Derivatives and Internal Models Third Edition Hans-Peter Deutsch Derivatives and Internal Models Third Edition This page intentionally left blank Derivatives and Internal Models Third Edition Dr Hans-Peter Deutsch ©Hans-PeterDeutsch2004 Allrightsreserved.Noreproduction,copyortransmissionofthis publicationmaybemadewithoutwrittenpermission. Noparagraphofthispublicationmaybereproduced,copiedortransmitted savewithwrittenpermissionorinaccordancewiththeprovisionsofthe Copyright,DesignsandPatentsAct1988,orunderthetermsofanylicence permittinglimitedcopyingissuedbytheCopyrightLicensingAgency,90 TottenhamCourtRoad,LondonW1T4LP. Anypersonwhodoesanyunauthorisedactinrelationtothispublication maybeliabletocriminalprosecutionandcivilclaimsfordamages. Theauthorhasassertedhisrighttobeidentifiedastheauthorofthis workinaccordancewiththeCopyright,DesignsandPatentsAct1988. Firstpublished2004by PALGRAVEMACMILLAN Houndmills,Basingstoke,HampshireRG216XSand 175FifthAvenue,NewYork,N.Y.10010 Companiesandrepresentativesthroughouttheworld PALGRAVEMACMILLANistheglobalacademicimprintofthePalgrave MacmillandivisionofSt.Martin’sPressLLCandofPalgraveMacmillanLtd. Macmillan®isaregisteredtrademarkintheUnitedStates,UnitedKingdom andothercountries.PalgraveisaregisteredtrademarkintheEuropean Unionandothercountries. ISBN 978-1-349-51542-4 ISBN 978-1-4039-4608-9 (eBook) DOI 10.1057/9781403946089 Thisbookisprintedonpapersuitableforrecyclingand madefromfullymanagedandsustainedforestsources. AcataloguerecordforthisbookisavailablefromtheBritishLibrary. AcatalogrecordforthisbookisavailablefromtheLibraryofCongress 10 9 8 7 6 5 4 3 2 1 13 12 11 10 09 08 07 06 05 04 Preface Thephilosophyofthisbookistoprovideanintroductiontothevaluationandrisk management of modern (cid:31)nancial instruments formulated in precise (and mathemat- ically correct) expressions, covering all pertinent topics with a consistent and exact notation and with a depth of detail su(cid:33)cient to give the reader a truly sound under- standingofthematerial. Anunderstandingwhichevenplacesthereaderinaposition toindependentlydevelop pricingandriskmanagementalgorithms(includingactually writing computer programs), should this be necessary. Such tasks will greatly be fa- cilitatedbytheCD-ROMaccompanyingthebook. ThisCD-ROMcontainsMicrosoft ExcelTM workbooks presenting concrete realizations of the concepts discussed in the bookintheformofexecutablealgorithms. Ofcourse,thereaderhasfullaccesstoall source codes of the Visual BasicTM modules as well as to all calculations done in the spread sheet cells. The CD-ROM thus contains a collection of literally thousands of examplesprovidingthereaderwithvaluableassistanceinunderstandingthecomplex materialandservingasthepotentialbasisforthefurtherdevelopmentofthereader’s ownparticularpricingandriskmanagementprocedures. Thebookshouldequipthereaderwithawidearrayoftoolsneededforallessential topics in the (cid:31)eld of modern market risk management. The reader is not expected to have previous knowledge of (cid:31)nance, but rather a sound mathematical and analyt- ical background typical of scientists, mathematicians, computer scientists, engineers, etc.Thenoviceisnotevenrequiredtobefamiliarwithideasasfundamentalascom- pounding interest. The book, however, is certainly also of interestto the experienced risk manager or (cid:31)nancial engineer, since the concepts introduced are widely elabo- rated upon and analyzed down to the very foundations, making a comprehension of the material possible which goes signi(cid:31)cantly beyond the level held to be “common knowledge”inthis(cid:31)eld. Since the beauty of a room behind a closed door is of little use if the door itself cannotbefound,emphasishasbeenplacedonprovidinganeasyentryintotheanalysis of each of the various topics. As the author does not wish to lose the reader at the outset, or expect the reader to (cid:31)rst engage in the study of quoted literature before proceeding, the book is practically self-contained. An explanation of almost every expressionornotionneededcanbefoundinthebookitself,rangingfromcompounding interesttotermstructuremodels,fromexpectationtoValueatRisk,fromtimeseries analysistoGARCHmodels,fromarbitragetodi(cid:30)erentialequationsandexoticoptions, fromthenormaldistributiontomartingales,andsoon. v vi The selection of the topics and the nature of their presentation result to a great extent frommy personal experience as a consultant in the world of (cid:31)nancial services; (cid:31)rst with the Financial Risk Consulting division of Arthur Andersen in Germany, which it has been my pleasure to establish and direct for many years, and later with the company d-(cid:31)ne, which is in fact this former Financial Risk Consulting division, nowoperatingasacompanyofitsown. Inthesefunctions,Ihavebeeninapositionto observeandidentifyexactlywhatknowledgeandmethodsarerequiredinthe(cid:31)nancial worldaswellastoseewhattoolsareindispensableforanewcomertothisworld. Iwouldliketotakethisopportunitytothankmanyofthe(inpartformer)members oftheFinancialRiskConsulting teamandofd-(cid:31)ne fortheirvaluableinputandmany fruitfuldiscussionsnotonlyconcerningthisbook,butalsoinourdaytodayconsulting work. Wiesbaden,October2003 Hans-PeterDeutsch Contents I Fundamentals 1 1 Introduction 3 2 Legal Environment 7 3 Fundamental Risk Factors of Financial Markets 11 3.1 InterestRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 DayCountConventions . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 BusinessDayConventions . . . . . . . . . . . . . . . . . . . . . . 14 3.1.3 DiscountFactors . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.4 CompoundingMethods . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.5 SpotRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.6 ForwardRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 MarketPrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 AnIntuitiveModelforFinancialRiskFactors . . . . . . . . . . . . . . . 24 3.3.1 RandomWalksastheBasisforPricingandRiskModels. . . . . 24 3.3.2 RiskFactorsasRandomWalks . . . . . . . . . . . . . . . . . . . 27 3.4 ItoProcessesandStochasticAnalysis . . . . . . . . . . . . . . . . . . . 34 3.4.1 GeneralDi(cid:30)usionProcesses . . . . . . . . . . . . . . . . . . . . . 34 3.4.2 Ito’sLemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.3 TransitionProbabilities,ForwardandBackwardEquation . . . . 39 3.4.4 ForwardandBackwardEquationintheBlack-ScholesWorld . . 46 4 Financial Instruments: A System of Derivatives and Underlyings 47 4.1 SpotTransactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.1 MoneyMarketSecurities . . . . . . . . . . . . . . . . . . . . . . 48 4.1.2 CapitalMarketSecurities . . . . . . . . . . . . . . . . . . . . . . 52 4.1.3 Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 ForwardTransactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 vii viii CONTENTS II Methods 61 5 Overview of the Assumptions 63 6 Present Value Methods, Yields and Traditional Risk Measures 67 6.1 PresentValueandYieldtoMaturity . . . . . . . . . . . . . . . . . . . . 67 6.2 InternalRateofReturnandNetPresentValue . . . . . . . . . . . . . . 69 6.3 AccruedInterest,ResidualDebtandParRates . . . . . . . . . . . . . . 72 6.4 TraditionalSensitivitiesofInterestRateInstruments . . . . . . . . . . . 75 6.4.1 AverageLifetimeandMacaulayDuration . . . . . . . . . . . . . 75 6.4.2 Modi(cid:31)edDurationandConvexity. . . . . . . . . . . . . . . . . . 75 6.4.3 SummationofTraditionalSensitivities . . . . . . . . . . . . . . . 79 7 Arbitrage 81 7.1 ForwardContracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.1 ForwardPriceandCash&CarryArbitrage . . . . . . . . . . . . 81 7.1.2 TheStochasticProcessfortheForwardPrice . . . . . . . . . . . 83 7.1.3 ForwardPositions . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.1.4 FuturePositionsandBasisRisk. . . . . . . . . . . . . . . . . . . 84 7.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2.1 UpperandLowerBoundsforOptionPrices . . . . . . . . . . . 85 7.2.2 EarlyExerciseofAmericanOptions . . . . . . . . . . . . . . . . 86 7.2.3 RelationshipsbetweenPutsandCalls . . . . . . . . . . . . . . . 87 8 The Black-Scholes Di(cid:30)erential Equation 89 8.1 TheBlack-ScholesEquationfromArbitrageArguments . . . . . . . . . 90 8.1.1 TheBlack-ScholesEquationforEuropeanOptions . . . . . . . . 90 8.1.2 TheBlack-ScholesInequalityforAmericanOptions . . . . . . . 92 8.1.3 AFirstContactwiththeRisk-NeutralWorld . . . . . . . . . . . 95 8.2 TheBlack-ScholesEquationandtheBackwardEquation. . . . . . . . . 95 8.2.1 ASecondContactwiththeRisk-NeutralWorld . . . . . . . . . . 98 8.3 TheRelationshiptotheHeatEquation. . . . . . . . . . . . . . . . . . . 98 9 Integral Forms and Analytic Solutions in the Black-Scholes World 103 9.1 OptionPricesasSolutionsoftheHeatEquation . . . . . . . . . . . . . 103 9.2 OptionPricesandTransitionProbabilities . . . . . . . . . . . . . . . . . 105 9.3 CompilationofBlack-ScholesOptionPricesforDi(cid:30)erentUnderlyings. . 108 9.3.1 OptionsontheSpotPrice . . . . . . . . . . . . . . . . . . . . . . 108 9.3.2 OptionsontheForwardPrice . . . . . . . . . . . . . . . . . . . . 108 9.3.3 OptionsonInterestRates . . . . . . . . . . . . . . . . . . . . . . 110 10 Numerical Solutions Using Finite Di(cid:30)erences 113 10.1 DiscretizingtheBlack-ScholesEquation . . . . . . . . . . . . . . . . . . 114 10.1.1 TheExplicitMethod . . . . . . . . . . . . . . . . . . . . . . . . . 115 10.1.2 TheImplicitMethod . . . . . . . . . . . . . . . . . . . . . . . . . 115 10.1.3 CombinationsofExplicitandImplicitMethods(Crank-Nicolson) 115 10.1.4 SymmetricFiniteDi(cid:30)erencesoftheUnderlyingPrice. . . . . . . 117 CONTENTS ix 10.2 Di(cid:30)erenceSchemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.2.1 InitialConditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.2.2 DirichletBoundaryConditions . . . . . . . . . . . . . . . . . . . 123 10.2.3 NeumannBoundaryCondition . . . . . . . . . . . . . . . . . . . 127 10.2.4 Unspeci(cid:31)edBoundaryConditions. . . . . . . . . . . . . . . . . . 132 10.2.5 FreeBoundaryConditionsforAmericanOptions . . . . . . . . . 135 10.3 ConvergenceCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.3.1 ImprovingtheConvergenceProperties . . . . . . . . . . . . . . . 141 10.4 DiscreteDividends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11Binomial and Trinomial Trees 149 11.1 GeneralTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11.1.1 EvolutionoftheUnderlyingandtheReplicatingPortfolio . . . . 149 11.1.2 EvolutionoftheDerivative . . . . . . . . . . . . . . . . . . . . . 150 11.1.3 ForwardContracts . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.2 RecombinantTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.2.1 TheUnderlying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.2.2 TheBinomialDistributionforEuropeanDerivatives . . . . . . . 153 11.2.3 AThirdContactwiththeRisk-NeutralWorld . . . . . . . . . . 157 11.3 TheRelationshipbetweenRandomWalkandBinomialParameters . . . 159 11.4 TheBinomialModelwithIn(cid:31)nitesimalSteps . . . . . . . . . . . . . . . 162 11.4.1 ComponentsoftheBlack-ScholesOptionPricingFormula . . . . 163 11.5 TrinomialTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.5.1 TheTrinomialTreeasanImprovedBinomialTree . . . . . . . . 167 11.5.2 RelationshiptotheExplicitFiniteDi(cid:30)erenceMethod . . . . . . 167 12Monte Carlo Simulations 169 12.1 ASimpleExample: TheAreaofaDisk . . . . . . . . . . . . . . . . . . 171 12.2 TheGeneralApproachtoMonteCarloSimulations . . . . . . . . . . . . 174 12.3 MonteCarloSimulationofRiskFactors . . . . . . . . . . . . . . . . . . 175 12.3.1 SimulationoftheEvolutionofaSingle RiskFactor. . . . . . . . 175 12.3.2 SimulationofSeveral CorrelatedRiskFactors . . . . . . . . . . . 178 12.4 Pricing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 13Hedging 183 13.1 ReplicatingPortfoliosasSyntheticDerivatives . . . . . . . . . . . . . . 183 13.2 HedgingDerivativeswithSpotTransactions . . . . . . . . . . . . . . . . 183 13.2.1 ForwardsandFuturesasDerivatives . . . . . . . . . . . . . . . . 185 13.3 HedgingDerivativeswithForwardContracts . . . . . . . . . . . . . . . 186 13.3.1 HedgingwithForwards . . . . . . . . . . . . . . . . . . . . . . . 187 13.3.2 HedgingwithFutures . . . . . . . . . . . . . . . . . . . . . . . . 189 13.3.3 TheDi(cid:30)erentialEquationforDerivativesonFutures . . . . . . . 190 13.4 Hedge-RatiosforArbitraryCombinationsofFinancialInstruments . . . 191 13.5 “Greek”RiskManagementwithSensitivities . . . . . . . . . . . . . . . 193 13.5.1 SensitivitiesandaPortfolio’sChangeinValue . . . . . . . . . . 193