DERIVATIVE AND DIVERGENCE FORMULAE FOR DIFFUSION SEMIGROUPS 7 1 0 ANTONTHALMAIERANDJAMESTHOMPSON 2 n MathematicsResearchUnit,FSTC,UniversityofLuxembourg a 6,rueRichardCoudenhove-Kalergi,1359Luxembourg,GrandDuchyofLuxembourg J 3 1 Abstract. ForasemigroupPtgeneratedbyanellipticoperatoronasmoothmanifoldM, weusestraightforwardmartingaleargumentstoderiveprobabilisticformulaeforPt(V(f)), ] notinvolvingderivativesof f,whereVisavectorfieldonM.Fornon-symmetricgenera- R tors,suchformulaecorrespondtothederivativeoftheheatkernelintheforwardvariable. P Asanapplication,theseformulaecanbeusedtoderivevariousshift-Harnackinequalities. . h t a m Introduction [ ForaBanachspaceE,e EandaMarkovoperatorPon (E),itisknownthatcertain b 1 ∈ B estimatesonP( f)areequivalenttocorrespondingshift-Harnackinequalities. Thiswas e v ∇ provedbyF.-Y.Wangin[18]. Forexample,forδ (0,1)andβ C((δ , ) E;[0, )), 5 e∈ e∈ e ∞ × ∞ 2 heprovedthatthederivative-entropyestimate 6 3 P( f) δ P(flogf) (Pf)logPf +β (δ, )Pf e e 0 ∇ ≤ − · 1. holdsforanyδ≥δe(cid:12)(cid:12)(cid:12)andpos(cid:12)(cid:12)(cid:12)itive(cid:0)f ∈Cb1(E)ifandonlyif(cid:1)theinequality 0 1 pr p 1 17 (Pf)p≤ P(fp(re+·)) exp Z0 1+(p 1)sβe r+r(−p 1)s,·+sre!ds! (cid:0) (cid:1) − − : holdsfor any p 1/(1 rδ ), r (0,1/δ ) and positive f (E). Furthermore, he also v ≥ − e ∈ e ∈Bb i provedthatifC 0isaconstantthentheL2-derivativeinequality X ≥ r P( f)2 CPf2 a ∇e ≤ (cid:12) (cid:12) holdsforanynon-negative f ∈Cb1(E(cid:12)(cid:12))ifand(cid:12)(cid:12)onlyiftheinequality Pf P f(αe+ ) + α CPf2 ≤ · | |q holds for any α R and non-negativ(cid:0)e f ((cid:1)E). The objective of this article is to find b ∈ ∈B probabilistic formulae for P (V(f)) from which such estimates can be derived, for the T caseinwhichP istheMarkovoperatorassociatedtoanon-degeneratediffusionX ona T t smooth,finite-dimensionalmanifoldM,andV avectorfield. E-mail address:[email protected], [email protected]. Date:January16,2017. 2010MathematicsSubjectClassification. 58J65,60J60,53C21. Key words and phrases. Diffusion semigroup, Heat kernel, Gradient estimate, Harnack inequality, Ricci curvature. 1 2 DERIVATIVEANDDIVERGENCEFORMULAE InSection1wesupposethatMisaRiemannianmanifoldandthatthegeneratorofX is t ∆+Z,forsomesmoothvectorfieldZ. Anynon-degeneratediffusiononasmoothmanifold inducesaRiemannianmetricwithrespecttowhichitsgeneratortakesthisform.Thebasic strategyisthentousetherelationV(f)=div(fV) fdivVtoreducetheproblemtofinding − a suitable formulafor P (div(fV)). Such a formulawas givenin [3] for the case Z =0, T whichweextendtothegeneralcasewithTheorem1.16. Indoingso,wedonotmakeany assumptionsonthederivativesofthecurvaturetensor,asoccurredin[2]. Foranadapted processh withpathsintheCameron-MartinspaceL1,2([0,T];R),withh =0andh =1 t 0 T andundercertainadditionalconditions,weobtaintheformula P (V(f))(x) T = E f(X (x))(divV)(X (x)) T T − 1(cid:2) (cid:3) T E f(X (x)) V(X (x)),// Θ (divZ)(X(x))h h˙ Θ 1dB −2 " T D T T TZ0 (cid:16) t t− t(cid:17) −t tE# whereΘistheAut(T M)-valuedprocessdefinedbythepathwisedifferentialequation x d dtΘt=−//t−1 Ric♯+(∇.Z)∗−divZ //tΘt (cid:16) (cid:17) with Θ =id . Here // denotes the stochastic parallel transport associated to X(x), 0 TxM t t whose antidevelopmentto T M has martingale part B. In particular, B is a diffusion on x Rn generated by the Laplacian; it is a standard Brownian motion sped up by 2, so that dBidBj=2δ dt. Choosingh explicitlyyieldsa formulafromwhich estimatesthen can t t ij t bededuced,asdescribedinSubsection1.5. The problem of finding a suitable formula for P (V(f)) is dual to that of finding an T analogousoneforV(P f). AformulaforthelatteriscalledtheBismutformula[1]orthe T Bismut-Elworthy-Liformula,onaccountof[6]. WeprovideabriefproofofitinSubsec- tion1.3,sincewewouldliketocompareittoourformulaforP (V(f)). Ourapproachto T theseformulaeisbasedonmartingalearguments;integrationbypartsisdoneatthelevelof localmartingales. Underconditionswhichassurethatthelocalmartingalesaretruemar- tingales,thewantedformulaearethenobtainedbytakingexpectations.Theyallowforthe choiceofafiniteenergyprocess.Dependingontheintendedtype,conditionsareimposed eitherontherightendpoint,asintheformulaforP (V(f)),ortheleftendpoint,asinthe T formulaforV(P f). Theformulafor P (V(f))requiresnon-explosivity;theformulafor T T V(P f) does not. From the latter can be deduced Bismut’s formula for the logarithmic T derivativeinthebackwardvariablexoftheheatkernel p (x,y)determinedby T (P f)(x)= f(y)p (x,y)vol(dy), f C (M). T T b Z ∈ M FromourformulaforP (V(f))canbededucedthefollowingformulaforthederivativein T theforwardvariabley: 1 T ( logp (x, )) = E // Θ (divZ)(X(x))h h˙ Θ 1dB X (x)=y . ∇ T · y −2 " T TZ0 (cid:16) t t− t(cid:17) −t t(cid:12) T # (cid:12) In Section 2 we considerthe generalcase in which M is a smooth(cid:12)manifold and X a t non-degeneratediffusionsolvingaStratonovichequationoftheform dX =A (X)dt+A(X) dB. t 0 t t t ◦ We denote by TX the derivative (in probability) of the solution flow. Using a similar t approachtothatofSection1,andavarietyofgeometricobjectsnaturallyassociatedtothe DERIVATIVEANDDIVERGENCEFORMULAE 3 equation,weobtain,undercertainconditions,theformula P (V(f)) T m = E f(X )A V,A (X ) T i i T − h i Xi=1 (cid:2) (cid:3) 1 T E f(X ) V(X ),Ξ Ξ 1 (traceˆA )(X)h h˙ A(X)dB +2hAAdt −2 " T (cid:28) T TZ0 −t (cid:16)(cid:16) ∇ 0 t t− t(cid:17) t t t 0 (cid:17)(cid:29)# with t Ξ = TX TX TX 1 (˘A ) + ˘A +traceˆA (Ξ ) ds, t t− tZ0 s− (cid:16)(cid:16) ∇ 0 ∗ ∇ 0 ∇ 0(cid:17) s (cid:17) m AA= (˘A ) + ˘A T˘( ,A) (A) + A ,T˘( ,A) (A) , 0 ∇ 0 ∗ ∇ 0 · i ∗ i 0 · i ∗ i Xi=1(cid:16) (cid:17)(cid:16) (cid:17) (cid:2) (cid:3) wheretheoperators ˆA , ˘A andT˘( ,A)aregivenateachx Mandv T Mby 0 0 i x ∇ ∇ · ∈ ∈ ˆ A = A(x) d(A ( )A ( )) (v) (dA ) (v,A ) , v 0 ∗ 0 x ∗ x 0 ∇ · · − ˘ A = A(x)d(cid:0) A( ) A ( ) (v), (cid:1) ∇v 0 · ∗ 0 · x T˘(v,A) = A(x)(d(cid:0)A ) (v,A).(cid:1) i x ∗ x i This formula has the advantage of involving neither parallel transport nor Riemannian curvature,bothtypicallydifficulttocalculateintermsofA. 1. IntrinsicFormulae 1.1. Preliminaries. LetMbeacompleteandconnectedn-dimensionalRiemannianman- ifold, theLevi-Civitaconnectionon M andπ: O(M) M theorthonormalframebun- ∇ → dleover M. Let E M be anassociatedvectorbundlewith fibreV andstructuregroup → G=O(n).Theinducedcovariantderivative : Γ(E) Γ(T M E) ∗ ∇ → ⊗ determinestheso-calledconnectionLaplacian(orroughLaplacian)(cid:3)onΓ(E), (cid:3)a=trace 2a. ∇ Notethat 2a Γ(T M T M E)and((cid:3)a) = 2a(v,v) E wherev runsthrough ∗ ∗ x i i i x i ∇ ∈ ⊗ ⊗ ∇ ∈ anorthonormalbasisofTxM. Fora,b Γ(E)ofcPompactsupportitisimmediatetocheck ∈ that (cid:3)a,b = a, b . In this sense we have (cid:3)= h .iLL2(eEt) H−bhe∇the∇hoiLri2z(To∗nMta⊗lEs)ubbundle of the G-invariant ∗ −∇ ∇ splittingofTO(M)and h: π TM H֒ TO(M) ∗ ∼ −→ → thehorizontalliftoftheG-connection;fibrewisethisbundleisomorphismreadsas h : T M H , u O(M). u π(u) ∼ u −→ ∈ IntermsofthestandardhorizontalvectorfieldsH ,...,H onO(M), 1 n H(u):=h (ue), u O(M), i u i ∈ Bochner’shorizontalLaplacian∆hor,actingonsmoothfunctionsonO(M),isgivenas n ∆hor= H2. i Xi=1 4 DERIVATIVEANDDIVERGENCEFORMULAE Toformulatetherelationbetween(cid:3)and∆hor,itisconvenienttowritesectionsa Γ(E)as ∈ equivariantfunctionsF : O(M) V via F (u)=u 1a wherewereadu O(M)asan a a − π(u) → ∈ isomorphismu: V E . Equivariancemeansthat ∼ π(u) −→ F (ug)=g 1F (u), u O(M), g G=O(n). a − a ∈ ∈ Lemma1.1(see[9],p.115). Fora Γ(E)andF thecorrespondingequivariantfunction a ∈ onO(M),wehave (HF )(u)=F (u), u O(M). i a ∇ueia ∈ Hence ∆horFa=F(cid:3)a, whereasabove (cid:3): Γ(E) ∇ Γ(T∗M E) ∇ Γ(T∗M T∗M E)traceΓ(E). −→ ⊗ −→ ⊗ ⊗ −→ Proof. Fix u O(M) and choose a curve γ in M such that γ(0)=π(u) and γ˙ =ue. Let i ∈ t u(t)bethehorizontalliftofγtoO(M)suchthatu(0)=u. Notethatu˙(t)=h (γ˙(t)), u(t) 7→ andinparticularu˙(0)=h (ue)=H(u). Hence,denotingtheparalleltransportalongγby u i i // =u(ε)u(0) 1,weget ε − F (u)=u 1 a ∇ueia − ∇uei π(u) (cid:16) (cid:17) // 1a a =u 1lim ε− γ(ε)− γ(0) − ε 0 ε ↓ u(ε) 1a u(0) 1a − γ(ε) − γ(0) =lim − ε 0 ε ↓ F (u(ε)) F (u(0)) =lim a − a ε 0 ε ↓ =(H) F i u a =(HF )(u). (cid:3) i a NowconsiderdiffusionprocessesX onMgeneratedbytheoperator t L =∆+Z whereZ Γ(TM)isasmoothvectorfield. SuchdiffusionsonMmaybeconstructedfrom ∈ thecorrespondinghorizontaldiffusionsonO(M)generatedby ∆hor+Z¯ wherethevectorfieldZ¯ isthehorizontalliftofZ toO(M),i.e. Z¯ =h (Z ),u O(M). u u π(u) ∈ Moreprecisely,westartfromtheStratonovichstochasticdifferentialequationonO(M), n (1.1) dU = H(U) dBi+Z¯(U)dt, U =u O(M) t i t ◦ t t 0 ∈ Xi=1 where B is a Brownian motion on Rn sped up by 2, that is dBidBj =2δ dt. Then for t t t ij X =π(U),thefollowingequationholds: t t n (1.2) dX = Ue dBi+Z(X)dt, X =x:=πu. t t i◦ t t 0 Xi=1 DERIVATIVEANDDIVERGENCEFORMULAE 5 TheBrownianmotionBisthemartingalepartoftheanti-development ϑofX,whereϑ U denotesthecanonical1-formϑonO(M),i.e. R ϑ (e)=u 1e , e T O(M). u − π(u) u ∈ Inparticular,forF C (O(M)),resp. f C (M),wehave ∞ ∞ ∈ ∈ n d(F U)= (HF)(U) dBi+(Z¯F)(U)dt ◦ t i t ◦ t t Xi=1 n (1.3) = (HF)(U)dBi+ ∆hor+Z¯ (F)(U)dt, i t t t Xi=1 (cid:16) (cid:17) respectively n d(f X)= (df)(Ue) dBi+(Zf)(X)dt ◦ t t i ◦ t t Xi=1 n = (df)(Ue)dBi+(∆+Z)(f)(X)dt. t i t t Xi=1 Typically,solutionsto (1.2) are definedupto some maximallifetime ζ(x) whichmay be finite. Thenwehave,almostsurely, ζ(x)< X ast ζ(x) t ∞ ⊂ →∞ ↑ (cid:8) (cid:9) (cid:8) (cid:9) whereonthe right-handside, thesymbol denotesthepointatinfinityin theone-point ∞ compactificationof M. Itcanbeshownthatthemaximallifetimeofsolutionstoequation (1.1)andto(1.2)coincide,seee.g.[12]. Incaseofanon-triviallifetimethesubsequentstochasticequationsshouldbereadfor t<ζ(x). Proposition1.2. Let // : E E be paralleltransportin E along X, inducedby the t X0 → Xt paralleltransportonM, // =U U 1: T M T M. t t 0− X0 → Xt Then,fora Γ(E),wehave ∈ n d // 1a(X) = // 1 a dBi+// 1( a)(X)dt, t− t t− ∇Utei ◦ t t− ∇Z t (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) respectivelyinItoˆ form, n d // 1a(X) = // 1 a dBi+// 1((cid:3)a+ a)(X)dt. t− t t− ∇Utei t t− ∇Z t (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) Moresuccinctly,thelasttwoequationsmaybewrittenas d // 1a(X) =// 1 a, t− t t− ∇◦dXt (cid:16) (cid:17) respectively d // 1a(X) =// 1 α+// 1((cid:3)a)(X)dt. t− t t− ∇dXt t− t (cid:16) (cid:17) 6 DERIVATIVEANDDIVERGENCEFORMULAE Proof. Wehave// 1a(X)=U U 1a(X)=U F (U).ItiseasilycheckedthatZ¯F =F . t− t 0 t− t 0 a t a ∇Za Thus,weobtainfromequation(1.3) n dF (U)= (HF )(U)dBi+ ∆horF +Z¯F (U)dt a t i a t t a a t Xi=1 (cid:16) (cid:17) n =Xi=1(cid:16)F∇Uteia(cid:17)(Ut)dBit+(cid:16)F(cid:3)a+F∇Za(cid:17)(Ut)dt n = U 1 a (X)dBi+U 1((cid:3)a+ a)(X)dt. (cid:3) − ∇Utei t t t− ∇Z t Xi=1 (cid:16) (cid:17) Corollary1.3. FixT >0andleta Γ(E)solvetheequation t ∈ ∂ a =(cid:3)a + a on[0,T] M. t t Z t ∂t ∇ × Then // 1a (X), 0 t<T ζ(x), t− T t t ≤ ∧ − isalocalmartingale. Proof. Indeedwehave d(// 1a (X))m=// 1 (cid:3)a + a + ∂a (X)dt=0, t− T−t t t− T − t ∇ Z t ∂ t T − t! t =0 wherem=denotesequalitymodulodiffe|rentialsof{lozcalmartin}gales. (cid:3) WearenowgoingtolookatoperatorsLRonΓ(E)whichdifferfrom(cid:3)byazero-order term,inotherwords, (1.4) (cid:3) LR=R whereR Γ(EndE). − ∈ Thus,bydefinition,theactionR : E E islinearforeachx M. x x x → ∈ Example1.4. AtypicalexampleisE=ΛpT MandAp(M)=Γ(ΛpT M)with p 1.The ∗ ∗ ≥ deRham-HodgeLaplacian ∆(p)= (d d+dd ):Ap(M) Ap(M) ∗ ∗ − → thentakestheform ∆(p)α=(cid:3)α Rα − whereRisgivenbytheWeitzenbo¨ckdecomposition.Inthespecialcasep=1,oneobtains Rα=Ric(α♯, )whereRic: TM TM RistheRiccitensor. · ⊕ → Definition1.5. Fix x M andletX beadiffusiontoL =∆+Z,startingat x. LetQ be t t ∈ theAut(E )-valuedprocessdefinedbythefollowinglinearpathwisedifferentialequation x d Q = QR , Q =id , dt t − t //t 0 Ex where R :=// 1 R // End(E ) //t t− ◦ Xt◦ t ∈ x and// isparalleltransportinEalongX. t DERIVATIVEANDDIVERGENCEFORMULAE 7 Proposition1.6. LetLR =(cid:3) R beasin equation(1.4)and X bea diffusiontoL = t − ∆+Z,startingatx. Then,foranya Γ(E), ∈ n d Q// 1a(X) = Q// 1 a dBi+Q// 1((cid:3)a+ a Ra)(X)dt. t t− t t t− ∇Utei t t t− ∇Z − t (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) Proof. Letn :=// 1a(X). Then t t− t d(Qn)=(dQ)n +Q dn t t t t t t = Q// 1R // 1n dt+Q dn − t t− Xt t− t t t = Q// 1(Ra)(X)dt+Q dn. − t t− t t t TheclaimthusfollowsfromProposition1.2. (cid:3) Corollary1.7. FixT >0andletX(x)beadiffusiontoL =∆+Z,startingatx. Suppose t thata solves t ∂ a =((cid:3) R+ )a on[0,T] M, t Z t ∂t − ∇ × at|t=0=a∈Γ(E). Then (1.5) N :=Q// 1a (X(x)), 0 t<T ζ(x), t t t− T−t t ≤ ∧ isalocalmartingale,startingata (x). Inparticular,ifζ(x)= andifequation(1.5)isa T ∞ truemartingaleon[0,T],wearriveattheformula a (x)=E Q // 1a(X (x)) , a Γ(E). T T T− T ∈ (cid:2) (cid:3) Proof. Indeed,wehave dN m=Q// 1 ((cid:3)+ R)a + ∂a (X)dt=0. (cid:3) t t t− ∇ Z − T − t ∂ t T − t! t =0 | {z } Remark1.8. Notethat d Q = QR , withQ =id , dt t − t //t 0 Ex impliestheobviousestimate t Q exp R(X (x))ds t op s k k ≤ −Z0 ! whereR(x)=inf R v,w : v,w E , v 1and w 1 . x x {h i ∈ k k≤ k k≤ } 1.2. Commutationformulae. Inthesequel,weconsiderthespecialcaseE=T M. Thus ∗ Γ(E)isthespaceofdifferential1-formson M. Theresultsofthissectionapplytovector fields as well, by identifying vector fields V Γ(TM) and 1-forms α Γ(T M) via the ∗ ∈ ∈ metric: V V♭, α α#. ←→ ←→ Let Z Γ(TM) be a vector field on M. Then the divergence of Z, denoted by divZ C (M∈),isdefinedbydivZ:= trace(v Z).Therefore ∈ ∞ v 7→∇ n (divZ)(x)= X,v h∇vi ii Xi=1 8 DERIVATIVEANDDIVERGENCEFORMULAE foranyorthonormalbasis v n forT M. Forcompactlysupported f wehave { i}i=1 x Z, f = divZ,f . h ∇ iL2(TM) −h iL2(M) TheadjointZ ofZisgivenbytherelation ∗ Z f = Zf (divZ)f, f C (M). ∗ ∞ − − ∈ Ifeither f orhiscompactlysupported,thisimplies Zf,h = f,Z h . h iL2(M) h ∗ iL2(M) Similarly,forα Γ(T M),welet ∗ ∈ α # (divα)(x)=trace TxM−∇→Tx∗M−→TxM . ThusdivY =divY♭ and divα=divα#. (cid:0)That is, if δ=d denotes(cid:1)the usual codifferential ∗ thendivα= δα. Finally,wedefine − Ric (X,Y):=Ric(X,Y) Z,Y , X,Y Γ(TM). Z X −h∇ i ∈ Notation1.9. For the sake of convenience, we read bilinear forms on M, such as Ric , Z likewiseassectionsofEnd(T M)orEnd(TM),e.g. ∗ Ric (α):=Ric (α♯, ), α T M, Z Z ∗ · ∈ Ric (v):=Ric (v, )♯, v TM. Z Z · ∈ Ifthereisnoriskofconfusion,wedonotdistinguishinnotation. Inparticular,depending onthecontext,(Ric ) maybearandomsectionofEnd(T M)orofEnd(TM). Z // ∗ t Lemma1.10(Commutationrules). LetZ Γ(TM). ∈ (1) Forthedifferentiald,wehave d ∆+Z = (cid:3) Ric + d; Z Z − ∇ (2) forthecodifferentiald = (cid:0)div,we(cid:1) ha(cid:0)ve (cid:1) ∗ − ∆+Z d =d (cid:3) Ric + , ∗ ∗ ∗ − ∗Z ∇∗Z wheretheformaladjoint(cid:0)of (a(cid:1)ctingon(cid:0) 1-forms)is (cid:1)α= α (divZ)α. ∇Z ∇∗Z −∇Z − Proof. Indeed,foranysmoothfunction f wehave d ∆+Z f =d d df+(df)Z ∗ − (cid:0) (cid:1) =∆(cid:0)(1)df+ Zdf+ (cid:1).Z, f ∇ h∇ ∇ i =((cid:3)+ )(df) Ric ( , f) Z Z ∇ − · ∇ = (cid:3) Ric + (df). Z Z − ∇ Theformulain(2)isthenjustdualto(cid:0)(1). (cid:1) (cid:3) 1.3. Aformulaforthedifferential. Now,letX(x)beadiffusionto∆+ZonM,starting t atX (x)=x,U ahorizontalliftof X toO(M)and B=U ϑthemartingalepartofthe 0 t 0 U anti-developmentofXt(x)toTxM. LetQt betheAut(Tx∗M)R-valuedprocessdefinedby d Q = Q (Ric ) dt t − t Z //t withQ =id ,let 0 Tx∗M P f(x)=E 1 f(X(x)) t t<ζ(x) t { } h i DERIVATIVEANDDIVERGENCEFORMULAE 9 betheminimalsemigroupgeneratedby∆+Z on M,actingonboundedmeasurablefunc- tions f. Fix T >0 and let ℓ be an adapted process with paths in the Cameron-Martin space t L1,2([0,T];T M). ByCorollary1.7 x (1.6) N :=Q// 1(dP f), t<T ζ(x), t t t− T−t ∧ islocalmartingale.Therefore t N(ℓ) Q // 1(dP f)(ℓ˙ )ds t t −Z0 s s− T−s s isalocalmartingale.Byintegrationbyparts t 1 t Q // 1(dP f)(ℓ˙ )ds (P f)(X(x)) Qtr(ℓ˙ ),dB Z0 s s− T−s s −2 T−t t Z0 h s s si isalsoalocalmartingaleandtherefore 1 t (1.7) Q// 1(dP f)(ℓ) (P f)(X(x)) Qtrℓ˙ ,dB t t− T−t t −2 T−t t Z0 h s s si isalocalmartingale,startingat(dP f)(ℓ ). Choosingℓ sothat(1.7)isatruemartingale T 0 t on[0,T]withℓ =vandℓ =0,weobtaintheformula 0 T 1 T (1.8) (dP f)(v)= E 1 f(X (x)) Qtrℓ˙ ,dB . T −2 " {T<ζ(x)} T Z0 h s s si# Forfurtherdetails,see[14,15]. Denotingby p(x,y)thesmoothheatkernelassociatedto t ∆+Z,sinceformula(1.8)holdsforallsmoothfunctions f ofcompactsupport,itimplies Bismut’sformula 1 τ T (dlogp ( ,y)) (v)= E ∧ Qtrℓ˙ ,dB X (x)=y . T · x −2 "Z0 h s s si(cid:12) T # (cid:12) (cid:12) Theargumentleadingtoformula(1.8)isbasedonthefactthatthelocalmartingale(1.7)is atruemartingale.Sincetheconditiononℓ isimposedontheleftendpoint,thiscanalways t beachieved,bytakingℓ =0for s τ T whereτisthefirstexittimeofsomerelatively s ≥ ∧ compactneighbourhoodof x. No boundson the geometryare needed; also explosionin finite times of the underlyingdiffusion can be allowed. For the problem of constructing appropriate finite energy processes ℓ with the property ℓ = 0 for s τ T, see [15], s s ≥ ∧ resp.[16,Lemma4.3]. Imposingin(1.7)howevertheconditionsℓ =0andℓ =vwouldleadtoaformulafor 0 T E Q // 1(df) (v) T T− XT(x) h i not involving derivatives of f, which clearly requires strong assumptions. If the local martingale(1.6)isatruemartingale,wegettheformula (dP f) (v)=E Q // 1(df) (v) . T x T T− XT(x) h i Forsuchaformulatohold,obviouslyX(x)needstobenon-explosive. t 10 DERIVATIVEANDDIVERGENCEFORMULAE 1.4. Aformulaforthecodifferential. Recallthat,accordingtoLemma1.10,wehave (1.9) ∆+Z+divZ div=div (cid:3)+ Ric +divZ . ∇Z− ∗Z − (cid:0) (cid:1) (cid:0) (cid:1) Forabounded1-formαsupposeα satisfies t d (1.10) α = (cid:3)+ Ric +divZ α dt t ∇Z− ∗Z t (cid:16) − (cid:17) with α =α, where divZ acts fibrewise as a multiplication operator, and that Θ is the 0 t Aut(T M)-valuedprocesswhichsolves x d Θ = (Ric divZ) Θ dt t − ∗Z− //t t − withΘ =id . HereRic istheadjointtoRic actingasendomorphismofT M,see 0 TxM ∗Z Z x Notation1.9. − − Remark1.11. WehaveΘ =Qtr ifwesetR:=Ric divZ End(T M)anddefineQ t t ∗Z− ∈ ∗ t viaDefinition1.5. − Proposition1.12. FixT >0. LetX(x)beadiffusionto∆+ZonM,startingatx. t (i) Then t (divα )(X(x))exp (divZ)(X (x))ds T−t t Z0 s ! isalocalmartingale,startingatdivα . T (ii) Supposeh isanadaptedprocesswithpathsinL1,2([0,T];R).Then t 1 t (1.11) divα h + α //Θ h˙ (divZ)(X (x))h Θ 1// 1dB T−t t 2 T−t t tZ0 (cid:16) s− s s(cid:17) −s s− s! isalocalmartingale,startingatdivα h . T 0 Proof. (i)Takingintoaccountthecommutationrule(1.9)andtheevolutionequation(1.10) ofα,weget t ∂ divα =div∂α t t t t (1.12) =div((cid:3)+∇Z−Ric∗Z+divZ)αt − =(∆+Z+divZ)divα. t TheclaimthenfollowsfromItoˆ’sformula. (ii)Toverifytheseconditem,set t A :=exp (divZ)(X (x))ds t s Z ! 0 anddefineℓ :=A 1h. Usingthefactthatα (//Θ)isalocalmartingale,indeed t −t t T t t t − n d α (//Θ) = ( α )(//Θ)dBi T t t t ∇Utei T t t t t (cid:0) − (cid:1) Xi=1 −