ebook img

Derivatives Markets PDF

984 Pages·2012·6.01 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Derivatives Markets

Derivatives Markets Page: i Derivatives Markets Page: iii Brief Contents Page: vii Preface Page: xx What is New in the Third Edition Page: xxi Plan of the Book Page: xxii Navigating the Material Page: xxiii A Note on Examples Page: xxiv Supplements Page: xxiv Derivatives Markets Page: xxix 1 Introduction to Derivatives Page: 1 1.1 What is a Derivative? Page: 1 1.2 An Overview of Financial Markets Page: 2 Trading of Financial Assets Page: 2 Measures of Market Size and Activity Page: 4 Stock and Bond Markets Page: 5 Derivatives Markets Page: 6 1.3 The Role Of Financial Markets Page: 9 Financial Markets and the Averages Page: 9 Risk-Sharing Page: 10 1.4 The Uses Of Derivatives Page: 11 Uses of Derivatives Page: 11 Perspectives on Derivatives Page: 13 Financial Engineering and Security Design Page: 14 1.5 Buying And Short-Selling Financial Assets Page: 14 Transaction Costs and the Bid-Ask Spread Page: 14 Example 1.1 Page: 15 Ways to Buy or Sell Page: 15 Short-Selling Page: 16 Example: Short-Selling Wine Page: 17 Example: Short-Selling Stock Page: 18 The Lease Rate of an Asset Page: 18 Risk and Scarcity in Short-Selling Page: 18 Credit Risk Page: 19 Scarcity Page: 19 Chapter Summary Page: 19 Further Reading Page: 20 Problems Page: 20 Part 1 Insurance, Hedging, and Simple Strategies Page: 23 2 An Introduction to Forwards and Options Page: 25 2.1 Forward Contracts Page: 25 The Payoff on a Forward Contract Page: 29 Example 2.1 Page: 30 Graphing the Payoff on a Forward Contract Page: 30 Comparing a Forward and Outright Purchase Page: 30 Zero-Coupon Bonds in Payoff and Profit Diagrams Page: 33 Cash Settlement Versus Delivery Page: 34 Example 2.2 Page: 34 Credit Risk Page: 34 2.2 Call Options Page: 35 Example 2.3 Page: 35 Example 2.4 Page: 35 Option Terminology Page: 35 Payoff and Profit for a Purchased Call Option Page: 36 Example 2.5 Page: 36 Example 2.6 Page: 37 Payoff and Profit for a Written Call Option Page: 38 Example 2.7 Page: 40 2.3 Put Options Page: 40 Example 2.8 Page: 41 Payoff and Profit for a Purchased Put Option Page: 41 Example 2.9 Page: 41 Example 2.10 Page: 42 Payoff and Profit for a Written Put Option Page: 42 Example 2.11 Page: 44 The “Moneyness” of an Option Page: 44 2.4 Summary of Forward and Option Positions Page: 45 Positions Long with Respect to the Index Page: 45 Positions Short with Respect to the Index Page: 46 2.5 Options are Insurance Page: 47 Homeowner’s Insurance Is a Put Option Page: 48 But I Thought Insurance Is Prudent and Put Options Are Risky … Page: 48 Call Options Are Also Insurance Page: 49 2.6 Example: Equity-Linked CDS Page: 50 Graphing the Payoff on the CD Page: 50 Economics of the CD Page: 51 Why Equity-Linked CDs? Page: 52 Chapter Summary Page: 53 Further Reading Page: 54 Problems Page: 54 Appendix 2.A More on Buying a Stock Option Page: 57 Dividends Page: 57 Exercise Page: 57 Margins for Written Options Page: 58 Taxes Page: 58 3 Insurance, Collars, and Other Strategies Page: 61 3.1 Basic Insurance Strategies Page: 61 Insuring a Long Position: Floors Page: 61 Insuring a Short Position: Caps Page: 64 Selling Insurance Page: 65 Covered Call Writing. Page: 66 Covered Puts. Page: 66 3.2 Put-Call Parity Page: 68 Synthetic Forwards Page: 68 The Put-Call Parity Equation Page: 70 Example 3.1 Page: 70 Equivalence of Different Positions. Page: 70 No Arbitrage. Page: 71 3.3 Spreads and Collars Page: 71 Bull and Bear Spreads Page: 71 Example 3.2 Page: 72 Box Spreads Page: 73 Example 3.3 Page: 74 Ratio Spreads Page: 74 Collars Page: 74 Example 3.4 Page: 74 Example 3.5 Page: 76 Zero-Cost Collars. Page: 76 Understanding Collars. Page: 77 The Cost of the Collar and the Forward Price. Page: 78 3.4 Speculating on Volatility Page: 79 Straddles Page: 79 Strangle. Page: 79 Written Straddle. Page: 80 Butterfly Spreads Page: 80 Asymmetric Butterfly Spreads Page: 82 Chapter Summary Page: 84 Further Reading Page: 85 Problems Page: 86 4 Introduction to Risk Management Page: 89 4.1 Basic Risk Management: The Producer’s Perspective Page: 89 Hedging with a Forward Contract Page: 90 Insurance: Guaranteeing a Minimum Price with a Put Option Page: 91 Insuring by Selling a Call Page: 93 Adjusting the Amount of Insurance Page: 95 4.2 Basic Risk Management: The Buyer’s Perspective Page: 96 Hedging with a Forward Contract Page: 97 Insurance: Guaranteeing a Maximum Price with a Call Option Page: 97 4.3 Why Do Firms Manage Risk? Page: 99 An Example Where Hedging Adds Value Page: 100 Reasons to Hedge Page: 102 Taxes. Page: 102 Bankruptcy and Distress Costs. Page: 102 Costly External Financing. Page: 102 Increase Debt Capacity. Page: 103 Managerial Risk Aversion. Page: 103 Nonfinancial Risk Management. Page: 103 Reasons Not to Hedge Page: 103 Empirical Evidence on Hedging Page: 104 4.4 Golddiggers Revisited Page: 107 Selling the Gain: Collars Page: 107 A 420–440 Collar. Page: 107 A Zero-Cost Collar. Page: 108 The Forward Contract as a Zero-Cost Collar. Page: 109 Synthetic Forwards at Prices Other Than $420. Page: 110 Other Collar Strategies Page: 111 Paylater Strategies Page: 111 4.5 Selecting The Hedge Ratio Page: 112 Cross-Hedging Page: 112 Example 4.1 Page: 113 Quantity Uncertainty Page: 114 Chapter Summary Page: 117 Further Reading Page: 118 Problems Page: 118 Part 2 Forwards, Futures, and Swaps Page: 123 5 Financial Forwards and Futures Page: 125 5.1 Alternative Ways to Buy a Stock Page: 125 5.2 Prepaid Forward Contracts on Stock Page: 126 Pricing the Prepaid Forward by Analogy Page: 127 Pricing the Prepaid Forward by Discounted Present Value Page: 127 Pricing the Prepaid Forward by Arbitrage Page: 127 Pricing Prepaid Forwards with Dividends Page: 128 Discrete Dividends Page: 129 Example 5.1 Page: 129 Continuous Dividends Page: 129 Example 5.2 Page: 130 5.3 Forward Contracts on Stock Page: 131 Does the Forward Price Predict the Future Spot Price? Page: 132 Creating a Synthetic Forward Contract Page: 133 Synthetic Forwards in Market-Making and Arbitrage Page: 135 No-Arbitrage Bounds with Transaction Costs Page: 136 Quasi-Arbitrage Page: 137 An Interpretation of the Forward Pricing Formula Page: 138 5.4 Futures Contracts Page: 138 The S&P 500 Futures Contract Page: 139 Margins and Marking to Market Page: 140 Comparing Futures and Forward Prices Page: 143 Arbitrage in Practice: S&P 500 Index Arbitrage Page: 143 Quanto Index Contracts Page: 145 5.5 Uses of Index Futures Page: 146 Asset Allocation Page: 146 Switching from Stocks to T-bills Page: 146 General Asset Allocation Page: 146 Cross-hedging with Index Futures Page: 147 Cross-hedging with Perfect Correlation Page: 147 Cross-Hedging with Imperfect Correlation Page: 148 Example 5.3 Page: 149 Risk Management for Stock-Pickers Page: 150 5.6 Currency Contracts Page: 150 Currency Prepaid Forward Page: 150 Example 5.4 Page: 151 Currency Forward Page: 151 Example 5.5 Page: 152 Covered Interest Arbitrage Page: 152 Example 5.6 Page: 152 5.7 Eurodollar Futures Page: 153 Chapter Summary Page: 156 Further Reading Page: 158 Problems Page: 158 Appendix 5.A Taxes and the Forward Rate Page: 161 Appendix 5.B Equating Forwards and Futures Page: 162 Appendix 5.C Forward and Futures Prices Page: 162 6 Commodity Forwards and Futures Page: 163 6.1 Introduction to Commodity Forwards Page: 164 Examples of Commodity Futures Prices Page: 164 Differences Between Commodities and Financial Assets Page: 165 Commodity Terminology Page: 166 6.2 Equilibrium Pricing of Commodity Forwards Page: 167 6.3 Pricing Commodity Forwards by Arbitrage Page: 168 An Apparent Arbitrage Page: 168 Short-selling and the Lease Rate Page: 170 No-Arbitrage Pricing Incorporating Storage Costs Page: 171 Cash-and-Carry Arbitrage Page: 172 Example 6.1 Page: 173 Reverse Cash-and-Carry Arbitrage Page: 173 Convenience Yields Page: 174 Summary Page: 175 6.4 Gold Page: 175 Gold Leasing Page: 176 Evaluation of Gold Production Page: 177 Example 6.2 Page: 177 6.5 Corn Page: 178 6.6 Energy Markets Page: 179 Electricity Page: 179 Natural Gas Page: 180 Oil Page: 182 Oil Distillate Spreads Page: 184 Example 6.3 Page: 185 6.7 Hedging Strategies Page: 185 Basis Risk Page: 185 Hedging Jet Fuel with Crude Oil Page: 187 Weather Derivatives Page: 188 6.8 Synthetic Commodities Page: 189 Chapter Summary Page: 191 Further Reading Page: 191 Problems Page: 192 7 Interest Rate Forwards and Futures Page: 195 7.1 Bond Basics Page: 195 Zero-Coupon Bonds Page: 196 Implied Forward Rates Page: 197 Example 7.1 Page: 198 Coupon Bonds Page: 199 Example 7.2 Page: 199 Zeros from Coupons Page: 200 Interpreting the Coupon Rate Page: 201 Continuously Compounded Yields Page: 202 7.2 Forward Rate Agreements, Eurodollar Futures, and Hedging Page: 202 Forward Rate Agreements Page: 203 FRA Settlement in Arrears. Page: 203 FRA Settlement at the Time of Borrowing Page: 203 Synthetic FRAs Page: 204 Example 7.3 Page: 205 Eurodollar Futures Page: 206 Convexity Bias and Tailing Page: 207 LIBOR Versus 3-Month T-Bills. Page: 209 7.3 Duration and Convexity Page: 211 Price Value of a Basis Point and DV01 Page: 211 Example 7.4 Page: 212 Duration Page: 212 Example 7.5 Page: 213 Example 7.6 Page: 213 Example 7.7 Page: 214 Duration Matching Page: 214 Example 7.8 Page: 215 Convexity Page: 215 Example 7.9 Page: 216 7.4 Treasury-Bond and Treasury-Note Futures Page: 217 Example 7.10 Page: 218 7.5 Repurchase Agreements Page: 220 Example 7.11 Page: 220 Chapter Summary Page: 222 Further Reading Page: 224 Problems Page: 224 Appendix 7.A INTEREST RATE AND BOND PRICE CONVENTIONS Page: 228 Bonds Page: 228 Example 7.12 Page: 229 Example 7.13 Page: 229 Example 7.14 Page: 230 Bills Page: 230 8 Swaps Page: 233 8.1 An Example of A Commodity Swap Page: 233 Physical Versus Financial Settlement Page: 234 Why Is the Swap Price Not $110.50? Page: 236 The Swap Counterparty Page: 237 The Market Value of a Swap Page: 238 8.2 Computing The Swap Rate in General Page: 240 Fixed Quantity Swaps Page: 240 Swaps with Variable Quantity and Price Page: 241 8.3 Interest Rate Swaps Page: 243 A Simple Interest Rate Swap Page: 243 Pricing and the Swap Counterparty Page: 244 Swap Rate and Bond Calculations Page: 246 Example 8.1 Page: 246 The Swap Curve Page: 246 The Swap’s Implicit Loan Balance Page: 248 Deferred Swaps Page: 249 Related Swaps Page: 250 Why Swap Interest Rates? Page: 251 Amortizing and Accreting Swaps Page: 252 8.4 Currency Swaps Page: 252 Example 8.2 Page: 254 Example 8.3 Page: 254 Currency Swap Formulas Page: 255 Other Currency Swaps Page: 256 8.5 Swaptions Page: 256 Example 8.4 Page: 257 8.6 Total Return Swaps Page: 257 Example 8.5 Page: 258 Chapter Summary Page: 259 Further Reading Page: 260 Problems Page: 261 Part 3 Options Page: 263 9 Parity and Other Option Relationships Page: 265 9.1 Put-Call Parity Page: 265 Options on Stocks Page: 266 Example 9.1 Page: 267 Example 9.2 Page: 268 Synthetic stock. Page: 268 Synthetic T-bills. Page: 268 Synthetic options. Page: 269 Options on Currencies Page: 269 Options on Bonds Page: 269 Dividend Forward Contracts Page: 269 9.2 Generalized Parity And Exchange Options Page: 270 Example 9.3 Page: 271 Options to Exchange Stock Page: 272 What Are Calls and Puts? Page: 272 Currency Options Page: 273 9.3 Comparing Options With Respect To Style, Maturity, And Strike Page: 275 European Versus American Options Page: 276 Maximum and Minimum Option Prices Page: 276 Calls. Page: 276 Puts. Page: 277 Early Exercise for American Options Page: 277 Calls on a non-dividend-paying stock. Page: 277 Exercising calls just prior to a dividend. Page: 278 Early exercise for puts. Page: 278 Early exercise in general. Page: 279 Time to Expiration Page: 279 American options. Page: 280 European options. Page: 280 European options when the strike price grows over time. Page: 280 Different Strike Prices Page: 281 Example 9.4 Page: 283 Example 9.5 Page: 284 Example 9.6 Page: 284 Exercise and Moneyness Page: 286 Chapter Summary Page: 286 Further Reading Page: 287 Problems Page: 288 Appendix 9.A Parity Bounds For American Options Page: 291 Appendix 9.B Algebraic Proofs Of Strike-Price Relations Page: 292 10 Binomial Option Pricing: Basic Concepts Page: 293 10.1 A One-Period Binomial Tree Page: 293 Computing the Option Price Page: 294 The Binomial Solution Page: 295 Example 10.1 Page: 297 Arbitraging a Mispriced Option Page: 297 The Option is Overpriced Page: 297 The Option is Underpriced Page: 298 A Graphical Interpretation of the Binomial Formula Page: 298 Risk-Neutral Pricing Page: 299 10.2 Constructing a Binomial Tree Page: 300 Continuously Compounded Returns Page: 300 Example 10.2 Page: 301 Example 10.3 Page: 301 Example 10.4 Page: 301 Volatility Page: 301 Constructing u and d Page: 302 Estimating Historical Volatility Page: 303 One-Period Example with a Forward Tree Page: 305 10.3 Two or More Binomial Periods Page: 306 A Two-Period European Call Page: 306 Constructing the Tree Page: 306 Pricing the Call Option Page: 307 Many Binomial Periods Page: 308 10.4 Put Options Page: 309 10.5 American Options Page: 310 10.6 Options on Other Assets Page: 312 Option on a Stock Index Page: 312 Options on Currencies Page: 312 Options on Futures Contracts Page: 314 Options on Commodities Page: 315 Options on Bonds Page: 316 Summary Page: 317 Chapter Summary Page: 318 Further Reading Page: 318 Problems Page: 319 Appendix 10.A Taxes and Option Prices Page: 322 11 Binomial Option Pricing: Selected Topics Page: 323 11.1 Understanding Early Exercise Page: 323 11.2 Understanding Risk-Neutral Pricing Page: 325 The Risk-Neutral Probability Page: 326 Pricing an Option Using Real Probabilities Page: 327 A One-Period Example Page: 328 A Multi-Period Example Page: 329 11.3 The Binomial Tree and Lognormality Page: 330 The Random Walk Model Page: 330 Modeling Stock Prices as a Random Walk Page: 331 The Binomial Model Page: 332 Lognormality and the Binomial Model Page: 333 Alternative Binomial Trees Page: 335 The Cox-Ross-Rubinstein Binomial Tree Page: 335 The Lognormal Tree Page: 336 Is the Binomial Model Realistic? Page: 336 11.4 Stocks Paying Discrete Dividends Page: 336 Modeling Discrete Dividends Page: 337 Problems with the Discrete Dividend Tree Page: 337 A Binomial Tree Using the Prepaid Forward Page: 338 Chapter Summary Page: 340 Further Reading Page: 340 Problems Page: 341 Appendix 11.A Pricing Options with True Probabilities Page: 343 Appendix 11.B Why Does Risk-Neutral Pricing Work? Page: 343 Utility-Based Valuation Page: 344 Standard Discounted Cash Flow Page: 345 Risk-Neutral Pricing Page: 345 Physical vs. Risk-Neutral Probabilities Page: 346 Example Page: 347 State Prices Page: 347 Valuing the Risk-Free Bond Page: 347 Valuing the Risky Stock Using Real Probabilities Page: 347 Risk-Neutral Valuation of the Stock Page: 347 12 The Black-Scholes Formula Page: 349 12.1 Introduction to the Black-Scholes Formula Page: 349 Call Options Page: 349 Example 12.1 Page: 351 Put Options Page: 352 Example 12.2 Page: 352 When Is the Black-Scholes Formula Valid? Page: 352 12.2 Applying the Formula to Other Assets Page: 353 Options on Stocks with Discrete Dividends Page: 354 Example 12.3 Page: 354 Options on Currencies Page: 354 Example 12.4 Page: 355 Options on Futures Page: 355 Example 12.5 Page: 355 12.3 Option Greeks Page: 355 Definition of the Greeks Page: 356 Delta Page: 356 Gamma Page: 358 Vega Page: 359 Theta Page: 359 Rho Page: 360 Psi Page: 360 Greek Measures for Portfolios Page: 361 Example 12.6 Page: 361 Option Elasticity Page: 362 Dollar Risk of the Option Page: 362 Example 12.7 Page: 362 Percentage Risk of the Option Page: 362 Example 12.8 Page: 363 The Volatility of an Option Page: 363 The Risk Premium and Beta of an Option Page: 363 The Sharpe Ratio of an Option Page: 365 The Elasticity and Risk Premium of a Portfolio Page: 365 12.4 Profit Diagrams Before Maturity Page: 366 Purchased Call Option Page: 366 Example 12.9 Page: 366 Calendar Spreads Page: 367 12.5 Implied Volatility Page: 368 Computing Implied Volatility Page: 369 Example 12.10 Page: 369 Using Implied Volatility Page: 370 12.6 Perpetual American Options Page: 372 Valuing Perpetual Options Page: 373 Example 12.11 Page: 374 Barrier Present Values Page: 374 Chapter Summary Page: 374 Further Reading Page: 375 Problems Page: 375 Appendix 12.A THE STANDARD NORMAL DISTRIBUTION Page: 378 Appendix 12.B FORMULAS FOR OPTION GREEKS Page: 378 Delta (Δ) Page: 379 Gamma (Γ) Page: 379 Theta (θ) Page: 379 Vega Page: 379 Rho (ρ) Page: 380 Psi (ψ) Page: 380 13 Market-Making and Delta-Hedging Page: 381 13.1 What do Market-Makers do? Page: 381 13.2 Market-Maker Risk Page: 382 Option Risk in the Absence of Hedging Page: 382 Delta and Gamma as Measures of Exposure Page: 383 13.3 Delta-Hedging Page: 384 An Example of Delta-Hedging for 2 Days Page: 385 Day 0 Page: 385 Day 1: Marking-to-Market Page: 385 Day 1: Rebalancing the Portfolio Page: 385 Day 2: Marking-to-Market Page: 385 Interpreting the Profit Calculation Page: 385 Delta-Hedging for Several Days Page: 387 A Self-Financing Portfolio: The Stock Moves One σ Page: 389 13.4 The Mathematics of Delta-Hedging Page: 389 Using Gamma to Better Approximate the Change in the Option Price Page: 390 Example 13.1 Page: 390 Delta-Gamma Approximations Page: 391 Theta: Accounting for Time Page: 392 Example 13.2 Page: 393 Understanding the Market-Maker’s Profit Page: 393 13.5 The Black-Scholes Analysis Page: 395 The Black-Scholes Argument Page: 395 Delta-Hedging of American Options Page: 396 What Is the Advantage to Frequent Re-Hedging? Page: 397 Example 13.3 Page: 398 Delta-Hedging in Practice Page: 398 Gamma-Neutrality Page: 399 13.6 Market-Making as Insurance Page: 402 Insurance Page: 402 Market-Makers Page: 403 Chapter Summary Page: 403 Further Reading Page: 404 Problems Page: 404 Appendix 13.A TAYLOR SERIES APPROXIMATIONS Page: 406 Appendix 13.B GREEKS IN THE BINOMIAL MODEL Page: 407 14 Exotic Options: I Page: 409 14.1 Introduction Page: 409 14.2 Asian Options Page: 410 XYZ’s Hedging Problem Page: 410 Options on the Average Page: 411 The Definition of the Average Page: 411 Example 14.1 Page: 412 Whether the Average Is Used as the Asset Price or the Strike Page: 412 Comparing Asian Options Page: 412 An Asian Solution for XYZ Page: 413 14.3 Barrier Options Page: 414 Types of Barrier Options Page: 415 Currency Hedging Page: 416 14.4 Compound Options Page: 418 Compound Option Parity Page: 419 Options on Dividend-Paying Stocks Page: 419 Example 14.2 Page: 420 Currency Hedging with Compound Options Page: 421 14.5 Gap Options Page: 421 14.6 Exchange Options Page: 423 European Exchange Options Page: 424 Example 14.3 Page: 425 Chapter Summary Page: 425 Further Reading Page: 426 Problems Page: 426 Appendix 14.A Pricing Formulas for Exotic Options Page: 429 Asian Options Based on the Geometric Average Page: 430 Average Price Options Page: 430 Average Strike Options Page: 430 Compound Options Page: 431 Infinitely Lived Exchange Option Page: 432 Part 4 Financial Engineering and Applications Page: 435 15 Financial Engineering and Security Design Page: 437 15.1 The Modigliani-Miller Theorem Page: 437 15.2 Structured Notes without Options Page: 438 Single Payment Bonds Page: 438 Zero-coupon equity-linked bond Page: 440 Example 15.1 Page: 440 Example 15.2 Page: 440 Zero-coupon commodity-linked bond Page: 440 Example 15.3 Page: 440 Zero-Coupon Currency-Linked Bond Page: 441 Multiple Payment Bonds Page: 441 Equity-linked bonds Page: 442 Example 15.4 Page: 443 Commodity-linked bonds Page: 443 Example 15.5 Page: 443 Perpetuities Page: 444 Currency-linked bonds Page: 444 15.3 Structured Notes with Options Page: 445 Convertible Bonds Page: 446 Valuing and Structuring an Equity-Linked CD Page: 447 Structuring the Product Page: 448 Alternative Structures Page: 448 Example 15.6 Page: 449 Reverse Convertible Bonds Page: 449 Tranched Payoffs Page: 451 Variable Prepaid Forwards Page: 452 Example 15.7 Page: 453 15.4 Strategies Motivated by Tax and Regulatory Considerations Page: 453 Capital Gains Deferral Page: 454 Hedging by Corporate Insiders Page: 455 Tax Deferral for Corporations Page: 456 Marshall & Ilsley SPACES Page: 458 The M&I Issue Page: 458 Design Considerations Page: 459 15.5 Engineered Solutions for Golddiggers Page: 460 Gold-Linked Notes Page: 460 Notes with Embedded Options Page: 462 Chapter Summary Page: 463 Further Reading Page: 464 Problems Page: 464 16 Corporate Applications Page: 469 16.1 Equity, Debt, And Warrants Page: 469 Debt and Equity as Options Page: 469 Example 16.1 Page: 470 Example 16.2 Page: 472 Leverage and the Expected Return on Debt and Equity Page: 472 Example 16.3 Page: 473 Conflicts Between Debt and Equity Page: 475 Multiple Debt Issues Page: 477 Warrants Page: 478 Convertible Bonds Page: 479 Example 16.4 Page: 480 Example 16.5 Page: 480 Callable Bonds Page: 481 Callable Nonconvertible Bonds Page: 482 Callable Convertible Bonds Page: 483 Bond Valuation Based on the Stock Price Page: 485 Other Bond Features Page: 485 Put Warrants Page: 486 16.2 Compensation Options Page: 487 The Use of Compensation Options Page: 487 Valuation of Compensation Options Page: 489 Whose Valuation Page: 489 Valuation Inputs Page: 490 Repricing of Compensation Options Page: 492 Example 16.6 Page: 492 Reload Options Page: 493 Level 3 Communications Page: 495 Example 16.7 Page: 495 Valuing the Outperformance Feature Page: 496 Accounting for the Multiplier Page: 497 16.3 The Use Of Collars In Acquisitions Page: 498 The Northrop Grumman—TRW merger Page: 499 Chapter Summary Page: 502 Further Reading Page: 503 Problems Page: 503 Appendix 16.A An Alternative Approach to Expensing Option Grants Page: 507 17 Real Options Page: 509 17.1 Investment And The Npv Rule Page: 509 Static NPV Page: 510 The Correct Use of NPV Page: 511 The Project as an Option Page: 511 17.2 Investment Under Uncertainty Page: 512 A Simple DCF Problem Page: 513 Example 17.1 Page: 513 Valuing Derivatives on the Cash Flow Page: 514 Example 17.2 Page: 514 Evaluating a Project with a 2-Year Investment Horizon Page: 515 A Tree for Project Value Page: 516 Solving for the Optimal Investment Decision Page: 517 Evaluating the Project with an Infinite Investment Horizon Page: 518 17.3 Real Options In Practice Page: 519 Peak-Load Electricity Generation8 Page: 519 Research and Development Page: 523 17.4 Commodity Extraction As An Option Page: 525 Single-Barrel Extraction under Certainty Page: 525 Optimal Extraction Page: 526 Value and Appreciation of the Land Page: 527 Using the Option Pricing Formula Page: 527 Changing Extraction Costs Page: 527 Gold Extraction Revisited Page: 528 Single-Barrel Extraction under Uncertainty Page: 528 Valuing an Infinite Oil Reserve Page: 530 Valuing the Producing Firm Page: 530 Valuing the Option to Invest Page: 530 Example 17.3 Page: 530 Example 17.4 Page: 531 17.5 Commodity Extraction With Shutdown And Restart Options Page: 531 Permanent Shutting Down Page: 533 Example 17.5 Page: 533 The value of the producing well Page: 534 Investing When Shutdown Is Possible Page: 535 Example 17.6 Page: 536 Restarting Production Page: 536 Example 17.7 Page: 536 Additional Options Page: 537 Chapter Summary Page: 538 Further Reading Page: 538 Problems Page: 538 Appendix 17.A Calculation of Optimal Time to Drill an Oil Well Page: 541 Appendix 17.B The Solution with Shutting Down and Restarting Page: 541 Part 5 Advanced Pricing Theory and Applications Page: 543 18 The Lognormal Distribution Page: 545 18.1 The Normal Distribution Page: 545 Example 18.1 Page: 548 Converting a Normal Random Variable to Standard Normal Page: 548 Example 18.2 Page: 549 Sums of Normal Random Variables Page: 549 The Central Limit Theorem Page: 550 18.2 The Lognormal Distribution Page: 550 18.3 A Lognormal Model of Stock Prices Page: 552 Example 18.3 Page: 553 Example 18.4 Page: 555 Example 18.5 Page: 555 18.4 Lognormal Probability Calculations Page: 555 Probabilities Page: 556 Lognormal Prediction Intervals Page: 557 Example 18.6 Page: 557 Example 18.7 Page: 558 The Conditional Expected Price Page: 559 The Black-Scholes Formula Page: 561 18.5 Estimating the Parameters of a Lognormal Distribution Page: 562 Example 18.8 Page: 562 18.6 How are Asset Prices Distributed? Page: 564 Histograms Page: 564 Normal Probability Plots Page: 566 Example 18.9 Page: 567 Example 18.10 Page: 567 Chapter Summary Page: 569 Further Reading Page: 569 Problems Page: 570 Appendix 18.A The Expectation of a Lognormal Variable Page: 571 Appendix 18.B Constructing a Normal Probability Plot Page: 572 19 Monte Carlo Valuation Page: 573 19.1 Computing the Option Price as a Discounted Expected Value Page: 573 Valuation with Risk-Neutral Probabilities Page: 574 Valuation with True Probabilities Page: 575 19.2 Computing Random Numbers Page: 577 19.3 Simulating Lognormal Stock Prices Page: 578 Simulating a Sequence of Stock Prices Page: 578 19.4 Monte Carlo Valuation Page: 579 Monte Carlo Valuation of a European Call Page: 580 Example 19.1 Page: 580 Accuracy of Monte Carlo Page: 581 Arithmetic Asian Option Page: 582 Example 19.2 Page: 583 19.5 Efficient Monte Carlo Valuation Page: 584 Control Variate Method Page: 584 Other Monte Carlo Methods Page: 587 19.6 Valuation of American Options Page: 588 19.7 The Poisson Distribution Page: 591 Example 19.3 Page: 592 19.8 Simulating Jumps with the Poisson Distribution Page: 593 Simulating the Stock Price with Jumps Page: 593 Multiple Jumps Page: 596 19.9 Simulating Correlated Stock Prices Page: 597 Generating n Correlated Lognormal Random Variables Page: 597 Chapter Summary Page: 599 Further Reading Page: 599 Problems Page: 599 Appendix 19.A Formulas for Geometric Average Options Page: 602 20 Brownian Motion and Itô’s Lemma Page: 603 20.1 The Black-Scholes Assumption About Stock Prices Page: 603 20.2 Brownian Motion Page: 604 Definition of Brownian Motion Page: 604 Properties of Brownian Motion Page: 606 Arithmetic Brownian Motion Page: 607 The Ornstein-Uhlenbeck Process Page: 608 20.3 Geometric Brownian Motion Page: 608 Lognormality Page: 609 Relative Importance of the Drift and Noise Terms Page: 610 Multiplication Rules Page: 610 Modeling Correlated Asset Prices Page: 612 Example 20.1 Page: 613 20.4 ItÔ’s Lemma Page: 613 Functions of an Itô Process Page: 614 Proposition 20.1 Page: 615 Example 20.2 Page: 615 Example 20.3 Page: 616 Multivariate Itô’s Lemma Page: 616 Proposition 20.2 Page: 616 Example 20.4 Page: 616 Example 20.5 Page: 617 20.5 The Sharpe Ratio Page: 617 20.6 Risk-Neutral Valuation Page: 618 A Claim That Pays S(T)a Page: 619 Proposition 20.3 Page: 619 Specific Examples Page: 620 Valuing a Claim on SaQb Page: 621 Proposition 20.4 Page: 621 20.7 Jumps In The Stock Price Page: 622 Proposition 20.5 Page: 623 Chapter Summary Page: 624 Further Reading Page: 624 Problems Page: 624 Appendix 20.A Valuation Using Discounted Cash Flow Page: 626 b21 The Black-Scholes-Merton Equation Page: 627 21.1 Differential Equations and Valuation Under Certainty Page: 627 The Valuation Equation Page: 627 Bonds Page: 628 Dividend-Paying Stocks Page: 629 The General Structure Page: 629 21.2 The Black-Scholes Equation Page: 629 Verifying the Formula for a Derivative Page: 631 Simple Present Value Calculations. Page: 631 All-Or-Nothing Options Page: 633 The Black-Scholes Equation and Equilibrium Returns Page: 634 What If the Underlying Asset Is Not an Investment Asset? Page: 635 Example 21.1 Page: 636 21.3 Risk-Neutral Pricing Page: 637 Interpreting the Black-Scholes Equation Page: 637 The Backward Equation Page: 637 Derivative Prices as Discounted Expected Cash Flows Page: 638 21.4 Changing the Numeraire Page: 639 Example 21.2 Page: 639 Proposition 21.1 Page: 640 Example 21.3 Page: 641 21.5 Option Pricing When the Stock Price Can Jump Page: 642 Merton’s Solution for Diversifiable Jumps Page: 642 Chapter Summary Page: 644 Further Reading Page: 644 Problems Page: 645 Appendix 21.A Multivariate Black-Scholes Analysis Page: 646 Appendix 21.B Proof of Proposition 21.1 Page: 646 Appendix 21.C Solutions For Prices and Probabilities Page: 647 22 Risk-Neutral and Martingale Pricing Page: 649 22.1 Risk Aversion and Marginal Utility Page: 650 22.2 The First-Order Condition for Portfolio Selection Page: 652 22.3 Change of Measure and Change of Numeraire Page: 654 Change of Measure Page: 655 The Martingale Property Page: 655 Girsanov’s Theorem Page: 657 22.4 Examples of Numeraire and Measure Change Page: 658 The Money-Market Account as Numeraire (Risk-Neutral Measure) Page: 659 The Money-Market Account Page: 659 The Money-Market Account as Numeraire Page: 660 Constructing a Process for Si(t) Page: 660 Interpretation Page: 661 Risky Asset as Numeraire Page: 662 Zero Coupon Bond as Numeraire (Forward Measure) Page: 662 22.5 Examples of Martingale Pricing Page: 663 Cash-or-Nothing Call Page: 663 Interpretation of Volatility Page: 664 Dividends Page: 665 Asset-or-Nothing Call Page: 665 The Black-Scholes Formula Page: 666 European Outperformance Option Page: 667 Option on a Zero-Coupon Bond Page: 667 22.6 Example: Long-Maturity Put Options Page: 667 The Black-Scholes Put Price Calculation Page: 668 Is the Put Price Reasonable? Page: 669 The Likelihood of Exercise and Expected Payoff Page: 669 Understanding the Option Price Page: 669 Discussion Page: 671 Chapter Summary Page: 671 Further Reading Page: 673 Problems Page: 673 Appendix 22.A The Portfolio Selection Problem Page: 676 The One-Period Portfolio Selection Problem Page: 676 The Risk Premium of an Asset Page: 678 Multiple Consumption and Investment Periods Page: 678 Appendix 22.B Girsanov’s Theorem Page: 679 The Theorem Page: 679 Constructing Multi-Asset Processes from Independent Brownian Motions Page: 680 Risk-Neutral Measure Page: 680 Risky Asset as Numeraire Page: 681 Appendix 22.C Risk-Neutral Pricing and Marginal Utility in the Binomial Model Page: 681 23 Exotic Options: II Page: 683 23.1 All-Or-Nothing Options Page: 683 Terminology Page: 683 Cash-or-Nothing Options Page: 684 Example 23.1 Page: 685 Asset-or-Nothing Options Page: 685 Example 23.2 Page: 686 Ordinary Options and Gap Options Page: 686 Example 23.3 Page: 687 Delta-Hedging All-or-Nothing Options Page: 687 23.2 All-Or-Nothing Barrier Options Page: 688 Cash-or-Nothing Barrier Options Page: 690 Down-And-In Cash Call. Page: 691 Deferred Down Rebate Option Page: 691 Down-And-Out Cash Call. Page: 691 Down-And-In Cash Put. Page: 692 Down-And-Out Cash Put. Page: 692 Example 23.4 Page: 692 Example 23.5 Page: 693 Up-And-In Cash Put. Page: 693 Deferred Up Rebate Page: 693 Up-And-Out Cash Put. Page: 694 Up-And-In Cash Call. Page: 694 Up-And-Out Cash Call. Page: 694 Asset-or-Nothing Barrier Options Page: 694 Rebate Options Page: 694 Perpetual American Options Page: 695 23.3 Barrier Options Page: 695 Example 23.6 Page: 696 23.4 Quantos Page: 697 The Yen Perspective Page: 698 Example 23.7 Page: 699 The Dollar Perspective Page: 699 Example 23.8 Page: 701 A Binomial Model for the Dollar-Denominated Investor Page: 701 Example 23.9 Page: 703 23.5 Currency-Linked Options Page: 704 Foreign Equity Call Struck in Foreign Currency Page: 705 Example 23.10 Page: 706 Foreign Equity Call Struck in Domestic Currency Page: 706 Example 23.11 Page: 706 Fixed Exchange Rate Foreign Equity Call Page: 706 Example 23.12 Page: 707 Equity-Linked Foreign Exchange Call Page: 707 Example 23.13 Page: 708 23.6 Other Multivariate Options Page: 708 Options on the Best of Two Assets Page: 708 Basket Options Page: 710 Chapter Summary Page: 711 Further Reading Page: 711 Problems Page: 712 Appendix 23.A The Reflection Principle Page: 715 24 Volatility Page: 717 24.1 Implied Volatility Page: 717 24.2 Measurement and Behavior of Volatility1 Page: 720 Historical Volatility Page: 720 Exponentially Weighted Moving Average Page: 721 Example 24.1 Page: 722 Time-Varying Volatility: ARCH Page: 723 The ARCH Model Page: 724 ARCH Volatility Forecasts Page: 726 The GARCH Model Page: 727 Maximum Likelihood Estimation of a GARCH Model Page: 727 Volatility Forecasts Page: 728 Example 24.2 Page: 729 Realized Quadratic Variation Page: 729 24.3 Hedging and Pricing Volatility Page: 731 Variance and Volatility Swaps Page: 731 Example 24.3 Page: 731 Example 24.4 Page: 732 Pricing Volatility Page: 732 The Log Contract Page: 733 Valuing the Log Contract Page: 734 Computing the VIX Page: 735 24.4 Extending the Black-Scholes Model Page: 736 Jump Risk and Implied Volatility Page: 737 Constant Elasticity of Variance Page: 737 The CEV Pricing Formula Page: 739 Implied Volatility in the CEV Model Page: 740 The Heston Model Page: 740 Evidence Page: 742 Chapter Summary Page: 745 Further Reading Page: 745 Problems Page: 746 25 Interest Rate and Bond Derivatives Page: 751 25.1 An Introduction To Interest Rate Derivatives Page: 751 Bond and Interest Rate Forwards Page: 752 Example 25.1 Page: 753 Options on Bonds and Rates Page: 753 Bond Options. Page: 753 Interest Rate Options. Page: 753 Equivalence of a Bond Put and an Interest Rate Call Page: 754 Example 25.2 Page: 754 Taxonomy of Interest Rate Models Page: 754 Short-Rate Models. Page: 754 Market Models. Page: 755 25.2 Interest Rate Derivatives And The Black-Scholes-Merton Approach Page: 756 An Equilibrium Equation for Bonds Page: 757 25.3 Continuous-Time Short-Rate Models Page: 760 The Rendelman-Bartter Model Page: 760 The Vasicek Model Page: 761 The Cox-Ingersoll-Ross Model Page: 762 Comparing Vasicek and CIR Page: 763 Duration and Convexity Revisited Page: 764 Example 25.3 Page: 765 25.4 Short-Rate Models And Interest Rate Trees Page: 765 An Illustrative Tree Page: 765 Zero-Coupon Bond Prices. Page: 766 Example 25.4 Page: 767 Yields and Expected Interest Rates. Page: 768 Option Pricing. Page: 768 Example 25.5 Page: 769 The Black-Derman-Toy Model Page: 769 Example 25.6 Page: 772 Hull-White Model Page: 773 Example 25.7 Page: 774 Constructing the Initial Interest Rate Grid. Page: 774 Probabilities. Page: 774 Matching Zero-Coupon Bond Prices. Page: 776 Valuation. Page: 778 Example 25.8 Page: 779 Example 25.9 Page: 779 25.5 Market Models Page: 779 The Black Model Page: 780 Example 25.10 Page: 781 LIBOR Market Model Page: 781 Chapter Summary Page: 783 Further Reading Page: 784 Problems Page: 784 Appendix 25.A Constructing The Bdt Tree Page: 787 26 Value at Risk Page: 789 26.1 Value at Risk Page: 789 Value at Risk for One Stock Page: 792 Example 26.1 Page: 793 Example 26.2 Page: 794 VaR for Two or More Stocks Page: 795 Example 26.3 Page: 795 VaR for Nonlinear Portfolios Page: 796 Delta Approximation Page: 797 Example 26.4 Page: 797 Example 26.5 Page: 798 Monte Carlo Simulation Page: 799 Example 26.6 Page: 799 Example 26.7 Page: 801 VaR for Bonds Page: 801 Example 26.8 Page: 802 Example 26.9 Page: 803 Example 26.10 Page: 804 Estimating Volatility Page: 805 Bootstrapping Return Distributions Page: 806 26.2 Issues With VaR Page: 806 Alternative Risk Measures Page: 807 Tail VaR Page: 807 Example 26.11 Page: 807 The Cost of Insurance Page: 809 Example 26.12 Page: 810 VaR and the Risk-Neutral Distribution Page: 810 Subadditive Risk Measures Page: 811 Chapter Summary Page: 812 Further Reading Page: 813 Problems Page: 813 27 Credit Risk Page: 815 27.1 Default Concepts and Terminology Page: 815 27.2 The Merton Default Model Page: 817 Default at Maturity Page: 817 Example 27.1 Page: 818 Related Models Page: 819 Example 27.2 Page: 820 27.3 Bond Ratings and Default Experience Page: 820 Rating Transitions Page: 822 Recovery Rates Page: 824 Reduced Form Bankruptcy Models Page: 824 27.4 Credit Default Swaps Page: 826 Single-Name Credit Default Swaps Page: 826 Pricing a Default Swap Page: 828 CDS Indices Page: 832 Other Credit-Linked Structures Page: 833 Total Rate of Return Swaps Page: 834 Credit-Linked Notes Page: 834 Credit Guarantees Page: 834 27.5 Tranched Structures Page: 834 Collateralized Debt Obligations Page: 836 A CDO with Independent Defaults Page: 837 A CDO with Correlated Defaults Page: 839 Synthetic CDOs Page: 839 CDO-Squareds Page: 840 Nth to default baskets Page: 842 Chapter Summary Page: 844 Further Reading Page: 846 Problems Page: 846 Appendixes Page: 849 Appendix A The Greek Alphabet Page: 851 Appendix B Continuous Compounding Page: 853 B.1 The Language of Interest Rates Page: 853 B.2 The Logarithmic and Exponential Functions Page: 853 Problems Page: 856 Appendix C Jensen’s Inequality Page: 858 C.1 Example: The Exponential Function Page: 859 C.2 Example: The Price of a Call Page: 860 C.3 Proof Of Jensen’s Inequality2 Page: 861 Problems Page: 862 Appendix D An Introduction to Visual Basic for Applications Page: 863 D.1 Calculations Without Vba Page: 863 D.2 How To Learn Vba Page: 864 D.3 Calculations With Vba Page: 864 D.4 Storing and Retrieving Variables In a Worksheet Page: 868 D.5 Using Excel Functions From Within Vba Page: 870 D.6 Checking For Conditions Page: 873 D.7 Arrays Page: 874 D.8 Iteration Page: 875 D.9 Reading And Writing Arrays Page: 877 D.10 Miscellany Page: 880 Glossary Page: 883 References Page: 897 Index Page: 915 A Page: 915 B Page: 916 C Page: 919 D Page: 923 E Page: 925 F Page: 926 G Page: 928 H Page: 929 I Page: 930 J Page: 931 K Page: 932 L Page: 932 M Page: 933 N Page: 935 O Page: 936 P Page: 937 Q Page: 940 R Page: 940 S Page: 942 T Page: 945 U Page: 946 V Page: 946 W Page: 947 X Page: 947 Y Page: 947 Z Page: 947

Description:
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. To be financially literate in today’s market, one must have a solid understanding of derivatives concepts and instruments and the uses of those instruments in corporations.  The Third Edition has an accessible mathematical presentation, and more importantly, helps readers gain intuition by linking theories and concepts together with an engaging narrative that emphasizes the core economic principles underlying the pricing and uses of derivatives.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.