ebook img

Derivatives: The Theory and Practice of Financial Engineering PDF

728 Pages·1998·28.88 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Derivatives: The Theory and Practice of Financial Engineering

Derivatives Thet heorayn dp ractiocffe i nancial engineeri·ng PaulW ilmott www.wilmott.com JOHN WILEY S&O NS ChichesNteewrY .o rkW.e inheiBmr isb.aS niengapoTroer onto • • Copyri©g h1t9 98P auWli lmott Publisbhye d JohWni le&y SonLst d, Baffins LCahniec,h ester, WestS ussePxO I9I UD, England Nationa0l1 24737 9777 Internati(o+n44a1)l2 437 79777 e-ma(iflo orr dearnsd c ustomseerr viecneq uiricess-)b:o [email protected] Visoiutr H omeP ageo nh ttp://www.wiley.co.uk orh tt:p//ww.w iwle.cyo m ReprinAtperdi 1l9 99A,p ri2l0 00 Allr ighrtess ervNeod p.a rotf t hipsu blicamtaiyob ner eproduscteodr,ie nda retriesvyaslt eomrt, r ansmiitnta endy, fonnor b ya nym eanse,l ectronmiecc,h anipchaolt,o copyriencgo,r dsicnagn,n ionrog t herwiesxec,eu pntd etrh e termosft hCeo pyrigDhets,i gannsd P atenAtcst1 988o ru ndetrh e teonfan lsi cenicses ubeydt hCeo pyright LicensAignegn c9y0,T ottenhCaomu rRto adL,o ndoUnK WIP 9HE, withotuhtep ennissiinwo rni tinogfJ ohn Wileayn dS onLst dB.a,f finLsa neC,h ichesWteesrtS, u sseUxK, P 019I UD. Other EWidlietyo Orffiicaels JohnW ile&y SonsI,n c6.0,5 T hirAdv enue, New YorkN,Y 10158-0012, USA WILEYV-CH VerlGamgb H, Pappe3l,a llee D-6946W9e inheiGme,n nany JacaraWnidlae Lyt d3,3 P arRko adM,i lton, Queensl4a0n6d4 A,u stralia JohnWi le&y Son(sC anadLat)d 2,2 W orcesRtoeard , RexdalOen,t arMi9oW lLlC,a nada JohWni le&y Son(sA siPat)eL td2,C lemenLtoio p# 02-01, JiXni ngD istripark, 1S2i9n8g0a9p ore British LibraCrya taloguiinPn ugb licaDtaitoan A catalorgeuceo frodtr h ibso oki sa vailafbrloemt heB ritiLsihb rary ISBN0 -471-983(6P6B-)7 Typesient1 0/12pt TbiyLm aesse Wro rdsM,a draIsn,d ia Printaenddb ounidn G reaBtr itabiyBn o okcraMfitd,s omNeorr toSno,m erset Thibso oki sp rintoenad c id-frpeaep erre sponsibly manfruofma scutsutraeidnf aobrlees itnrw yh,i caht l eatswto tr ees are plantfeodre acohn eu sefdo rp apeprr oduction. To alolf m y studenptass,at n dp resenwti,t ahf fection contents Prloo g I PARTO NE BASICT HEORY OF DERIVATIVES 5 1 Producatnsd M arkets 7 1.1 Introduction 7 1.2 Thet imvea luoef m oney 7 1.3 Equities 9 1.4 Commodities 13 1.5 Currencies 13 1.6 Indices 15 1.7 Fixed-incsoemceu rities 15 1.8 Inflation-bpornodosf 16 1.9 Forwaradnsd f utures 16 1.10 Summary 19 2 Derivatives 21 2.1 Introduction 21 2.2 Options 21 2.3 Definitioofnc ommont erms 26 2.4 Payoffd iagrams 27 2.5 Writionpgt ions 28 2.6 Margin 29 2.7 Markecto nventions 29 2.8 Thev alue tohfeo ptiobne foreex piry 29 2.9 Factoarffse ctidnegr ivatpirviec es 30 2.1'0S peculatainodgn e aring 31 2.11 Earleyx ercise 32 2.12 Put-call parity 32 2.13 Binarioerds i gitals 34 2.14 Bulaln db easrp reads 36 2.15 Straddalnedss trangles 37 2.16 Butterfalnidce osn dors 38 2.17 Calendsaprr eads 40 2.18 Leapasn dF lex 40 viiic ontents 2.19 Warrants 40 2.20 Convertibbolned s 41 2.21 Overt hec ountoeprt ions 41 2.22 Summary 41 3 TheR andomB ehavioorfA ssets 45 3.1 Introduction 45 3.2 Similarbiettiweese enq uiticeusr,r enccioemsm,o ditainedsi ndices 45 3.3 Examinirnegt urns 46 3.4 Timescales 49 3.5 Ther andowma lko na spreadsheet 52 3.6 TheW ieneprr ocess 53 3.7 Thew idely-accmeopdteelfd o re quities, cucrormemnocdiietsi,e s andi ndices 53 3.8 Summary 54 4 ElementaSrtyo chasCtailcc ulus 55 4.1 Introduction 55 4.2 A motivateixnagm ple 55 4.3 TheM arkopvr operty 56 4.4 Them artingparloep erty 57 4.5 Quadratviacr iation 57 4.6 Brownian motion 57 4.7 Stochasitnitce gration 59 4.8 Stochasdtiifcf ereenqtuiaatli ons 59 4.9 Them eans quarlei mit 60 4.10 Functioonfss t ochastic vaanrdiI atb6l'lsee sm ma 61 4.11 It6i nh ighedri mensions 64 4.12 Some pertinent examples 65 4.13 Summary 68 5 TheB lack-SchoMloedse l 71 5.1 Introduction 71 5.2 A versyp ecial portfolio 71 5.3 Eliminatoifro ins kd:e lthae dging 72 5.4 No arbitrage 73 5.5 TheB lack-Schoelqeusa tion 74 5.6 TheB lack-Schoalsessu mptions 75 5.7 Finaclo nditions 76 5.8 Optioonnsd ividend-peaqyuiintgi es 77 5.9 Currenocpyt ions 77 5.10 Commoditoyp tions 77 5.11 Optioonnsf utures 77 5.12 Summary 78 6 PartiDailff erentEiqaula tions 81 6.1 Introduction 81 6.2 PuttitnhgeB lack-Schoelqeusa tiionnt hoi storpiecraslp ective 81 contentIsx 6.3 Them eaninogf t het ermisn t heB lack-Scholes equation 82 6.4 Boundarayn di nitialc/ofinndailt ions 83 6.5 Somes olutimoent hods 83 6.6 Similarrietdyu ctions 85 6.7 Othearn alytitceachln iques 86 6.8 Numericsaoll ution 86 6.9 Summary 87 7 TheB lack-SchFoolersm ulaaen dt he' Greeks' 91 7.1 Introduction 91 7.2 Derivatoifot nh ef ormulfoare c allpsu,t asn ds impldei gitals 92 7.3 Delta 102 7.4 Gamma 103 7.5 Theta 105 7.6 Vega 106 7.7 Rho 108 7.8 Impliveodl atility 109 7.9 Summary 111 8 SimplGee neralizaotfit ohneBs l ack-SchWoolersl d 115 8.1 Introduction 115 8.2 Dividfoernedisg,in n teraensdtc osotf c arry 115 8.3 Dividesntdr uctures 116 8.4 Dividepnady menatnsd n oa rbitrage 116 8.5 Theb ehavioofra no ptiovna luaec rosas d ividednadt e 117 8.6 Time-dependent parameters 119 8.7 Formulafeo rp owero ptions 121 8.8 Summary 122 9 EarlEyx erciasnedA mericaOnp tions 123 9.1 Introduction 123 9.2 Thep erpetAumaelr icapnu t 123 9.3 PerpetAumaelr icacna lwli tdhi vidends 127 9.4 Mathematifcoarlm ulatfioorgn e nerpaaly off 127 9.5 Locaslo lutifoonrc alwli tcho nstadnitv ideynide ld 130 9.6 Othedri videsntdr uctures 131 9.7 One-touocpht ions 132 9.8" Othefre aturienAs m ericanl-esc toyn tracts 134 9.9 Otheirs sues 135 9.10 Summary 136 10 ProbabilDietnsyi Ftuyn ctioanusdF irsEtx iTti mes 139 10.l Introduction 139 10.2 Thetr ansitpiroonb abidleintsyi ftuyn ction 139 10.3 A trinommioadle lf ort her andowma lk 140 10.4 Thef orwaerqdu ation 141 10.5 Thes teady-sdtiastter ibution 143 10.6 Theb ackwaerqdu ation 144 x contents 10.7 First exit times 144 10.8 Cumulatidvies tribfuutnicotni foonrsf iresxti tti mes 144 10.9 Expectfeidr esxti tti mes 146 10.10E xpectatainodnB sl ack-Scholes 147 10.11S ummary 148 11 Multi-asOspetti ons 151 11.1 151 Introduction 11.2 Multi-dimensional rlaongdnowomar lmakls 151 11.3 Measuricnogr relations 152 11.4 Optioonsnm anyu nderlyings 153 11.5 Thep ricifnogr mufloarE uropenaonn -path-depoepntdieonontns 154 dividend-paasysientgs 11.6 Exchangionngea ssefotr anothear s:i milasroiltuyt ion 154 11.7 Quantos 155 11.8 Two examples 157 11.9 Othefre atures 159 11.10R ealitoifep sr icibnags keotp tions 160 11.11R ealitoifeh se dginbga skeotp tions 160 11.12C orrelavteirosnu cso integration 161 11.13S ummary 161 12 TheB inomiaMlo del 163 12l. Introduction 163 12.2 Equiticeasng od owna sw elals u p 164 12.3 Theb inomitarle e 165 12.4 An equatifoonrt hev aluoef a no ption 166 12.5 Valuibnagc kd ownt het ree 167 12.6 Theg reeks 170 12.7 Earleyx ercise 171 12.8 Thec ontinuousl-itimmiet 173 12.9 No arbitriangt eh eb inomial, Blacka-nSdc' hootlheewsro 'r lds 173 12.10S ummary 174 177 PART TWO PATH DEPENDENCY 13 An IntroducttioEo xno tiacn dP ath-dependOepntti ons 179 13.1 Introduction 179 13.2 Discrectaes hfiows 179 13.3 Earleyx ercise 180 13.4 Weakp atdhe pendence 181 13.5 Stronpga tdhe pendence 182 13.6 Time dependence 182 13.7 Dimensionality 182 13.8 Theo rdeorf an option 183 13.9 Compoundasn dc hoosers 183 13. 10 Rangen otes 185 contentXsi 13.11B arrieorp tions 186 13. 12A siaonp tions 187 13.13L ookbacokp tions 187 13.14S ummary 187 14 BarriOeprt ions 189 14.1 Introduction 189 14.2 Differteynpte osf b arrioeprt ions 189 14.3 Pricibnagr riienrt sh ep artiadli fferential equation framewor1k9 1 14.4 Othefre atuirenbs a rrier-ospttyiloen s 195 14.5 Firsetx itti me 198 14.6 Markeptr actiwchea:tv olatilityI u ssheo?u ld 198 14.7 Hedginbga rrioeprt ions 200 14.8 Summary 201 15 StronglPya th-dependent Options 205 15. 1 Introduction 205 15.2 Path-depenqdueanntt itrieepsr esebnyta endi ntegral 205 15.3 Continuosuasm plintgh:ep ricienqgu ation 207 15.4 Path-dependent quantitibeysa nur pedparteisrneugnl tee d 208 15.5 Discrestaem plintgh:ep ricienqgu ation 209 15.6 Highedri mensions 211 15.7 Pricivnigae xpectations 212 15.8 Earleyx ercise 212 15.9 Summary 212 16 AsiaOnp tions 215 16.1 Introduction 215 16.2 Payofft ypes 215 16.3 Typeosf a veraging 216 16.4 ExtenditnhgeB lack-Schoelqeusa tion 216 16.5 Earleyx ercise 222 16.6 Similarrietdyu ctions 222 16.7 Somefo rmulae 224 16.8 Summary 225 17 LookbacOkp tions 227 17d Introduction 227 17.2 Typeosf p ayoff 227 17. 3 Continuomuesa suremeonftt h em aximum 227 17.4 Discremteea suremeonftt h em aximum 230 17.5 Similarrietdyu ction 230 17.6 Somef ormulae 231 17.7 Summary 233 18 MiscellaneEoxuost ics 235 18. 1 Introduction 235 18.2 Forwarsdt aorptt ions 235 xiic ontents 18.3 Shouotp tions 237 18.4 Cappeldo okbacaknsdA sians 237 18.5 Combinipnagt h-depenqdueanntt ittiheels o:o kback-aestica.n 238 18.6 Thev olatiolpittiyo n 239 18.7 Ladders 241 18.8 Parisioapnt ions 242 18.9 Perfecttr adaenrd p asspoorptt ions 243 18.10S ummary 245 PART THREE EXTENDINGB LACK-SCHOLES 249 19 Defecitnst heB lack-SchMooldeesl 251 19.1 Introduction 251 19.2 Discrehteed ging 251 19.3 Transactcioosnt s 252 19.4 Volatislmiitlyea sn ds urfaces 252 19.5 Stochasvtoilca tility 252 19.6 Uncertapianr ameters 253 19.7 Empiricaanla lysoifvs o latility 253 19.8 Jumpd iffusion 253 199. Crasmho deling 254 19.10S peculatwiintgoh p tions 254 19.11T hefe edbacekff ecotf h edginigni lliqmuairdk ets 254 19. 12O ptimaslt athiecd ging 255 19.13S ummary 256 20 DiscreHteed ging 257 20.1 Introduction 257 20.2 A modefolr a discretely-phoesdigteido n 257 20.3 Ther eadli stribuoftr ieotnu rannsd t heh edginegr ror 264 20.4 Summary 266 21 TransactiCoons ts 269 21.1 Introduction 269 21.2 Thee ffecotf c osts 269 21.3 Them odelo fL elan(d1 985) 270 21.4 Them odelo fH oggarWdh,a lle&y W ilmot(t1 992) 271 21.5 Non-single-signed gamma 275 21.6 Them argineaffle cotf t ransacctoisotns 277 21.7 Othecro sstt ructures 278 21.8 Hedgintgoa bandwidtthhe:m odelo fW halle&y W ilmot(t1 993) andH enrot(t1e9 93) 278 21.9 Utility-mboadseelds 279 21.10I nterpretoaftt hieom no dels 282 21.11S ummary 284

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.