ebook img

Derivative and divergence formulae for diffusion semigroups PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Derivative and divergence formulae for diffusion semigroups

DERIVATIVE AND DIVERGENCE FORMULAE FOR DIFFUSION SEMIGROUPS 7 1 0 ANTONTHALMAIERANDJAMESTHOMPSON 2 n MathematicsResearchUnit,FSTC,UniversityofLuxembourg a 6,rueRichardCoudenhove-Kalergi,1359Luxembourg,GrandDuchyofLuxembourg J 3 1 Abstract. ForasemigroupPtgeneratedbyanellipticoperatoronasmoothmanifoldM, weusestraightforwardmartingaleargumentstoderiveprobabilisticformulaeforPt(V(f)), ] notinvolvingderivativesof f,whereVisavectorfieldonM.Fornon-symmetricgenera- R tors,suchformulaecorrespondtothederivativeoftheheatkernelintheforwardvariable. P Asanapplication,theseformulaecanbeusedtoderivevariousshift-Harnackinequalities. . h t a m Introduction [ ForaBanachspaceE,e EandaMarkovoperatorPon (E),itisknownthatcertain b 1 ∈ B estimatesonP( f)areequivalenttocorrespondingshift-Harnackinequalities. Thiswas e v ∇ provedbyF.-Y.Wangin[18]. Forexample,forδ (0,1)andβ C((δ , ) E;[0, )), 5 e∈ e∈ e ∞ × ∞ 2 heprovedthatthederivative-entropyestimate 6 3 P( f) δ P(flogf) (Pf)logPf +β (δ, )Pf e e 0 ∇ ≤ − · 1. holdsforanyδ≥δe(cid:12)(cid:12)(cid:12)andpos(cid:12)(cid:12)(cid:12)itive(cid:0)f ∈Cb1(E)ifandonlyif(cid:1)theinequality 0 1 pr p 1 17 (Pf)p≤ P(fp(re+·)) exp Z0 1+(p 1)sβe r+r(−p 1)s,·+sre!ds! (cid:0) (cid:1) − − : holdsfor any p 1/(1 rδ ), r (0,1/δ ) and positive f (E). Furthermore, he also v ≥ − e ∈ e ∈Bb i provedthatifC 0isaconstantthentheL2-derivativeinequality X ≥ r P( f)2 CPf2 a ∇e ≤ (cid:12) (cid:12) holdsforanynon-negative f ∈Cb1(E(cid:12)(cid:12))ifand(cid:12)(cid:12)onlyiftheinequality Pf P f(αe+ ) + α CPf2 ≤ · | |q holds for any α R and non-negativ(cid:0)e f ((cid:1)E). The objective of this article is to find b ∈ ∈B probabilistic formulae for P (V(f)) from which such estimates can be derived, for the T caseinwhichP istheMarkovoperatorassociatedtoanon-degeneratediffusionX ona T t smooth,finite-dimensionalmanifoldM,andV avectorfield. E-mail address:[email protected], [email protected]. Date:January16,2017. 2010MathematicsSubjectClassification. 58J65,60J60,53C21. Key words and phrases. Diffusion semigroup, Heat kernel, Gradient estimate, Harnack inequality, Ricci curvature. 1 2 DERIVATIVEANDDIVERGENCEFORMULAE InSection1wesupposethatMisaRiemannianmanifoldandthatthegeneratorofX is t ∆+Z,forsomesmoothvectorfieldZ. Anynon-degeneratediffusiononasmoothmanifold inducesaRiemannianmetricwithrespecttowhichitsgeneratortakesthisform.Thebasic strategyisthentousetherelationV(f)=div(fV) fdivVtoreducetheproblemtofinding − a suitable formulafor P (div(fV)). Such a formulawas givenin [3] for the case Z =0, T whichweextendtothegeneralcasewithTheorem1.16. Indoingso,wedonotmakeany assumptionsonthederivativesofthecurvaturetensor,asoccurredin[2]. Foranadapted processh withpathsintheCameron-MartinspaceL1,2([0,T];R),withh =0andh =1 t 0 T andundercertainadditionalconditions,weobtaintheformula P (V(f))(x) T = E f(X (x))(divV)(X (x)) T T − 1(cid:2) (cid:3) T E f(X (x)) V(X (x)),// Θ (divZ)(X(x))h h˙ Θ 1dB −2 " T D T T TZ0 (cid:16) t t− t(cid:17) −t tE# whereΘistheAut(T M)-valuedprocessdefinedbythepathwisedifferentialequation x d dtΘt=−//t−1 Ric♯+(∇.Z)∗−divZ //tΘt (cid:16) (cid:17) with Θ =id . Here // denotes the stochastic parallel transport associated to X(x), 0 TxM t t whose antidevelopmentto T M has martingale part B. In particular, B is a diffusion on x Rn generated by the Laplacian; it is a standard Brownian motion sped up by 2, so that dBidBj=2δ dt. Choosingh explicitlyyieldsa formulafromwhich estimatesthen can t t ij t bededuced,asdescribedinSubsection1.5. The problem of finding a suitable formula for P (V(f)) is dual to that of finding an T analogousoneforV(P f). AformulaforthelatteriscalledtheBismutformula[1]orthe T Bismut-Elworthy-Liformula,onaccountof[6]. WeprovideabriefproofofitinSubsec- tion1.3,sincewewouldliketocompareittoourformulaforP (V(f)). Ourapproachto T theseformulaeisbasedonmartingalearguments;integrationbypartsisdoneatthelevelof localmartingales. Underconditionswhichassurethatthelocalmartingalesaretruemar- tingales,thewantedformulaearethenobtainedbytakingexpectations.Theyallowforthe choiceofafiniteenergyprocess.Dependingontheintendedtype,conditionsareimposed eitherontherightendpoint,asintheformulaforP (V(f)),ortheleftendpoint,asinthe T formulaforV(P f). Theformulafor P (V(f))requiresnon-explosivity;theformulafor T T V(P f) does not. From the latter can be deduced Bismut’s formula for the logarithmic T derivativeinthebackwardvariablexoftheheatkernel p (x,y)determinedby T (P f)(x)= f(y)p (x,y)vol(dy), f C (M). T T b Z ∈ M FromourformulaforP (V(f))canbededucedthefollowingformulaforthederivativein T theforwardvariabley: 1 T ( logp (x, )) = E // Θ (divZ)(X(x))h h˙ Θ 1dB X (x)=y . ∇ T · y −2 " T TZ0 (cid:16) t t− t(cid:17) −t t(cid:12) T # (cid:12) In Section 2 we considerthe generalcase in which M is a smooth(cid:12)manifold and X a t non-degeneratediffusionsolvingaStratonovichequationoftheform dX =A (X)dt+A(X) dB. t 0 t t t ◦ We denote by TX the derivative (in probability) of the solution flow. Using a similar t approachtothatofSection1,andavarietyofgeometricobjectsnaturallyassociatedtothe DERIVATIVEANDDIVERGENCEFORMULAE 3 equation,weobtain,undercertainconditions,theformula P (V(f)) T m = E f(X )A V,A (X ) T i i T − h i Xi=1 (cid:2) (cid:3) 1 T E f(X ) V(X ),Ξ Ξ 1 (traceˆA )(X)h h˙ A(X)dB +2hAAdt −2 " T (cid:28) T TZ0 −t (cid:16)(cid:16) ∇ 0 t t− t(cid:17) t t t 0 (cid:17)(cid:29)# with t Ξ = TX TX TX 1 (˘A ) + ˘A +traceˆA (Ξ ) ds, t t− tZ0 s− (cid:16)(cid:16) ∇ 0 ∗ ∇ 0 ∇ 0(cid:17) s (cid:17) m AA= (˘A ) + ˘A T˘( ,A) (A) + A ,T˘( ,A) (A) , 0 ∇ 0 ∗ ∇ 0 · i ∗ i 0 · i ∗ i Xi=1(cid:16) (cid:17)(cid:16) (cid:17) (cid:2) (cid:3) wheretheoperators ˆA , ˘A andT˘( ,A)aregivenateachx Mandv T Mby 0 0 i x ∇ ∇ · ∈ ∈ ˆ A = A(x) d(A ( )A ( )) (v) (dA ) (v,A ) , v 0 ∗ 0 x ∗ x 0 ∇ · · − ˘ A = A(x)d(cid:0) A( ) A ( ) (v), (cid:1) ∇v 0 · ∗ 0 · x T˘(v,A) = A(x)(d(cid:0)A ) (v,A).(cid:1) i x ∗ x i This formula has the advantage of involving neither parallel transport nor Riemannian curvature,bothtypicallydifficulttocalculateintermsofA. 1. IntrinsicFormulae 1.1. Preliminaries. LetMbeacompleteandconnectedn-dimensionalRiemannianman- ifold, theLevi-Civitaconnectionon M andπ: O(M) M theorthonormalframebun- ∇ → dleover M. Let E M be anassociatedvectorbundlewith fibreV andstructuregroup → G=O(n).Theinducedcovariantderivative : Γ(E) Γ(T M E) ∗ ∇ → ⊗ determinestheso-calledconnectionLaplacian(orroughLaplacian)(cid:3)onΓ(E), (cid:3)a=trace 2a. ∇ Notethat 2a Γ(T M T M E)and((cid:3)a) = 2a(v,v) E wherev runsthrough ∗ ∗ x i i i x i ∇ ∈ ⊗ ⊗ ∇ ∈ anorthonormalbasisofTxM. Fora,b Γ(E)ofcPompactsupportitisimmediatetocheck ∈ that (cid:3)a,b = a, b . In this sense we have (cid:3)= h .iLL2(eEt) H−bhe∇the∇hoiLri2z(To∗nMta⊗lEs)ubbundle of the G-invariant ∗ −∇ ∇ splittingofTO(M)and h: π TM H֒ TO(M) ∗ ∼ −→ → thehorizontalliftoftheG-connection;fibrewisethisbundleisomorphismreadsas h : T M H , u O(M). u π(u) ∼ u −→ ∈ IntermsofthestandardhorizontalvectorfieldsH ,...,H onO(M), 1 n H(u):=h (ue), u O(M), i u i ∈ Bochner’shorizontalLaplacian∆hor,actingonsmoothfunctionsonO(M),isgivenas n ∆hor= H2. i Xi=1 4 DERIVATIVEANDDIVERGENCEFORMULAE Toformulatetherelationbetween(cid:3)and∆hor,itisconvenienttowritesectionsa Γ(E)as ∈ equivariantfunctionsF : O(M) V via F (u)=u 1a wherewereadu O(M)asan a a − π(u) → ∈ isomorphismu: V E . Equivariancemeansthat ∼ π(u) −→ F (ug)=g 1F (u), u O(M), g G=O(n). a − a ∈ ∈ Lemma1.1(see[9],p.115). Fora Γ(E)andF thecorrespondingequivariantfunction a ∈ onO(M),wehave (HF )(u)=F (u), u O(M). i a ∇ueia ∈ Hence ∆horFa=F(cid:3)a, whereasabove (cid:3): Γ(E) ∇ Γ(T∗M E) ∇ Γ(T∗M T∗M E)traceΓ(E). −→ ⊗ −→ ⊗ ⊗ −→ Proof. Fix u O(M) and choose a curve γ in M such that γ(0)=π(u) and γ˙ =ue. Let i ∈ t u(t)bethehorizontalliftofγtoO(M)suchthatu(0)=u. Notethatu˙(t)=h (γ˙(t)), u(t) 7→ andinparticularu˙(0)=h (ue)=H(u). Hence,denotingtheparalleltransportalongγby u i i // =u(ε)u(0) 1,weget ε − F (u)=u 1 a ∇ueia − ∇uei π(u) (cid:16) (cid:17) // 1a a =u 1lim ε− γ(ε)− γ(0) − ε 0 ε ↓ u(ε) 1a u(0) 1a − γ(ε) − γ(0) =lim − ε 0 ε ↓ F (u(ε)) F (u(0)) =lim a − a ε 0 ε ↓ =(H) F i u a =(HF )(u). (cid:3) i a NowconsiderdiffusionprocessesX onMgeneratedbytheoperator t L =∆+Z whereZ Γ(TM)isasmoothvectorfield. SuchdiffusionsonMmaybeconstructedfrom ∈ thecorrespondinghorizontaldiffusionsonO(M)generatedby ∆hor+Z¯ wherethevectorfieldZ¯ isthehorizontalliftofZ toO(M),i.e. Z¯ =h (Z ),u O(M). u u π(u) ∈ Moreprecisely,westartfromtheStratonovichstochasticdifferentialequationonO(M), n (1.1) dU = H(U) dBi+Z¯(U)dt, U =u O(M) t i t ◦ t t 0 ∈ Xi=1 where B is a Brownian motion on Rn sped up by 2, that is dBidBj =2δ dt. Then for t t t ij X =π(U),thefollowingequationholds: t t n (1.2) dX = Ue dBi+Z(X)dt, X =x:=πu. t t i◦ t t 0 Xi=1 DERIVATIVEANDDIVERGENCEFORMULAE 5 TheBrownianmotionBisthemartingalepartoftheanti-development ϑofX,whereϑ U denotesthecanonical1-formϑonO(M),i.e. R ϑ (e)=u 1e , e T O(M). u − π(u) u ∈ Inparticular,forF C (O(M)),resp. f C (M),wehave ∞ ∞ ∈ ∈ n d(F U)= (HF)(U) dBi+(Z¯F)(U)dt ◦ t i t ◦ t t Xi=1 n (1.3) = (HF)(U)dBi+ ∆hor+Z¯ (F)(U)dt, i t t t Xi=1 (cid:16) (cid:17) respectively n d(f X)= (df)(Ue) dBi+(Zf)(X)dt ◦ t t i ◦ t t Xi=1 n = (df)(Ue)dBi+(∆+Z)(f)(X)dt. t i t t Xi=1 Typically,solutionsto (1.2) are definedupto some maximallifetime ζ(x) whichmay be finite. Thenwehave,almostsurely, ζ(x)< X ast ζ(x) t ∞ ⊂ →∞ ↑ (cid:8) (cid:9) (cid:8) (cid:9) whereonthe right-handside, thesymbol denotesthepointatinfinityin theone-point ∞ compactificationof M. Itcanbeshownthatthemaximallifetimeofsolutionstoequation (1.1)andto(1.2)coincide,seee.g.[12]. Incaseofanon-triviallifetimethesubsequentstochasticequationsshouldbereadfor t<ζ(x). Proposition1.2. Let // : E E be paralleltransportin E along X, inducedby the t X0 → Xt paralleltransportonM, // =U U 1: T M T M. t t 0− X0 → Xt Then,fora Γ(E),wehave ∈ n d // 1a(X) = // 1 a dBi+// 1( a)(X)dt, t− t t− ∇Utei ◦ t t− ∇Z t (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) respectivelyinItoˆ form, n d // 1a(X) = // 1 a dBi+// 1((cid:3)a+ a)(X)dt. t− t t− ∇Utei t t− ∇Z t (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) Moresuccinctly,thelasttwoequationsmaybewrittenas d // 1a(X) =// 1 a, t− t t− ∇◦dXt (cid:16) (cid:17) respectively d // 1a(X) =// 1 α+// 1((cid:3)a)(X)dt. t− t t− ∇dXt t− t (cid:16) (cid:17) 6 DERIVATIVEANDDIVERGENCEFORMULAE Proof. Wehave// 1a(X)=U U 1a(X)=U F (U).ItiseasilycheckedthatZ¯F =F . t− t 0 t− t 0 a t a ∇Za Thus,weobtainfromequation(1.3) n dF (U)= (HF )(U)dBi+ ∆horF +Z¯F (U)dt a t i a t t a a t Xi=1 (cid:16) (cid:17) n =Xi=1(cid:16)F∇Uteia(cid:17)(Ut)dBit+(cid:16)F(cid:3)a+F∇Za(cid:17)(Ut)dt n = U 1 a (X)dBi+U 1((cid:3)a+ a)(X)dt. (cid:3) − ∇Utei t t t− ∇Z t Xi=1 (cid:16) (cid:17) Corollary1.3. FixT >0andleta Γ(E)solvetheequation t ∈ ∂ a =(cid:3)a + a on[0,T] M. t t Z t ∂t ∇ × Then // 1a (X), 0 t<T ζ(x), t− T t t ≤ ∧ − isalocalmartingale. Proof. Indeedwehave d(// 1a (X))m=// 1 (cid:3)a + a + ∂a (X)dt=0, t− T−t t t− T − t ∇ Z t ∂ t T − t! t =0 wherem=denotesequalitymodulodiffe|rentialsof{lozcalmartin}gales. (cid:3) WearenowgoingtolookatoperatorsLRonΓ(E)whichdifferfrom(cid:3)byazero-order term,inotherwords, (1.4) (cid:3) LR=R whereR Γ(EndE). − ∈ Thus,bydefinition,theactionR : E E islinearforeachx M. x x x → ∈ Example1.4. AtypicalexampleisE=ΛpT MandAp(M)=Γ(ΛpT M)with p 1.The ∗ ∗ ≥ deRham-HodgeLaplacian ∆(p)= (d d+dd ):Ap(M) Ap(M) ∗ ∗ − → thentakestheform ∆(p)α=(cid:3)α Rα − whereRisgivenbytheWeitzenbo¨ckdecomposition.Inthespecialcasep=1,oneobtains Rα=Ric(α♯, )whereRic: TM TM RistheRiccitensor. · ⊕ → Definition1.5. Fix x M andletX beadiffusiontoL =∆+Z,startingat x. LetQ be t t ∈ theAut(E )-valuedprocessdefinedbythefollowinglinearpathwisedifferentialequation x d Q = QR , Q =id , dt t − t //t 0 Ex where R :=// 1 R // End(E ) //t t− ◦ Xt◦ t ∈ x and// isparalleltransportinEalongX. t DERIVATIVEANDDIVERGENCEFORMULAE 7 Proposition1.6. LetLR =(cid:3) R beasin equation(1.4)and X bea diffusiontoL = t − ∆+Z,startingatx. Then,foranya Γ(E), ∈ n d Q// 1a(X) = Q// 1 a dBi+Q// 1((cid:3)a+ a Ra)(X)dt. t t− t t t− ∇Utei t t t− ∇Z − t (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) Proof. Letn :=// 1a(X). Then t t− t d(Qn)=(dQ)n +Q dn t t t t t t = Q// 1R // 1n dt+Q dn − t t− Xt t− t t t = Q// 1(Ra)(X)dt+Q dn. − t t− t t t TheclaimthusfollowsfromProposition1.2. (cid:3) Corollary1.7. FixT >0andletX(x)beadiffusiontoL =∆+Z,startingatx. Suppose t thata solves t ∂ a =((cid:3) R+ )a on[0,T] M, t Z t ∂t − ∇ × at|t=0=a∈Γ(E). Then  (1.5) N :=Q// 1a (X(x)), 0 t<T ζ(x), t t t− T−t t ≤ ∧ isalocalmartingale,startingata (x). Inparticular,ifζ(x)= andifequation(1.5)isa T ∞ truemartingaleon[0,T],wearriveattheformula a (x)=E Q // 1a(X (x)) , a Γ(E). T T T− T ∈ (cid:2) (cid:3) Proof. Indeed,wehave dN m=Q// 1 ((cid:3)+ R)a + ∂a (X)dt=0. (cid:3) t t t− ∇ Z − T − t ∂ t T − t! t =0 | {z } Remark1.8. Notethat d Q = QR , withQ =id , dt t − t //t 0 Ex impliestheobviousestimate t Q exp R(X (x))ds t op s k k ≤ −Z0 ! whereR(x)=inf R v,w : v,w E , v 1and w 1 . x x {h i ∈ k k≤ k k≤ } 1.2. Commutationformulae. Inthesequel,weconsiderthespecialcaseE=T M. Thus ∗ Γ(E)isthespaceofdifferential1-formson M. Theresultsofthissectionapplytovector fields as well, by identifying vector fields V Γ(TM) and 1-forms α Γ(T M) via the ∗ ∈ ∈ metric: V V♭, α α#. ←→ ←→ Let Z Γ(TM) be a vector field on M. Then the divergence of Z, denoted by divZ C (M∈),isdefinedbydivZ:= trace(v Z).Therefore ∈ ∞ v 7→∇ n (divZ)(x)= X,v h∇vi ii Xi=1 8 DERIVATIVEANDDIVERGENCEFORMULAE foranyorthonormalbasis v n forT M. Forcompactlysupported f wehave { i}i=1 x Z, f = divZ,f . h ∇ iL2(TM) −h iL2(M) TheadjointZ ofZisgivenbytherelation ∗ Z f = Zf (divZ)f, f C (M). ∗ ∞ − − ∈ Ifeither f orhiscompactlysupported,thisimplies Zf,h = f,Z h . h iL2(M) h ∗ iL2(M) Similarly,forα Γ(T M),welet ∗ ∈ α # (divα)(x)=trace TxM−∇→Tx∗M−→TxM . ThusdivY =divY♭ and divα=divα#. (cid:0)That is, if δ=d denotes(cid:1)the usual codifferential ∗ thendivα= δα. Finally,wedefine − Ric (X,Y):=Ric(X,Y) Z,Y , X,Y Γ(TM). Z X −h∇ i ∈ Notation1.9. For the sake of convenience, we read bilinear forms on M, such as Ric , Z likewiseassectionsofEnd(T M)orEnd(TM),e.g. ∗ Ric (α):=Ric (α♯, ), α T M, Z Z ∗ · ∈ Ric (v):=Ric (v, )♯, v TM. Z Z · ∈ Ifthereisnoriskofconfusion,wedonotdistinguishinnotation. Inparticular,depending onthecontext,(Ric ) maybearandomsectionofEnd(T M)orofEnd(TM). Z // ∗ t Lemma1.10(Commutationrules). LetZ Γ(TM). ∈ (1) Forthedifferentiald,wehave d ∆+Z = (cid:3) Ric + d; Z Z − ∇ (2) forthecodifferentiald = (cid:0)div,we(cid:1) ha(cid:0)ve (cid:1) ∗ − ∆+Z d =d (cid:3) Ric + , ∗ ∗ ∗ − ∗Z ∇∗Z wheretheformaladjoint(cid:0)of (a(cid:1)ctingon(cid:0) 1-forms)is (cid:1)α= α (divZ)α. ∇Z ∇∗Z −∇Z − Proof. Indeed,foranysmoothfunction f wehave d ∆+Z f =d d df+(df)Z ∗ − (cid:0) (cid:1) =∆(cid:0)(1)df+ Zdf+ (cid:1).Z, f ∇ h∇ ∇ i =((cid:3)+ )(df) Ric ( , f) Z Z ∇ − · ∇ = (cid:3) Ric + (df). Z Z − ∇ Theformulain(2)isthenjustdualto(cid:0)(1). (cid:1) (cid:3) 1.3. Aformulaforthedifferential. Now,letX(x)beadiffusionto∆+ZonM,starting t atX (x)=x,U ahorizontalliftof X toO(M)and B=U ϑthemartingalepartofthe 0 t 0 U anti-developmentofXt(x)toTxM. LetQt betheAut(Tx∗M)R-valuedprocessdefinedby d Q = Q (Ric ) dt t − t Z //t withQ =id ,let 0 Tx∗M P f(x)=E 1 f(X(x)) t t<ζ(x) t { } h i DERIVATIVEANDDIVERGENCEFORMULAE 9 betheminimalsemigroupgeneratedby∆+Z on M,actingonboundedmeasurablefunc- tions f. Fix T >0 and let ℓ be an adapted process with paths in the Cameron-Martin space t L1,2([0,T];T M). ByCorollary1.7 x (1.6) N :=Q// 1(dP f), t<T ζ(x), t t t− T−t ∧ islocalmartingale.Therefore t N(ℓ) Q // 1(dP f)(ℓ˙ )ds t t −Z0 s s− T−s s isalocalmartingale.Byintegrationbyparts t 1 t Q // 1(dP f)(ℓ˙ )ds (P f)(X(x)) Qtr(ℓ˙ ),dB Z0 s s− T−s s −2 T−t t Z0 h s s si isalsoalocalmartingaleandtherefore 1 t (1.7) Q// 1(dP f)(ℓ) (P f)(X(x)) Qtrℓ˙ ,dB t t− T−t t −2 T−t t Z0 h s s si isalocalmartingale,startingat(dP f)(ℓ ). Choosingℓ sothat(1.7)isatruemartingale T 0 t on[0,T]withℓ =vandℓ =0,weobtaintheformula 0 T 1 T (1.8) (dP f)(v)= E 1 f(X (x)) Qtrℓ˙ ,dB . T −2 " {T<ζ(x)} T Z0 h s s si# Forfurtherdetails,see[14,15]. Denotingby p(x,y)thesmoothheatkernelassociatedto t ∆+Z,sinceformula(1.8)holdsforallsmoothfunctions f ofcompactsupport,itimplies Bismut’sformula 1 τ T (dlogp ( ,y)) (v)= E ∧ Qtrℓ˙ ,dB X (x)=y . T · x −2 "Z0 h s s si(cid:12) T # (cid:12) (cid:12) Theargumentleadingtoformula(1.8)isbasedonthefactthatthelocalmartingale(1.7)is atruemartingale.Sincetheconditiononℓ isimposedontheleftendpoint,thiscanalways t beachieved,bytakingℓ =0for s τ T whereτisthefirstexittimeofsomerelatively s ≥ ∧ compactneighbourhoodof x. No boundson the geometryare needed; also explosionin finite times of the underlyingdiffusion can be allowed. For the problem of constructing appropriate finite energy processes ℓ with the property ℓ = 0 for s τ T, see [15], s s ≥ ∧ resp.[16,Lemma4.3]. Imposingin(1.7)howevertheconditionsℓ =0andℓ =vwouldleadtoaformulafor 0 T E Q // 1(df) (v) T T− XT(x) h i not involving derivatives of f, which clearly requires strong assumptions. If the local martingale(1.6)isatruemartingale,wegettheformula (dP f) (v)=E Q // 1(df) (v) . T x T T− XT(x) h i Forsuchaformulatohold,obviouslyX(x)needstobenon-explosive. t 10 DERIVATIVEANDDIVERGENCEFORMULAE 1.4. Aformulaforthecodifferential. Recallthat,accordingtoLemma1.10,wehave (1.9) ∆+Z+divZ div=div (cid:3)+ Ric +divZ . ∇Z− ∗Z − (cid:0) (cid:1) (cid:0) (cid:1) Forabounded1-formαsupposeα satisfies t d (1.10) α = (cid:3)+ Ric +divZ α dt t ∇Z− ∗Z t (cid:16) − (cid:17) with α =α, where divZ acts fibrewise as a multiplication operator, and that Θ is the 0 t Aut(T M)-valuedprocesswhichsolves x d Θ = (Ric divZ) Θ dt t − ∗Z− //t t − withΘ =id . HereRic istheadjointtoRic actingasendomorphismofT M,see 0 TxM ∗Z Z x Notation1.9. − − Remark1.11. WehaveΘ =Qtr ifwesetR:=Ric divZ End(T M)anddefineQ t t ∗Z− ∈ ∗ t viaDefinition1.5. − Proposition1.12. FixT >0. LetX(x)beadiffusionto∆+ZonM,startingatx. t (i) Then t (divα )(X(x))exp (divZ)(X (x))ds T−t t Z0 s ! isalocalmartingale,startingatdivα . T (ii) Supposeh isanadaptedprocesswithpathsinL1,2([0,T];R).Then t 1 t (1.11) divα h + α //Θ h˙ (divZ)(X (x))h Θ 1// 1dB T−t t 2 T−t t tZ0 (cid:16) s− s s(cid:17) −s s− s! isalocalmartingale,startingatdivα h . T 0 Proof. (i)Takingintoaccountthecommutationrule(1.9)andtheevolutionequation(1.10) ofα,weget t ∂ divα =div∂α t t t t (1.12) =div((cid:3)+∇Z−Ric∗Z+divZ)αt − =(∆+Z+divZ)divα. t TheclaimthenfollowsfromItoˆ’sformula. (ii)Toverifytheseconditem,set t A :=exp (divZ)(X (x))ds t s Z ! 0 anddefineℓ :=A 1h. Usingthefactthatα (//Θ)isalocalmartingale,indeed t −t t T t t t − n d α (//Θ) = ( α )(//Θ)dBi T t t t ∇Utei T t t t t (cid:0) − (cid:1) Xi=1 −

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.