moreover,Iwouldliketo thank Henryk Michalewski for posing a number of inquiring and inspiring questions thatprovidedgoodmotivationindevelopingsomeoftheresultspresentedinthethesis. IowetheformationofmyscientificbackgroundtotheAutomataGroupinWarsaw, especially to: Damian Niwiński, Mikołaj Bojańczyk, Henryk Michalewski, and Filip Murlak. Additionally, I wish to thank Szczepan Hummel, Tomasz Idziaszek, Denis Kuperberg, and Nathanaël Fijalkow for the time they devoted to our discussions. During myPhDstudiesIhadtheopportunitytomakeseveralscientificvisits. First and foremost I would like to thank my supervisor Igor Walukiewicz for a number of invitations to LaBRI. Moreover, I would like to thank Jacques Duparc and Alex Rabinovichforinvitingmetoworktogether(theresultsobtainedduringthesevisitsare not included in the thesis). I wish to express my gratitude to the reviewers of the thesis. Their suggestions helped me to increase the readability of the final version of the document. Last but not least, I list my co-authors, whom I would like to thank for the coop- eration: M. Bilkowski, M. Bojańczyk, U. Boker, A. Facchini, O. Finkel, T. Gogacz, S. Hummel, T. Idziaszek, D. Kuperberg, O. Kupferman, H. Michalewski, M. Mio, F. Murlak, D. Niwiński, A. Rabinovich, A. Radziwończyk-Syta, and S. Toruńczyk. My work during my PhD studies was supported by Poland’s National Science Centre (decision DEC-2012/05/N/ST6/03254) and by ERC Starting Grant SOSNA. Contents 1 Basic Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Finite Words and x-words. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Infinite Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Positional Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Parity Index of an Automaton. . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.1 Semigroups and Monoids. . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.2 Wilke Algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.3 Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.4 Ramsey’s Theorem for Semigroups. . . . . . . . . . . . . . . . . . . 13 1.6 Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.1 Borel and Projective Hierarchy. . . . . . . . . . . . . . . . . . . . . . 14 1.6.2 Topological Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6.3 Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6.4 The Boundedness Theorem . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6.5 Co-inductive Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.7 Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.7.1 Classes of Regular Tree Languages. . . . . . . . . . . . . . . . . . . 21 1.7.2 Index Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.7.3 Topological Complexity of Regular Languages. . . . . . . . . . . 23 1.7.4 The languages Wi;j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.5 Separation Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.7.6 Deterministic Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 26 X Contents Subclasses of Regular Languages 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 Definability in WMSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.2 Index Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.3 Bi-unambiguous Languages . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1.4 Borel Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.1.5 Topological Complexity vs. Decidability . . . . . . . . . . . . . . . 32 2.1.6 Separation Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Overview of the Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Part I: Subclasses of Regular Languages . . . . . . . . . . . . . . . 34 2.2.2 Part II: Thin Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.3 Part III: Extensions of Regular Languages . . . . . . . . . . . . . . 36 3 Collapse for Unambiguous Automata . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Unique Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Construction of the Automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Completeness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 When a Büchi Language Is Definable in WMSO . . . . . . . . . . . . . . . . . 45 4.1 The Ordinal of a Büchi Automaton. . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.1 Truncated Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.2 The Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.3 Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Extending Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 K-reach Implies Big Rank . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 Big Rank Implies K-reach . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Automata for K-safe Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Boundedness Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.1 Rules of the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4.2 Winning Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 Equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.1 Implication (1) ⇒ (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.2 Implication (2) ⇒ (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Index Problems for Game Automata . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Runs of Game Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Non-deterministic Index Problem . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Partial Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.1 Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.2 Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.3 Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Contents XI 5.3.4 Composing Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.5 Resolving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4 Alternating Index Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4.2 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.3 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Thin Algebras 6 When a Thin Language Is Definable in WMSO . . . . . . . . . . . . . . . . . . 93 6.1 Basic Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.1.1 Thin Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.1.2 Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.3 Examples of Skurczyński. . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.4 Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.1.5 Skeletons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 Thin Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.1 The Automaton Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.1 Embeddings and Quasi-skeletons . . . . . . . . . . . . . . . . . . . . 106 6.3.2 Proof of Proposition 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.4 Characterisation of WMSO-definable Languages . . . . . . . . . . . . . . . . 110 6.4.1 Implication (2) ⇒ (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.4.2 Implication (5) ⇒ (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7 Recognition by Thin Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.1 Prophetic Thin Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.2 Bi-unambiguous Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2.1 Prophetic Thin Algebras Recognise only Bi-unambiguous Languages . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2.2 Markings by the Automaton Algebra for an Unambiguous Automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2.3 Every Bi-unambiguous Language is Recognised by a Prophetic Thin Algebra . . . . . . . . . . . . . . . . . . . . . . . 129 7.3 Consequences of Conjecture 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.4 Decidable Characterisation of the Bi-unambiguous Languages . . . . . 131 7.4.1 Pseudo-syntactic Morphisms. . . . . . . . . . . . . . . . . . . . . . . . 132 7.4.2 Decidable Characterisation. . . . . . . . . . . . . . . . . . . . . . . . . 134 7.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8 Uniformization on Thin Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.1 Basic Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2 Transducer for a Uniformized Relation . . . . . . . . . . . . . . . . . . . . . 139

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.