ebook img

Deployable Multimodal Machine Intelligence. Applications in Biomedical Engineering PDF

589 Pages·2023·23.445 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deployable Multimodal Machine Intelligence. Applications in Biomedical Engineering

Lecture Notes in Bioengineering Hongliang Ren Deployable Multimodal Machine Intelligence Applications in Biomedical Engineering Lecture Notes in Bioengineering Advisory Editors Nigel H. Lovell, Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia Luca Oneto, DIBRIS, Università di Genova, Genova, Italy Stefano Piotto, Department of Pharmacy, University of Salerno, Fisciano, Italy Federico Rossi, Department of Earth, University of Salerno, Fisciano, Siena, Italy Alexei V. Samsonovich, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA Fabio Babiloni, Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy Adam Liwo, Faculty of Chemistry, University of Gdansk, Gdansk, Poland Ratko Magjarevic, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia Lecture Notes in Bioengineering (LNBE) publishes the latest developments in bioengineering. It covers a wide range of topics, including (but not limited to): • Bio-inspired Technology & Biomimetics • Biosensors • Bionanomaterials • Biomedical Instrumentation • Biological Signal Processing • Medical Robotics and Assistive Technology • Computational Medicine, Computational Pharmacology and Computational Biology • Personalized Medicine • Data Analysis in Bioengineering • Neuroengineering • Bioengineering Ethics Original research reported in proceedings and edited books are at the core of LNBE. Monographs presenting cutting-edge findings, new perspectives on classical fields or reviewing the state-of-the art in a certain subfield of bioengineering may exceptionally be considered for publication. Alternatively, they may be redirected to more specific book series. The series’ target audience includes advanced level students, researchers, and industry professionals working at the forefront of their fields. Indexed by SCOPUS, INSPEC, zbMATH, SCImago. Hongliang Ren Deployable Multimodal Machine Intelligence Applications in Biomedical Engineering Hongliang Ren Department of Electronic Engineering The Chinese University of Hong Kong (CUHK) Hong Kong, Hong Kong Department of Biomedical Engineering National University of Singapore Singapore, Singapore ISSN 2195-271X ISSN 2195-2728 (electronic) Lecture Notes in Bioengineering ISBN 978-981-19-5931-8 ISBN 978-981-19-5932-5 (eBook) https://doi.org/10.1007/978-981-19-5932-5 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Contents 1 Preface and A Brief Guide to the Chapters ...................... 1 1.1 Steer DMs with Various Actuation Modalities ................ 2 1.2 Tethered and Insertable DM/DS ............................ 2 1.3 Inflatable DMs: From Tethered to Untethered ................ 4 1.4 Swallowable Magnetic DMs for Untethered Motions .......... 5 1.4.1 Permanent Magnet Actuation for External Field Generation ....................................... 5 1.4.2 Electromagnetic Actuation for External Field Generation ....................................... 7 1.4.3 Untethered Magnetoelastomer ...................... 7 1.5 Wearable DMs ........................................... 8 1.6 Deployable Sensing Mechanisms ........................... 9 1.7 Intelligent DMs with Multimodal Sensing ................... 10 1.8 Future Perspectives ....................................... 11 2 Orimimetic Folds into Deployable Mechanisms with Potential Functionalities in Biomedical Robotics .......................... 13 2.1 Introduction ............................................. 14 2.2 Orimimetic Design and Its Role in Keyhole Procedures ........ 15 2.2.1 Origami for Rapid Design .......................... 15 2.2.2 Action Origami and Its Role in Keyhole Procedures ... 15 2.3 Origami-Inspired Technologies ............................. 16 2.3.1 Miura-Ori-Inspired Designs ........................ 17 2.3.2 Curved-Crease Origami ............................ 20 2.3.3 Waterbomb-Inspired Designs ....................... 23 2.3.4 Modified Mountain/Valley-Fold Origami ............. 24 2.4 Other Miscellaneous Origami Methods ...................... 26 2.4.1 Variably Patterned Graphene Structures .............. 26 2.4.2 Variably Patterned Cell-Based Designs ............... 27 v vi Contents 2.5 Other Graspers ........................................... 30 2.5.1 Two-Jaw Surgical Graspers ......................... 30 2.5.2 Issues with the Traditional Two-Jaw Graspers ......... 31 2.6 Fortune-Teller-Inspired Grasper Designs ..................... 32 2.6.1 Modified Fortune Teller Design ..................... 32 2.6.2 Actuation Methods ................................ 34 2.6.3 Grasping Capability of Three Actuation Methods ...... 37 2.6.4 Range of Motion and Grasp Coverage ............... 37 2.6.5 Degrees of Freedom ............................... 38 2.6.6 Assembly from a Flat Surface and Flat Foldability ..... 38 2.7 Remarks ................................................ 39 References .................................................... 40 Part I Tethered Insertable DMs 3 Deployable and Interchangeable Telescoping Tubes ............... 45 3.1 Introduction ............................................. 46 3.2 Related Work ............................................ 46 3.2.1 Deployable and Collapsible Designs ................. 46 3.2.2 Actuations for Folding Structures ................... 48 3.2.3 Bistable and Locking Methods ...................... 49 3.3 Methods and Design ...................................... 49 3.3.1 Bistable FITT Structure ............................ 50 3.3.2 SCAT with a Tongue Depressor and Tendon-Driven Swab .......................... 50 3.3.3 Tendon-Driven Mechanism (TDM) .................. 51 3.3.4 Modularity of Design: Interchangeable Tips .......... 51 3.4 Simulation .............................................. 52 3.5 Force Analysis Experiments ............................... 54 3.5.1 Bistability ....................................... 54 3.5.2 TDM Structure ................................... 56 3.6 Discussion .............................................. 59 3.7 Conclusion and Future Work ............................... 59 References .................................................... 60 4 Deployable Parallelogram Mechanism for Generating Remote Centre of Motion Towards Ocular Procedures ................... 63 4.1 Introduction ............................................. 64 4.2 Ophthalmic Surgery ...................................... 64 4.3 Remote Centre of Motion ................................. 65 4.4 Comparison with Existing RCM Robot Mechanism ........... 67 4.5 Kinematic Design Considerations ........................... 67 4.5.1 Design Goals (DG) ............................... 68 4.5.2 Design Preference (DP) ............................ 69 4.6 Proposed Design ......................................... 69 Contents vii 4.7 Electrical Schematic Diagram .............................. 69 4.8 Experimentation Results and Observations ................... 72 4.9 Weight of Main RCM ..................................... 73 4.10 Belt and Pulley Backlash .................................. 73 4.11 Parts Assembly .......................................... 74 4.12 Conclusion .............................................. 75 4.13 Future Improvements ..................................... 76 References .................................................... 76 Part II Inflatable DMs: From Tethered to Untethered 5 Conceptual Origami Bending and Bistability for Transoral Mechanisms .................................................. 81 5.1 Background ............................................. 82 5.2 Prioritize the Needs ....................................... 82 5.3 Design and Actuation ..................................... 83 5.3.1 Overall Origami Deployable Structures .............. 83 5.3.2 Origami Actuation Components & Bistability Rationale ........................................ 85 5.4 Design Verifications ...................................... 89 5.4.1 Material Tests .................................... 89 5.4.2 Usability Tests ................................... 92 5.4.3 Summary of the Overall System .................... 96 5.5 Discussion .............................................. 98 5.5.1 Needs-Metrics Table .............................. 98 5.5.2 Failure Mode Analysis ............................ 98 5.5.3 Risk Assessment Matrix ........................... 100 5.6 Conclusion .............................................. 100 References .................................................... 102 6 Tactile Sensitive Origami Trihexaflexagon Gripper Actuated by Foldable Pneumatic Bellows ................................. 103 6.1 Introduction ............................................. 104 6.2 Design and Construction .................................. 104 6.2.1 Gripper Body .................................... 105 6.2.2 Actuation Mechanism and Construction Protocol ...... 106 6.2.3 Working Principle of FlexagonBot .................. 110 6.3 Sensor Working Principle and Calibration .................... 112 6.3.1 Sensor Design .................................... 112 6.3.2 Sensor Working Principle .......................... 113 6.3.3 Sensor Calibration ................................ 114 6.4 Flexagonbot Payload Test ................................. 114 6.5 Payload Test Results and Discussion ........................ 118 6.6 Conclusions and Future Works ............................. 119 References .................................................... 120 viii Contents 7 Biomimetic Untethered Inflatable Origami ...................... 123 7.1 Introduction ............................................. 124 7.2 Related Work ............................................ 124 7.3 Materials and Methods .................................... 126 7.3.1 Prototype Design and Specifications ................. 126 7.3.2 Origami Exoskeleton Design ....................... 127 7.3.3 Valve and Arduino Setup .......................... 128 7.3.4 Reactant Compartment Design ...................... 130 7.3.5 Mechanism of SM ................................ 130 7.3.6 Paddle Fin Design ................................ 132 7.3.7 Proposed Tests ................................... 132 7.4 Results ................................................. 134 7.4.1 Design Input 1—Inflation .......................... 134 7.4.2 Design Input 2—Heaving Motion ................... 137 7.4.3 Design Input 3—Surge Motion ..................... 137 7.4.4 Design Input 4—Yaw Motion ....................... 138 7.5 Discussions ............................................. 139 7.5.1 Feature 1: Inflation ................................ 139 7.5.2 Feature 2: Heave Motion ........................... 140 7.5.3 Features 3 and 4: Surge and Yaw Motion ............. 140 7.5.4 Other Features ................................... 141 7.5.5 Future Applications ............................... 141 7.6 Conclusion .............................................. 141 Appendix 1 .................................................... 142 Appendix 2 .................................................... 150 Full Arduino Code ....................................... 150 Appendix 3 .................................................... 151 References .................................................... 152 Part III Swallowable Magnetic DMs for Untethered Motions 8 Wormigami and Tippysaurus: Magnetically Actuated Origami Structures ............................................ 157 8.1 Introduction ............................................. 158 8.2 Wormigami Structure ..................................... 160 8.2.1 IPM Magnet Placement ............................ 160 8.3 Wormigami Motion Capabilities ............................ 161 8.3.1 Caterpillar-Wave Motion ........................... 161 8.3.2 Rolling .......................................... 162 8.3.3 Peristaltic ........................................ 166 8.3.4 Downward Dog .................................. 167 8.3.5 Slinky ........................................... 168 8.3.6 Hyperextension: “Head Lifting” .................... 169 8.3.7 Inchworm Motion ................................ 170 8.3.8 Comparison of Movements of the Model ............. 171 Contents ix 8.4 Tippysaurus Structure ..................................... 172 8.5 Tippysaurus Motion Capability ............................. 173 8.6 Material Testing .......................................... 177 8.7 Wormigami: Compression and Tensile Tests .................. 178 8.7.1 Compression Test for Paper with Mod-Podge Without IPM ..................................... 178 8.7.2 Compression Test for Paper with Mod-Podge Coating and IPM ................................. 179 8.7.3 Compression Ratio for the Plastic Model Without IPM ............................................ 179 8.7.4 Tensile Test for Paper Model with Mod-Podge Without IPM ..................................... 179 8.7.5 Tensile Test for Paper with Mod-Podge with IPM ...... 181 8.7.6 Tensile Test for Plastic Without IPM ................. 181 8.8 Tippysaurus: Compression and Tensile Tests ................. 181 8.8.1 Compression Test for Paper with Mod-Podge Without IPM ..................................... 181 8.8.2 Compression for Plastic Without IPM ................ 182 8.8.3 Compression for Paper with Mod-Podge with IPM .... 183 8.8.4 Tensile Test for Paper with Mod-Podge Without IPM ............................................ 184 8.8.5 Tensile Test for Plastic Without IPM ................. 184 8.8.6 Tensile Test for Paper with Mod-Podge with IPM ...... 185 8.9 Force Assessment ........................................ 186 8.9.1 Contact Force on the Surface ....................... 186 8.9.2 Vertical Force Assessment ......................... 186 8.9.3 Overall Force Output .............................. 188 8.9.4 Unsupervised Contact Between External Magnet and Human Body ................................. 188 8.9.5 EPM Contact Monitoring .......................... 189 8.10 Conclusion and Remarks .................................. 191 References .................................................... 191 9 Untethered Motion Generation and Characterization of Multi-Leg Insect-Size Soft Foldable Robots Under Magnetic Actuation ........................................... 195 9.1 Introduction ............................................. 195 9.2 Literature Review ........................................ 196 9.3 Methodology ............................................ 202 9.4 Results and Discussion .................................... 205 9.4.1 Wave Motion-Induced Along the Horizontal Plane ..... 205 9.4.2 Compression of the Prototype ...................... 205 9.4.3 Lateral Extension with Respect to the Frontal Plane of the Prototype ............................. 209 9.4.4 Motion Along a Stable Board Surface ................ 210

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.