materials Article Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties MartaFiedot-Toboła1,* ID,MagdalenaCiesielska2,IrenaMaliszewska2,OlgaRac-Rumijowska1, PatrycjaSuchorska-Woz´niak1 ID,HelenaTeterycz1andMarekBryjak2 1 FacultyofMicrosystemElectronicsandPhotonics,WrocławUniversityofScienceandTechnology, Janiszewskiego11/17,50-372Wrocław,Poland;[email protected](O.R.-R.); [email protected](P.S.-W.);[email protected](H.T.) 2 FacultyofChemistry,WrocławUniversityofScienceandTechnology,Norwida4/6,50-373Wrocław,Poland; [email protected](M.C.);[email protected](I.M.); [email protected](M.B.) * Correspondence:marta.fi[email protected];Tel.:+48-71-320-4941 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:25March2018;Accepted:26April2018;Published:30April2018 Abstract: A surface modification of polyamide 6 (PA), polyethylene terephthalate (PET) and polypropylene (PP) textiles was performed using zinc oxide to obtain antibacterial layer. ZnO microrods were synthesized on ZnO nanoparticles (NPs) as a nucleus centers by chemical bath deposition(CBD)process.ScanningElectronMicroscopy(SEM)andX-raydiffraction(XRD)indicated that wurzite ZnO microrods were obtained on every sample. Differential Scanning Calorimetry (DSC),FourierTransformInfraredSpectroscopy(FTIR),AtomicForceMicroscopy(AFM)andLiquid AbsorptionCapacity(LAC)analysisindicatethattheamountandstructureofantibacteriallayer isdependentonroughnessandwettabilityoftextilesurface. Therougherandmorehydrophilic is the material, the more ZnO were deposited. All studied textiles show significant bactericidal activityagainstEscherichiacoli(E.coli)andStaphylococcusaureus(S.aureus). Apossiblemechanism anddifferenceinsensitivitybetweenGram-negativeandGram-positivebacteriatoZnOisdiscussed. ConsideringthatantibacterialactivityofZnOiscausedbyReactiveOxygenSpecies(ROS)generation, aninfluenceofsurfacetovolumeratioandcrystallineparametersisalsodiscussed. Keywords: zinc oxid; polymer textiles; nanoparticles; microrods; wettability; roughness; antimicrobialproperties 1. Introduction Thetextileindustry,similartoothersectors,systematicallychangesasaresultofnewproduct developmentwhichmeetsuserexpectations,aswellastheenrichmentoftextileapplicationsinvarious fields. Nowadays,therearemanyfunctionaltextilesbutthemostpopularofthemseemtobematerials withantibacterialproperties[1–3]. Highdemandforthistypeoffabricisrelatedtotheproblemof increasingresistanceofmicroorganismstodrugs[4,5]. Antimicrobialmaterialscanhelpinpreventing reproductionandspreadofpathogens. Therefore,theycouldbeusedforobtainingdisposabletextiles suchasprotectiveaprons,caps,surgicalcurtains,anddressings,aswellasreusablematerialssuchas bedsheets,towelsorworkclothes. Theycouldalsobeusedineverydayapplications,suchassport clothestostayfreshlonger. Onthetextilemarkettherearemanyantibacterialagents. Theydiffernotonlyineffectiveness anddurabilitybutalsoinimpactonusersandtheenvironment. Themostcommonsubstancesinclude ammoniumsalts[6,7],chitosan[8,9],triclosan[10,11]andmetalormetaloxidenanoparticles[12–14]. Materials2018,11,707;doi:10.3390/ma11050707 www.mdpi.com/journal/materials Materials2018,11,707 2of16 Inthispaper,themodificationofthreedifferenttypesoffabrics(PA,PET,andPP)withzincoxide microrodsispresented.Thesefabricsarecommonlyusedinthetextileindustryandaremadeofpolymers ofvaryingsurfacewettability. ZnOhasbeenselectedastheantibacterialagentbecauseitisnon-toxic, veryeffectiveanddoesnotchangethecoloroftheoutputfabrics[15,16]. Inpreviousstudiesauthors haveshownthatthemorphologyandcrystallinestructureofZnOiscrucialforthefinalantimicrobial properties[17,18].Inthiswork,zincoxidemicrorodswerenotgrowndirectlyonthefabricsurface,but rathercolloidalZnOnanoparticleswereusedascrystallizationnuclei.Theauthorssupposethatthisallows forasignificantincreaseinbiologicalactivityofthemodifiedfabrics. Obtainedantibacterialmaterials couldbeusedineverydaylifeapplicationssuchassportclothes,medicaltextilesorbedding. 2. MaterialsandMethods 2.1. AppliedTextileMaterials Inthesestudies,threedifferenttextileswereusedandmodified: PA,PETandPP.Thefirsttwo weremadebyWISTILS.A.companyfromKalisz,Poland(productNo5707,5235). ThePPtextile wasmanufacturedbyŁódz´ UniversityofTechnology(Łódz´,Poland). Theaforementionedmaterials arecomposedofdifferentpolymergroups: polyesters,polyamidesandpolyolefins. Thesetextiles havesimilarstructureandhighresistancetodeformations. Theyweremadein1/1plainweavewith thicknessca. 0.20mm. Theaveragesizeofmacro-poresinthetextilesrangedfrom30to70µm. Textiles wereinitiallywashedandthermallystabilizedafterproduction(Table1). Table1.Characteristicfeaturesofusedtextilesuperficiallymodified. Warp Weft Textile FabricSurface TheWayof Yarn Numberof Yarn Numberof Mass(g/m2) FabricPreparation Character Threads/10cm Character Threads/10cm 84 84 PP 460 330 72 washing dtexf33 dtexf33 84 150 washing,thermal PET dtexf48 390 dtexf216 320 79 stabilization(20s,190◦C) 72 160 washing,thermal PA dtexF17 380 dtexF144 310 81 stabilization(20s,185◦C) Toanalyzepropertiesofinspectedtextiles,severalmeasurementswereperformed. Thesurface was studied by a Scanning Electron Microscope Evo LS 15 (Zeiss, Oberkochen, Germany) and an Atomic Force Microscope. AFM measurements were carried out using a commercial NanoMan V microscopewithaNanoScopeVController(VeecoInstruments/Bruker,NewYork,NY,USA).Samples werescannedintappingmodewithspringconstant40N/mandresonantfrequency300kHzusing RTESP probes (Veeco Instruments/Bruker, New York, NY, USA). Acquired data were processed usingnon-commercialsoftwareTopoGraf(FacultyofMicrosystemElectronicsandPhotonics,Wrocław UniversityofScienceandTechnology,Wrocław,Poland).Subsequently,therootmeansquareroughness (Rq)wascalculated. DifferentialScanningCalorimetrystudieswereperformedusingDSC6equipment(PerkinElmer, Waltham,MA,USA).Thesetestswereperformedinnitrogenatmosphere,passingthroughthesystem atarateof20mL/min. TheanalysisoftheobtainedresultswasperformedusingPyrissoftware(v.3.81, PerkinElmer,Waltham,MA,USA).Thecrystallinitydegreewasalsocalculated. ThechemicalstructureofsampleswasexaminedusingFourierTransformInfraredSpectroscopy intheNicolet380system(ThermoFisherScientific,Waltham,MA,USA).Thespectrumwasrecorded intherangeof60to4000cm−1witharesolutionof4cm−1. Thewettabilityoftextileswasmeasuredasanabilitytoabsorbliquid,inaccordancewithISO 9073-6:2003standard“Textiles. Testmethodsfornonwovens. Part6: Absorption”[19]. Materialswere cutinto10×10cm2samples,andthenweighedbeforeandafterimmersinginwaterfor60s. Materials2018,11,707 3of16 2.2. TextileModificationProcess To induce antibacterial properties in textiles, zinc oxide microrods were deposited on their surface by hydrothermal method. Before the process, materials were dipped in colloidal zinc oxide nanoparticles for 30 s and then dried at 90 ◦C for 15 min. The colloid contained a spherical ZnO nanoparticles with average radius of ca. 6 nm. Their characterization and synthesis method were presented in previous work [20]. The nanoparticles adsorbed on the textile surface during hydrothermal ZnO microrods deposition were nucleation centers. The hydrothermal deposition was carried in a 100 mM water mixture of hexamethylenetetramine (HMT) and zinc nitrate (Zn(NO ) ·6H O).Obtainedchemicalbathwasstirredfor24handfiltered. Then, textilesamples 3 2 2 wereaddedandthewholesystemwasheatedto90◦Cfor8h. Afterthedepositionprocess,modified sampleswerewashedinultrasoundwasherEW-08849-02(Cole-Parmer,VernonHills,IL,USA)and driedinaroomtemperature. Thenextstepwastocharacterizeobtainedantibacteriallayer. Masschangesofsampleswere determined,theirmicrostructureandcrystalstructurewereexaminedusingaccordinglySEMand X-rayPhilipsMaterialsResearchDiffractometer(Philips,Eindhoven,Netherlands),utilizingCuKα radiation. Obtainedresultsinclude: interplanardistance,latticeconstantsandthevolumeoftheunit cell,determinedusingBragg’slawandtheWilliamson–Hall(W-H)method. Theantibacterialpropertiesofmodifiedtextilesweredeterminedbytheserialdilutionmethod againsttwodifferentpathogens: Gram-negativeE.coliPCM2057andGram-positiveS.aureusPCM 458. Anamountof1mLofanovernightcultureofthetestedbacteria(grownaerobicallyat37◦C, withshaking,inMuellerbroth)wascentrifugedat5000gfor5min,andthenthesupernatantwas discarded. The pellet was re-suspended in 1 mL of saline to give an inoculum of approximately 1.2×106colony-formingunits(CFU/mL)forS.aureusand1.3×107CFU/mLforE.coli. Samplesof theZnOmodifiedtextiles(1cm×1cm)wereplacedintubescontaining3mLofdistilledwater. Then, 300(or30)µLofpre-preparedbacterialsuspensionwasaddedtothetubes. Tubeswereincubatedfor 2,5and24hat37◦C.Then,serialdilutionswerepreparedand100µLaliquotsofeachdilutionwere seededinduplicateontoMuellerAgar(Difco)andincubatedfor24–48hat37◦C.Afterincubation, thenumberofcolonyformingunitspermilliliter(CFU/mL)wasestablished. Bacterialsuspensions treatedwithunmodifiedPA,PETandPPaswellassuspensionswithouttextilesampleswerepositive andnegativecontrols,respectively. Theantibacterialactivityofmodifiedtextileswasalsostudiedonthesolidmediuminaccordance withtheISO20645:2004standard“Textilefabrics-Determinationofantibacterialactivity.Agardiffusion platetest”[21]. 3. ResultsandDiscussion 3.1. TextileCharacterization BasedonSEMandAFMobservations,itwasindicatedthatthesurfaceofPETissmoothbutrich inparticleswhichcouldberesiduesfromtheproductionprocess(Figure1b). PPandPAsurfaceswere roughandfreeofpollutions(Figure1a,c). Thoseresultswereconfirmedbyarootmeansquaredvalue whichwas17.98nmforPA,6.57nmforPETand10.50nmforPP. Materials2018,11,707 4of16 Figure1.SEMandAFMimagesof:(a)PA;(b)PET;and(c)PP. The composition and degree of crystallinity of the materials were determined based on DSC analysis. These studies have shown that fabrics consist exclusively of polymers, as declared by manufacturers. This is indicated by the presence of characteristic exothermic peaks (Figure 2). The degree of crystallinity was calculated using Formula (1) and summarized in Table 2. It was observedthatX ofalltextilesissimilar. c ∆H X = m (1) C ∆H m100 where ∆H is the melting enthalpy of sample and ∆H is the melting enthalpy of 100% m m100 crystallinepolymer. Materials2018,11,707 5of16 Figure2.DSCanalysisoftheusedtextiles. Table2.DSCresultsforanalyzedtextiles. Sample ∆Hm100(J/g) ∆Hm(J/g) Xc(%) PA 230.1 116.2 50.5 PET 140.1 70.7 50.5 PP 207.1 106.1 51.2 FTIRanalysisconfirmedDSCresults,showingpeakscharacteristicforfunctionalgroupsofmain textilepolymers,withoutanyadditives(Figure3)[22–24]. Figure3.FTIRresultsforanalyzedtextiles. The liquid absorption capacity (LAC) was determined according to polish standard ISO 9073-6:2003 Formula (2) [19]. It was observed that the liquid absorption capacity is significantly largerforPAsamplethanforothermaterials. Consideringstandarddeviationoftheresults,itcould Materials2018,11,707 6of16 beseenthatthereissmalldifferencebetweenPETandPP.However,PPischaracterizedbyslightly smallerLACvalue(Table3),whichisaresultofitschemicalcomposition. Itisbuiltfromnonpolar groupscontainingcarbon–hydrogenbonds,whereasPEThasoxygengroupsandPAhasadditional amidegroups,whicharecharacterizedbystrongpolarproperties. m −m LAC = n k (2) m k wherem isthemassofwetsample(g)m isthemassofdrysample. n k Table3.LACresultsforanalyzedtextiles. Sample PA PET PP LAC(%) 185± 169±3 160±5 3.2. DepositionandCharacterizationofAntibacterialMaterial To form nucleation centers on the textile surface, all fabrics were immersed in a previously preparedZnONPscolloidandthendried(Figure4a). Further,ahydrothermaldepositionofZnO microrodswasperformedonsuchmaterials,usingaqueoussolutionsofzincnitrateandurotropine. The process was carried out at 90 ◦C for 8 h (Figure 4b). After the process, the modified fabrics wererinsedinanultrasonicscrubbertoremovetheexcessofantibacterialagentandthendriedat roomtemperature. Figure4.Aschemeofmodificationprocess.(A)ZnONPsdeposition;(B)CBDsolutionpreparation. ThemechanismofhydrothermaldepositionofZnOusingHMTandZn(NO ) isverycomplex 3 2 andmultistage.Dependingonthetemperateandtime,differentreactions,whichdeterminateobtaining products,takeplace. Usedprocesscondition(90◦C,8h)wereselectedbasedonpreviousstudieson theinfluenceoftemperatureandtimeonzincoxidehydrothermaldeposition[17,18]. Forthisreason, thesetopicsarenotdiscussedinthisarticle. Theamountofzincoxidedepositedonthesubstratewasdeterminedbymeasuringtheweight gain. Thesemeasurementshaveshownthatthemorehydrophilicisthefabric,themorezincoxideis depositedonthesurface. Weightgainwasaccordingly6.3±0.2mgforPA,5.1±0.1mgforPETand 3.9±0.1mgforPP. Thecrystalstructureanalysisoftheantibacteriallayerformedonthefibersurfacewasperformed usingXRD.Characteristicpackswereobservedontheobtaineddiffractogramsatabout2θ =31.6◦, 34.2◦,36.1◦,47.4◦,56.5◦,62.7◦,65.7◦,67.5◦,and69.0◦,whichcorrespondstothecrystalplanes[100], Materials2018,11,707 7of16 [002],[101],[102],[110],[103],[200],[112],and[201]ofhexagonalwurzitestructurethatwereobserved (Zincite,JCPDS5-0664). ThatconfirmedthepresenceofZnOonalltextilesurfaces(Figure5). Figure5.XRDdiffractogramsofmodifiedtextiles. ToperformathoroughcharacterizationofobtainedZnOcrystals,interplanardistances,lattice constants, andtheunitcellvolumewerecalculated[25]. Itwasobservedthatthevaluesoflattice constants and the unit cells volume are similar for all samples and are bigger than the standard valuesforzincoxidecell(Table4). ThemicrostrainsandaveragecrystallitesizeinZnOwerealso determined,usingtheWilliamson–Hall(W-H)method[26]. Tocalculatethestraincurveandcrystallite size,βcosφ=f(4sinφ)wasplottedforpreferreddiffractionpeaks(Figure6). Figure6.TheW-Hcurvesforsamples. ItwasobservedthatthecrystallitesizeisincreasingforsamplesinorderPET,PAandPP.These results,concerningthestrainvaluesinZnOstructureshowthesametendency. Aconclusioncould bemadethatthebiggeristhecrystallitesize,thebiggeristhestrainobserved. Comparisonbetween theseresultsandstandarddata(Zincite,JCPDS5-0664)showedthateveryobtainedcrystallitewas Materials2018,11,707 8of16 characterizedbygreaterunitcellparametersvaluesthandatadeterminedbyJCPDS(Table4). This couldbeaconsequenceofdefectsembeddedinthestructure,amountofwhichisrelatedtostrain valuesandcrystallitesize. ThemostirregularcrystalswereobtainedforZnOdepositedonPPsurface. The results for PA and PET were very similar. Therefore, authors suppose that, in the substrate, hydrophobicityplaysthemostimportantrolethecrystallizationprocess. Table4.ChangesinZnOunitcellparametersandcrystallites. Sample d (Å) d (Å) a(Å) c(Å) V(Å3) ε D(nm) (100) (002) PA 2.83 2.62 3.27 5.24 48.52 0.00069 23.3 PET 2.83 2.61 3.27 5.23 48.43 0.00061 22.8 PP 2.83 2.61 3.27 5.23 48.43 0.00099 24.6 Standard 2.81 2.60 3.25 5.21 47.60 - - ThemicrostructureofZnOdepositedonthesurfaceofpolymermaterialswasdeterminedbySEM observation. Theelongatedzincoxidestructuresformedbyflower-likeagglomerateswerecreated (Figure7). TheagglomeratesonthesurfaceofthePAaremadeofsharp-endedsinglerods,whilethose onPPandPETaremadeofmicrorods. TheaveragelengthoftheZnOmicrorodsgrownonthesurface ofPA,PET,andPPmaterialswasaccordingly3.9±0.4,5.6±0.2,and4.1±0.6µm,respectively. Their diametersare252±5,398±8,and313±2nm,respectively. Basedonthesevalues,calculatedaverage shaperatio(A )[17]was15.6,14.3,and13.2,respectively. R Figure7.SEMimagesofZnOdepositedon:(a)PA;(b)PET;and(c)PP. The shape, location and crystalline structure of ZnO rods are significantly different from the resultsoftheauthors’previouswork[17]. Inthisstudy,arelativelyevendistributionofzincoxiderods onthesurfaceofthefabric,withoutagglomerates,wasobserved.Thesestructureshaveasimilarlength Materials2018,11,707 9of16 butaremuchthicker(1.6µmindiameter). AuthorsbelievethatthisisbecauseZnOnanoparticlesare usedinthepresentstudyasheterogeneousnucleationcenters. Theheterogeneousnucleationoccurs much more easily on the surface of the solid-state nanoparticles in contact with the solution than homogeneousnucleationdirectlyfromsolution. Ifthecrystallizationnucleusispresentedasasphere, the equation describing the equilibrium of surface energy at the triple point follows Equation (3) (Figure8). BecausecrystallizationnucleusismadeofZnONPs,onwhichZnOcrystalsaregrowing, thesurfaceenergybetweenZnOnucleusandliquid(γ )isequaltosurfaceenergybetweenliquid NL andZnOcrystal(γ )(4–6). LC Therefore, the reduction of the energy required for the crystallization of the material in the heterogeneousprocesscomparedtothehomogeneousdependsonthecontactangleofthematerial andisexpressedbytheVolmercoefficientf(θ)inEquation(7). Thus,thesmalleristhecontactangleof thematerialatwhichcrystallizationoccurs,theloweristheenergyrequiredforthisprocess[27]. γ = γ +γ cosθ (3) NL NC LC γ = γ (4) NL LC γ −γ cosθ = γ (5) NL LC NC γ (1−cosθ) = γ (6) NL NC (2+cosθ)·(1−cosθ)2 f(θ) = (7) 4 whereγ isthesurfaceenergybetweennucleusandliquid(J/m2);γ isthesurfaceenergybetween NL NC nucleusandcrystal[J/m2];γ isthesurfaceenergybetweenliquidandcrystal(J/m2);andθisthe LC contactangle(o). Figure8.Aschemeofaofcontactangledetermination. Inthepresentstudies,crystallizationwascarriedoutonnanoparticlesofZnOappliedonthe fabricsurface.Consequently,theZnOcrystallizationenergyonthesurfaceofallthreefabricsshouldbe comparable. However,itshouldbesignificantlysmallerthaninthecaseofusingtextilesnotcovered byZnOnanoparticles(withoutcrystallizationnucleus). Therefore,thefirststageoftheprocess(the depositionofZnOnanoparticlesonthetextilesurface)hasadecisiveinfluenceontheformationof zincoxiderods. TheLAC,R ,SEMandAFManalysesprovidethemostimportantsurfaceparametersforthe q evaluationofnanoparticleinfluenceonthefibersurface. LACvaluedemonstratestheabilitytoabsorb solvent and is therefore connected with both surface chemistry and roughness. R is a numerical q indicator of surface roughness. Comparison of those two parameters can provide all necessary informationabouttextilesurface. Basedonobtainedresults,theLACandR valuesforPAarethe q highest. PETandPPhavesimilarLACvaluebutmuchsmallerthanPA.TheR valuewasbiggerfor q PPthanforPET.ThoseresultswereconfirmedbySEMandAFMimages. ThePETsurfaceisflat,but thePAandPPsurfacehave“orangepeel”structure. Thoseobservations,incombinationwithDSC andFTIRspectra,leadtoconclusionthatPAsurfaceistheroughestandmosthydrophilic. Surfaceof thePETfibersareflatandhydrophilic,whilethePPsurfaceisroughandhydrophobic. Duringimmersionofsubstratesinzincoxidecolloid,nanoparticlescanbindwiththetextileby chemisorptions,physisorptionand/orhydrogenbondonthesurface. Theeffectivenessofthisbond Materials2018,11,707 10of16 dependsonwettabilityandsurfaceroughness. Inthecaseofroughhydrophobicsurfaces(Figure9a) oronflathydrophobicsurfaces(Figure9b),thecrystallizationcenterscanbecreatedonlyinsome placeswithlimitedarea. Ontheotherhand,onthehydrophilicandroughfibers,nanoparticlescould beeasilyadsorbed(Figure9c). Figure9.Ashapeofcolloiddropondifferenttextilesurfaces:(a)PP;(b)PET;and(c)PA. TheamountofZnOdepositedonthetextilesurfaceisdecreasinginfollowingorder:PA,PET,and PP.ThecrystallitesizeandstrainvaluesofZnOareincreasingintheorder:PET,PAandPP.Inaddition, somedifferenceswereobservedonSEMimages(Figure7). OnPA,textileneedlelikestructureswere observedwiththehighestA value(3.9µmlength,252nmdiameter). OnPET,thelongestrodswere R depositedwithhigherA (5.6µmlength,398nmdiameter)thanonPPsample(4.1µmlength,313nm R diameter). Inaddition,thezincoxidemicrocrystalsformedflower-likeagglomeratesonthefabric surface. AgglomeratesformedonthesurfaceofthePAaremadeofsharp-endedrods. Incontrast,the agglomeratesformedonthePPandPETsurfacesareconstructedofmicrorodsbecausethefabrics afterimmersioninthecolloidalsolutionweredried. Nanoparticlestendtoagglomerateduringdrying processastheconsequenceofincreaseinconcentration. Thiseffectismosteasilyachievedonsmooth and/orhydrophobicsurfaces(Figure10). Figure10.AschemeoftheZnONPson:(a)hydrophilic;and(b)hydrophobicsurfaceafterdrying. Aforementioned nanoparticle agglomerates are base for ZnO microrods growth. As a result, the biggest amount of ZnO nanoparticles is present on PA surface, then on PET and the least on PP. It has to be noticed that the difference between PET and PP is not significant, which is due to the balance between roughness and wettability of their surfaces. After shape, crystallite size and structurestrainsanalysesaconclusioncouldbemadethatonPAnucleationispreferredtothegrowth process,incontrasttoPET.ThisargumentisaffirmedbyneedlelikecrystalsobservedinsampleofPA (Figure7a)whicharetheconsequenceofZn2+ deficiency. OnPP,nanoparticleswerelooselyattached tothesurface,duetoitshydrophobiccharacterandthefactthatthesizeofcolloiddropsisdetermined onlybysurfaceroughness. ThisisprovenbythebiggeststrainvaluesinZnOmicrorodsonPPtextile. 3.3. AntibacterialCharacterization ThebactericidalactivityofthetextileandcontrolsampleswasassessedusingEscherichiacoliand Staphylococcusaureus. ThedecreaseinthenumberofE.coliafter2hofincubationinsaline(datanot shown)andinthepresenceoftheunmodifiedtextiles(Figure11)wassimilarandranged2×104–5×
Description: