TheAstrophysicalJournal,789:1(18pp),2014July1 PreprinttypesetusingLATEXstyleemulateapjv.04/17/13 DEPENDENCEOFTHEOUTERDENSITYPROFILESOFHALOSONTHEIRMASSACCRETIONRATE BenediktDiemer1,2andAndreyV.Kravtsov1,2,3 1DepartmentofAstronomyandAstrophysics,TheUniversityofChicago,Chicago,IL60637,USA;[email protected] 2KavliInstituteforCosmologicalPhysics,TheUniversityofChicago,Chicago,IL60637,USA 3EnricoFermiInstitute,TheUniversityofChicago,Chicago,IL60637,USA Received2014January6;accepted2014April14;published2014June9 ABSTRACT 4 We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < 1 r/Rvir <9.Weshowthatthemedianandmeanprofilesofhalosamplesofagivenpeakheightexhibitsignificant 0 deviationsfromtheuniversalanalyticprofilesdiscussedpreviouslyintheliterature,suchastheNavarro-Frenk- 2 WhiteandEinastoprofiles,atradiir(cid:38)0.5R200m.Inparticular,attheseradiithelogarithmicslopeofthemedian densityprofilesofmassiveorrapidlyaccretinghalossteepensmoresharplythanpredicted. Thesteepestslope n oftheprofilesoccursatr≈R ,anditsabsolutevalueincreaseswithincreasingpeakheightormassaccretion u 200m rate, reachingslopesof−4andsteeper. Importantly, wefindthattheoutermostdensityprofilesatr (cid:38) R J 200m 0 are remarkably self-similar when radii are rescaled by R200m. This self-similarity indicates that radii defined withrespecttothemeandensityarepreferredfordescribingthestructureandevolutionoftheouterprofiles. 1 However,theinnerdensityprofilesaremostself-similarwhenradiiarerescaledbyR . Weproposeanew 200c fitting formula that describes the median and mean profiles of halo samples selected by their peak height or ] O mass accretion rate with accuracy (cid:46) 10% at all radii, redshifts and masses we studied, r (cid:46) 9Rvir, 0 < z < 6 and M >1.7×1010h−1M . Wediscussobservationalsignaturesoftheprofilefeaturesdescribedabove,and C vir (cid:12) showthatthesteepeningoftheouterprofileshouldbedetectableinfutureweak-lensinganalysesofmassive h. clusters. Suchobservationscouldbeusedtoestimatethemassaccretionrateofclusterhalos. p Keywords:cosmology: theory-darkmatter-methods: numerical - o r 1. INTRODUCTION tionofthecollapsedhalosintheirsimulations. Navarroetal. t s (1995, 1996, 1997, hereafter NFW, see also Cole & Lacey Theoreticalpredictionsforthestructureofdarkmatterha- a 1996) proposed a similar form of the density profile with an [ los forming in the cold dark matter (CDM) scenario play an important role in the interpretation of observations. During innerasymptoticslopeof−1andanouterslopeof−3. These 2 the past several decades, a significant effort has been made authorsdidnotfocusonthestructureoftheouterdensitypro- v file, however, and the outer slope was shown to exhibit sig- tounderstandoneofthemostbasicdescriptionsofthisstruc- 6 nificant halo-to-halo scatter (Avila-Reese et al. 1999). Sub- ture:thesphericallyaveraged,radialdensityprofilesresulting 1 sequent studies have confirmed that the profiles of halos re- fromthegravitationalcollapseofperturbationsinanexpand- 2 sultingfromthecoldcollapseofawidevarietyofinitialcon- ing universe. Gunn & Gott (1972) made an early prediction 1 ditions are described by profiles that gradually steepen with forthedensityprofileofcollapsedhalosbasedonthespheri- . increasing radius (e.g., Huss et al. 1999, for a recent the- 1 caltophatmodel.Subsequently,Fillmore&Goldreich(1984) 0 showedthatthesphericallysymmetricradialcollapseofaper- oretical explanation of this behavior see Lithwick & Dalal 4 turbation with an initial density profile δ ∝ r−γ results in a 2011). However,theyshowedthattheprofilesaremoreaccu- 1 power-lawdensityprofile,ρ∝r−g,whereig=2forγ<2and ratelydescribedbytheEinasto(1965,1969)functionalform v: g = 3γ/(1+γ)forγ ≥ 2. Thus,forexample,secondarycol- (Navarroetal.2004;Grahametal.2006;Merrittetal.2006; Xi lianpaseρo∝ntro−9a/4pprreoefixliest(incfg.palosion,tGpoertttu1r9b7a5ti;oBne(rδtsic∝hinr−g3e)rr1e9s8u5lt)s. Gloawoeettaall..22001018);.Stadeletal.2009;Navarroetal.2010;Lud- Themainfocusofmostofthestudiesofhalodensitypro- r The collapse of peaks in the initial Gaussian density per- a turbationfieldisgenerallyexpectedtobetriaxialandsignifi- files has been on the innermost regions (e.g., Moore et al. 1999;Navarroetal.2004,2010;Stadeletal.2009),whichare cantlymorecomplicatedthanenvisionedinthesphericalcol- critical for understanding the observed distribution of mass lapsemodel(e.g.,Doroshkevich1970;Bond&Myers1996; withinthevisibleregionsofgalaxies.Theouterregions,how- Bondetal.1996), apictureconfirmedbycosmologicalsim- ever, are increasingly being probed by X-ray and Sunyaev– ulations(e.g.,Klypin&Shandarin1983;Miller1983;Davis Zel’dovich effect observations of clusters of galaxies (e.g., etal.1985). Earlysimulationsofhalosshowedthattheirpro- fileswereroughlyconsistentwithisothermalprofiles,ρ∝r−2, Reiprich et al. 2013) and weak-lensing analyses (e.g., Man- delbaumetal.2006;Umetsuetal.2011).Itisimportanttoun- requiredtoexplaintheflatrotationcurvesofgalaxies(Frenk derstandtheoreticalexpectationsfortheouterdensityprofiles etal.1988). Higherresolutionsimulations,however,showed inordertointerpretsuchobservationsproperly. Forexample, that in general profiles of halos forming in the hierarchical Becker & Kravtsov (2011) showed that typical cluster-sized structure scenario are not well described by a single power halos exhibit deviations from the NFW form, and that NFW law. Thus,Dubinski&Carlberg(1991)modeledthecollapse profilefitstoshearprofilesextendedtolargeradiicanresultin of individual halos in the CDM model and showed that the sizeablesystematicbiasinweak-lensingmassmeasurements Hernquist(1990)profile,inwhichtheslopechangesfrom−1 (seealsoOguri&Hamana2011). Althoughanumberofre- at small radii to −4 at large radii, provides a good descrip- 2 Diemer&Kravtsov 2013). Thesamecosmologywasusedforallcalculationsin Table1 thispaper,suchaspeakheight. Theinitialconditionsforthe N-bodySimulations simulationsweregeneratedusingasecond-orderLagrangian perturbation theory code (2LPTic; Crocce et al. 2006). The Box L(h−1Mpc) N3 mp(h−1M(cid:12)) (cid:15)(h−1kpc) (cid:15)/(L/N) simulations were started at redshift z = 49, which has been L1000 1000 10243 7.0×1010 33.0 1/30 showntobesufficientlyhightoavoidtransienteffects(Crocce L0500 500 10243 8.7×109 14.0 1/35 et al. 2006). The simulations were run using the publicly L0250 250 10243 1.1×109 5.8 1/42 available code Gadget2 (Springel 2005). Each run followed L0125 125 10243 1.4×108 2.4 1/51 10243 darkmatterparticles,correspondingtoparticlemasses L0063 62.5 10243 1.7×107 1.0 1/60 between1.7×107h−1M and7.0×1010h−1M (Table1). (cid:12) (cid:12) Note. —NumericalparametersofthefiveN-bodysimulationsused Giventhatwefocusontheouterdensityprofile,wesetthe inthispaper. Ldenotestheboxsize,N3thenumberofparticles,mpthe forceresolutioninsuchawaythatthesmallesthalosthatcan particlemass,and(cid:15)theforcesoftening. Allsimulationswerestartedat be used for profile analysis are sufficiently resolved. Specif- aninitialredshiftof49,andrunwithaGADGET2timestepparameterof η=0.025. ically, we set the force softening to a quarter of the scale radius expected for a halo with M = 1000m , using the vir p concentration–massrelationofZhaoetal.(2009). According centstudieshaveconsideredtheoverallshapeofthedensity to this criterion, a force softening of (cid:15) ≈ 1/30×L/N is ap- profilesatlargeradii(Pradaetal.2006;Betancort-Rijoetal. propriate forlarge boxsizes suchas 1h−1Gpc, while forthe 2006;Tavioetal.2008;Cuestaetal.2008;Oguri&Hamana smallestbox(cid:15) ≈1/60×L/N. 2011)andproposedanalyticprofilestodescribethem,itisnot yetclearwhethertheshapeisuniversalforhalosindifferent 2.2. HaloSamplesandResolutionLimits stagesoftheirevolution. We used the phase–space–based halo finder Rockstar Inthispaper,wepresentasystematicstudyoftheouterden- (Behroozi et al. 2013a) to extract all isolated halos and sub- sityprofilesofhalos,focusingspecificallyonthedependence halos from the 100 snapshots of each simulation. A halo is of the profiles on the evolutionary stage of halos and their deemed to be isolated if its center does not lie inside R mass accretion rate. We report significant deviations from vir previously proposed fitting formulae at radii r (cid:38) 0.5R . ofanother,largerhalo,whereRvir istheradiusenclosingthe 200m “virial” overdensity implied by the spherical collapse model Specifically,weshowthathalosthatrapidlyaccretemassex- hibitasharpsteepeningoftheirprofileslopeatr (cid:38)0.5R , (Bryan & Norman 1998). We derived merger trees from 200m the halo catalogs using the code of Behroozi et al. (2013b). withthemaximumabsolutevalueoftheslopeincreasingwith Whenever we refer to the progenitor of a halo, we mean the increasingmassaccretionrate. Weproposeanewfittingfor- halo along its most massive progenitor branch at each red- mulathataccountsforthisbehaviorandreportbest-fitparam- shift. We use the merger trees to identify halos with recent eters for the outer profiles as a function of halo peak height majormergersandtoestimatethemassaccretionratesusing andmassaccretionrate. the masses of the main progenitors over a particular redshift Thepaperisorganizedasfollows. InSection2wedescribe interval. thenumericalsimulationsusedaswellastheselectioncriteria Weextractedsphericallyaverageddensityprofilesofhalos andrelevantdefinitionsofmass,radius,andotherquantities. in80logarithmicallyspacedbinsbetween0.05R and10R . In Section 3 we present our main results, while in Section 4 vir vir We are agnostic as to which of the simulations in Table 1 a we discuss their interpretation and implications for observa- haloprofileoriginatedfrom,andinsteadwecombineallpro- tional analyses. Finally, we summarize our main results and filesinordertoaccessalargerangeofmassesandredshifts. conclusionsinSection5. Asacheck,wecomparedthedensityprofilestoasetthatwas extractedfromtheBolshoisimulation(Klypinetal.2011)us- 2. NUMERICALSIMULATIONSANDMETHODS ingadifferentcodeandfoundexcellentagreement. Further- In this section we describe the cosmological simulations more,weonlyconsiderisolatedhalos,asthedensityprofiles used in our study, halo identification and construction of the ofsubhalosoftencontainadominantcontributionfromtheir halodensityprofiles,andtherelevantmassandradiusdefini- hosthalo. Wedonot,however,attempttoremovethecontri- tions. bution of subhalos to the density profiles of their host halos, because it is often ambiguous whether a particle belongs to 2.1. CosmologicalN-bodySimulations thehostorsubhalo, andbecausesuchaprocedurecannotbe To investigate halos across a wide range of masses and replicatedinobservations. redshifts, we use a suite of dissipationless ΛCDM simula- Any N-body simulation has limited mass and force reso- tionsofdifferentboxsizes(Table1). Thelargestsimulation, lution, and these limitations need to be taken into account L1000,wasintroducedinDiemeretal.(2013a). Allsimula- whenanalyzingthestructureofhalos. Wetestforresolution tions use the same cosmological parameters, initial redshift, effects by comparing halo samples of the same mass range and number of particles. We adopt the cosmological param- from different simulation boxes (corresponding to different eters of the Bolshoi simulation (Klypin et al. 2011): a flat mass and force resolutions; see Table 1). We find that the ΛCDM model with Ωm = 1 − ΩΛ = 0.27, Ωb = 0.0469, meanandmedianprofilesofhaloswith Np ≥ 1000particles h = H /(100kms−1Mpc−1) = 0.7,σ = 0.82andn = 0.95. within R differ by less than 5% for the entire radial range 0 8 s vir Theseparametersarecompatiblewithconstraintsfromacom- 0.1R < r < 9R , with a typical difference of ≈ 3% at vir vir binationofWMAP5,baryonacousticoscillationsandTypeIa mostradii. Thedifferencesarerandomanddonotexhibitany supernovae(Komatsuetal.2011;Jarosiketal.2011),X-Ray systematictrendwithmassorredshiftforallmassesandred- clusterabundanceevolution(Vikhlininetal.2009),andobser- shifts used in our analyses. Given that the simulations were vationsoftheclusteringofgalaxiesandgalaxy–galaxy/cluster startedfromdifferentinitialconditions,themeanandmedian weak lensing (see, e.g., Tinker et al. 2012; Cacciato et al. profiles of halos of the same mass may differ somewhat due Outerdensityprofilesofhalos 3 sphereofradiusR, 1015 zz==00.5 1 (cid:90) ∞ z=1 σ2(R)= k2P(k)|W˜(kR)|2dk (2) z=2 2π2 1014 z=4 0 z=6 whereW˜(kR)istheFouriertransformofthesphericaltophat ) filterfunction,andP(k)isthelinearpowerspectrum. Weap- (cid:12)1013 M proximateP(k)usingtheformulaofEisenstein&Hu(1998), 1− normalized such that σ(8h−1Mpc) = σ8 = 0.82. The vari- h( 1012 anceofacertainmassisdefinedasσ(M) = σ(R[M])where vir M = (4π/3)ρm(z = 0)R3. To compute ν we use M = Mvir. M Figure 1 shows the halo masses corresponding to the peak 1011 heightbinsusedinthispaper. Wenotethatbysplittinghalo samples into equal bins in peak height we emphasize large 1010 halo masses. We use Rvir to translate halo masses into peak heights,asitcorrespondstothelargestradiuswherethescat- ter in the density profiles of a given mass is still relatively 109 small, whereasscatterquicklyincreasesatr (cid:38) R (seeFig- vir 0 1 2 3 4 ure 2). For the same reason, we use R rather than R vir 200m ν when we estimate the mass accretion rate between two red- shifts(seeSection3).Wehaveverifiedthatthechoiceofmass Figure1. Virialmassofhalosasafunctionoftheirpeakheight,ν,atdifferent redshifts.Thecirclesmarktheedgesoftheνbinsusedinouranalyses.The definitiondoesnotqualitativelyinfluenceourresultsandcon- grayshadedareaatthebottomindicatesthemassrangebeyondtheresolution clusions. limit of our simulations (1000mp in the smallest simulation box, or 1.7× 1010h−1M(cid:12)). 2.4. OtherNumericalAspects Wheneverweshowthemeanormedianprofilesinrescaled radialunits,suchasr/R∆,wefirstrescaleeachindividualhalo tosamplevarianceorPoissonfluctuations. Suchrandomdif- profile using the halo’s R∆, and then construct the mean and ferences can therefore be expected and are sufficiently small medianfromtherescaledprofiles. Wecomputetheslopepro- nottoaffectourconclusions. files using the fourth-order Savitzky–Golay smoothing algo- WeconcludethattheprofilesofhaloswithN ≥1000par- rithmoverthe15nearestbins(Savitzky&Golay1964). This p ticleswithinR haveconvergedtobetterthan5%inthera- algorithmisdesignedtosmoothoutnoiseintheprofileswith- vir dial range 0.1R < r < 9R , and we adopt N = 1000 as outaffectingtheactualvaluesoftheslope. Wefound15bins vir vir p thelowerlimitforourhalosamples,correspondingtoamass to be the optimal window size to smooth out random fluctu- limit of Mvir ≥ 1.7×1010 h−1M(cid:12) in the smallest simulation ations without introducing artificial steepening or other fea- box. The limit was relaxed to N = 200 for the progenitors tures compared to the unsmoothed slope profile. Due to this p of halos that were used to estimate the mass accretion rate. large window size, the method fails for the seven innermost The profiles of these progenitor halos were not used for any and outermost bins, where we replace it with the algorithm analyses,however. describedintheAppendixofChurazovetal.(2010). All functional fits are performed using the Levenberg- 2.3. MassandRadiusDefinitions Marquartminimizationalgorithm. Themeritfunctionthatis minimizedisthesumofthesquaredifferencesinunitsofr2ρ Throughout the paper, we denote the three-dimensional rather than just ρ, as the numerical value of ρ decreases by halo-centric radius as r, reserving capital R for specific radii manyordersofmagnitudebetweentheinnerandouterradii. used to define halo mass. We denote the mean matter den- The r2ρ metric provides a more balanced indicator of good- sity of the universe ρ , and the critical density ρ . Spher- m c ness of fit across the radial range we are fitting. We exclude ical overdensity mass definitions referring to ρ or ρ are understood to have a fixed overdensity ∆, and mare dencoted theouterradii(r>0.5Rvir)whenfittingfunctionsthatarenot M∆m = M(< R∆m),suchas M200m,or M∆c = M(< R∆c),such danesdigEninedasttoofiprtotfihleeso.uItferlahragleorprardoifiilaer,efoinrceluxdamedpilne,ththeefiNt,FtWhe as M . The labels M and R are reserved for a vary- ingov20e0rcdensity∆(z)withvirrespecttvoirthematterdensity,where shapesoftheouterprofilesdragthefitawayfromthevalues ∆ (z = 0) ≈ 358 and ∆ (z > 2) ≈ 180 for the cosmology suggested by the central region. Due to the potential force vir vir resolutionissuesdiscussedinSection2.2,wedonotattempt assumedinthispaper(e.g.,Bryan&Norman1998). to fit for both the scale radius and steepness parameter α of We bin halos by peak height, ν, rather than mass, because theEinastoprofile. Instead,weusetherelationofGaoetal. halopropertiesareexpectedtobesimilaracrossredshiftsfor (2008)tofixαasafunctionofν. afixedvalueofν. Thepeakheightisdefinedas Inthispaper,weusemedianprofilesformostofouranaly- δ δ ses. Themedianprofileisanapproximationofthemosttypi- ν≡ σ(Mc,z) = σ(M,z=0c)×D+(z), (1) calprofileforagivenhalosample,andisthuswellsuitedfor studying trends in the density profiles. However, for certain where δ = 1.686 is the critical overdensity for collapse de- purposes, the mean profile may be more applicable. For ex- c rivedfromthesphericaltophatcollapsemodel(Gunn&Gott ample,inweak-lensinganalysesusingstackedshearmapsof 1972,weignoreaweakdependenceofδ oncosmologyand many galaxies or galaxy clusters, the derived density profile c redshift),and D+(z)isthelineargrowthfactornormalizedto maycorrespondmorecloselytothemeanprofileofasample. unity at z = 0. Here σ is the rms density fluctuation in a Our conclusions described below hold for the mean density 4 Diemer&Kravtsov 104 R500c R200cRvirR200m 104 R500c R200cRvirR200m 103 103 m m /ρ 102 /ρ ρ ρ 102 101 101 100 100 1 1 − − r r g g o o l l /d 2 /d 2 ρ − ρ − g g o o l l d d = = 3 3 γ − γ − 0.5<ν<0.7 ν>3.5 NFWfit NFWfit 4 4 Einastofit Einastofit − − 0.1 0.5 1 5 0.1 0.5 1 5 r/R r/R vir vir Figure2. Mediandensityprofilesoflow-mass(topleftpanel)andverymassive(toprightpanel)halosatz=0.Theshadedbandsshowtheintervalaroundthe medianthatcontains68%oftheindividualhaloprofilesinthecorrespondingνbin.Theplotsincludesomewhatsmallerradiiforthehigh-νsamplecomparedto thelow-νsampleduetothedifferentresolutionlimitsofthesimulationsfromwhichtheprofileswereextracted.Theshapesofthehigh-andlow-massprofilesare noticeablydifferent:theslopeofthehigh-νprofilesteepenssharplyatr(cid:38)0.5Rvir,whiletheprofileofthelow-νsamplechangesslopegraduallyuntilr≈1.5Rvir, wheretheprofilesofbothsamplesflattensignificantly.Thesharpsteepeningoftheouterprofileofthehigh-νsamplecannotbedescribedbytheNFWorEinasto profiles,asisevidentinthebottompanels.Thebottompanelsshowthelogarithmicslopeprofileofthemediandensityprofilesinthetoppanels,aswellasthe correspondingslopeprofilesforthebest-fitNFW(dot-dashed)andEinasto(dashed)profiles.Toavoidcrowding,weonlyshowtheNFWandEinastofitsinthe bottompanelswherethedifferencescanbeseenmoreclearly. Theverticalarrowsindicatethepositionofvariousradiusdefinitions,evaluatedforthemedian massprofile. profilesas well, andthefitting formulawedevisein Section (see Figure 1 for the respective mass range), while the high- 3.3isvalidforboththemedianandmeanprofiles. mass sample corresponds to ν > 3.5. We also show the in- tervalcontaining68%oftheindividualprofileswithashaded 3. RESULTS band. It is clear that the profiles of the two samples in Figure 2 We use the simulations and halo samples described in the are quite different. The median profile of the low-ν sample previous section to construct the median and mean density profiles of halos binned by peak height, redshift, and mass has a slowly changing slope out to r∼> Rvir and large scatter around the flattening at larger radii. The high-ν sample, on accretionrate. Inthissection,weexplorethevariationofthe theotherhand,hasasharplysteepeningprofileatr (cid:38) 0.5R profileswiththeseproperties. vir with the slope changing from −2 to −4 over a range of only ≈ 4 in radius, as can be seen in the slope profiles (bottom 3.1. DensityProfilesasaFunctionofPeakHeight panels). For comparison, the slope of an NFW profile is ex- Figure 2 shows the median density profiles at z = 0 of pectedtochangebyonly≈0.6overthesameradialrangefor two halo samples representing extremes of the range of halo typicalconcentrations. Theslopeprofilesshowthatalthough peak heights, and the corresponding profiles of the logarith- the NFW and Einasto profiles provide a reasonable descrip- micslope, γ(r) ≡ dlogρ/dlogr. Thelow-masssample(left tion to the profiles of the low-ν sample out to r ≈ R , they vir panels)correspondstothepeakheightrangeof0.5<ν<0.7 failtodescribetherapidsteepeningoftheslopeinthehigh-ν Outerdensityprofilesofhalos 5 108 ν > 3.5, physical units 104 ν > 3.5, scaled by R200m 1 1 − − 107 r103 r ) g g 32/kpc 106 ρmρ/dlo −2 ρ/dlo −2 h(cid:12)105 ρ/og102 og M l l d d ( = = ρ 104 z=0 3 3 z=0.25 γ − γ − z=0.5 101 z=1 103 z=2 z=4 4 4 z=6 102 1−00 − 100 101 102 103 104 1000.1 101 0.5102 1 103 5104 0.1 0.5 1 5 r (physical kpc/h) r (phry/sRic2a0l0mkpc/h) r/R200m ν > 3.5, scaled by R ν > 3.5, scaled by R vir 200c 101 103 1 1 − − r r g g o o ρ/ρvir 100 ρ/ρcρ/dlogl1−022 ρ/dlogl −2 d d 10−1 =101 = 3 3 γ − γ − 10 2 − 100 4 4 − − 0.1 0.5 1 5 0.1 0.50.5 1 1 5 5 10 0.5 1 5 10 r/R r/rR/R r/R vir 20v0icr 200c Figure3. Self-similarityoftheredshiftevolutionofdensityprofiles.Thetopleftpanelshowstheredshiftevolutionofthemediandensityprofilesofthehighest peakhalos,ν>3.5,asafunctionofproperradius(theresultsforlower-νhalosaresimilar). Therestofthepanelsshowthesameprofilesasthetopleftpanel, butrescaledbyR200c,Rvir,andR200m,withdensityrescaledcorrespondinglybyρc,ρvir,andρm.Theplotsdemonstratethatthestructureofhalosofagivenνis nearlyself-similarwhenrescaledbyanyR∆.However,theyalsorevealthattheinnerstructureofhalosismostself-similarwhenradiianddensitiesarerescaled byR200candρc,whiletheouterprofilesaremostself-similarwhenrescaledbyR200mandρm.SeealsoFigure4whereweshowtheslopeprofilesofthescaled profiles. sample.Clearly,thefunctionalformofthehigh-νprofilesdif- onaverage. Thereasonfortheincreasedscatteristhatsome fersfromthefitatlargeradii,implyingthattheouterdensity ofthelow-νhalosarelocatedincrowdedenvironmentsnear profiles of halos cannot be universally described by a single massiveneighbors,whileothersarerelativelyisolated. High- NFW or Einasto profile. We note that these fitting functions νhalosaremassiveandrare,andtheirenvironmentsaremuch werenotdesignedtomatchprofilesoutsider ≈ R , butthe moreuniform. vir deviations from the NFW and Einasto profiles in high-ν ha- Figure2showstheprofilesofagivenν binonlyatz = 0. los begin at smaller radii, r ≈ 0.5R (see also Meneghetti However,wecaningeneralexpectthatprofilesofhalosofa vir & Rasia 2013; Balme`s et al. 2014). In Section 3.3 and the given ν are self-similar in shape, as long as the density and Appendixwepresentamoreflexiblefunctionalformthatcan radii are properly rescaled. However, it is not clear a priori describetheprofilesofhalosofdifferentpeakheights. whatradiiandcharacteristicdensitiesshouldbeusedforsuch Wenotethattheprofilesofboththelow-νandhigh-νsam- rescaling,leadingustoinvestigateseveralchoices. plesflattentoaslopeof≈ −1atr (cid:38) 2R , astheprofileap- The top left panel of Figure 3 shows a sequence of pro- vir proachesthe2-halotermofthehalo–mattercorrelationfunc- filesofthehighest-νbinatdifferentredshiftsinproperunits tion (see, e.g., Hayashi & White 2008). However, the scat- (physicaldensityandradius). Westressthatwecomparethe teraroundthemedianprofilesismuchlargerforlow-νhalos, medianprofilesofhalosofsimilarpeakheights,notthepro- eventhoughsuchhalosformearlierandarethusmorerelaxed filesofprogenitoranddescendanthalos. Thepeakheightbin 6 Diemer&Kravtsov ν > 3.5, scaledby R 2<ν < 2.5, scaledby R 1<ν < 1.5, scaledby R 200m 200m 200m 1 1 1 − − − 102 102 102 r r r m m g m g g ρ ρ o ρ o o / / l / l l 2ρ 2ρ /d 2 2ρ /d 2 /d 2 )m )m ρ − )m ρ − ρ − 00 00 og 00 og og R2 R2 dl z=0 R2 dl dl r/( r/( = 3 Ezi=na0s.t2o5fit r/( = 3 zEi=na0stofit = 3 γ − z=0.5 γ − z=0.25 γ − z=0 z=1 z=0.5 Einastofit z=2 z=1 z=0.25 z=4 z=2 z=0.5 z=6 z=4 z=1 4 Einastofit 4 Einastofit 4 Einastofit − − − 0.1 0.5 1 5 0.1 0.1 0.5 1 0.5 1 5 0.15 0.1 0.5 1 0.5 1 5 5 0.1 0.5 1 5 r/R r/R r/R r/R r/R r/R 200m 200m 200m 200m 200m 200m ν > 3.5, scaledby R 2<ν < 2.5, scaledby R 1<ν < 1.5, scaledby R 200c 200c 200c 1 1 1 − − − 102 102 102 r r r ρc ρc og ρc og og / / l / l l 2ρ 2ρ /d 2 2ρ /d 2 /d 2 )200c )200c ρog − )200c ρog − ρog − R R l R l l / / d / d d r r = r = = ( ( 3 ( 3 3 γ − γ − γ − 4 4 4 − − − 0.5 1 5 10 0.5 1 0.5 1 5 10 5 10 0.5 1 0.5 1 5 10 5 10 0.5 1 5 10 r/R r/R r/R r/R r/R r/R 200c 200c 200c 200c 200c 200c Figure4. SlopeprofilesofthethreeνbinsshowninFigure5,atdifferentredshifts.Theleftpanelsrefertotheν>3.5sampleshowninFigure3.Forthelower-ν bins(centerandrightpanels),fewerredshiftbinsareaccessiblewithoursimulations.InthetoppanelsradiiarerescaledbyR200m,inthebottompanelsbyR200c. TheslopeprofilesconfirmtheresultsofFigure3thattheouterprofilesatr (cid:38)R200maremostself-similarwhenradiiarerescaledbyR200m,withthesteepest slopereachedatr≈R200mregardlessofredshift.Theinnerprofilesatr(cid:46)0.6R200c,however,aremostself-similarwhenrescaledbyR200c.Wenotethatatz(cid:38)2 thedifferencebetweenR200mandR200cbecomesnegligible.The2<ν<2.5binatz=4(lightestredlineinthecenterpanels)exhibitsaslightlydifferentshape thantheotherredshiftbins,possiblyduetosamplevarianceasalmostallhalosinthisbinoriginatefromthesmallestsimulationbox,L0063. ν > 3.5 corresponds to halos of very different mass at dif- steepestslopeoccursat≈1−1.2R forallνandredshifts. 200m ferent redshifts, from Mvir > 1.4×1015 h−1M(cid:12) at z = 0 to At r < R200m, however, the slopes of the profiles at a given Mvir > 1.5 × 1011 h−1M(cid:12) at z = 6 (see Figure 1). Their r/R200m varyfordifferentνandz. Theoppositeistruewhen virial radii span over two orders of magnitude over this red- thedensitiesandradiiarerescaledbyρc andR200c. Inpartic- shift interval. The other panels of Figure 3 show the same ular, at r (cid:46) 0.8−1R200c, the slopes at a given r/R200c agree profiles,butrescaledbyR ,R ,andR ,withthedensi- for halos of the same ν at different z. Although the shapes 200c vir 200m tiesrescaledcorrespondinglybyρ ,ρ ,andρ .Thesepanels ofthelow-νandhigh-νprofilesaredifferent,withtheformer c vir m demonstrate that the structure of halos of a given ν is nearly exhibiting a slower change of slope, they exhibit a similarly self-similar when rescaled by any R∆ in a reasonable range. remarkabledegreeofuniformityatr > R200m whenrescaled However, they also reveal that the inner structure of halos is byR200m,andatr<R200cwhenrescaledbyR200c. most self-similar when radii and densities are rescaled by ρ Ourresultsthusleadtotheconclusionthattheinner, most c andR ,whiletheouterprofilesaremostself-similarwhen relaxed regions of halo profiles are self-similar in units of 200c rescaled by R200m and ρm. A scaling with ρvir and Rvir pro- r/R200c, while the outer profiles are self-similar in units of ducesintermediateresults. r/R200m. This conclusion would of course hold for any ra- Thedegreeofself-similaritycanbeassessedmorerobustly diusdefinitionusingafixedoverdensityrelativetothemean in profiles of the logarithmic slope, which show particularly and critical density within a reasonable range of overdensi- clearly at which radii the profiles undergo rapid changes in ties. Thisobservationimpliesthattheconcentrationofhalos slope. Figure 4 shows the slope profiles for three ν bins, should be more universal as a function of ν when one uses rescaledbyR (toprow)andR (bottomrow).Thesharp a radius definition tied to the critical density. On the other 200m 200c steepening of the profile and subsequent sharp flattening oc- hand, for modeling the transition radius between the 1-halo cur at the same radii in units of R , and the radius of the and2-halotermsinthehalomodel,theuseofradiitiedtothe 200m Outerdensityprofilesofhalos 7 0.5 3.0<ν <3.5 102 1.5<ν <2.0 0.4 0.5<ν <0.7 m ) ρ γ 0.3 / d ρ N 2 ) ( m / 0 N 0.2 0 2 d R / ν>3.5 r 3.0<ν<3.5 0.1 ( 2.5<ν<3.0 2.0<ν<2.5 1.5<ν<2.0 0.0 1.0<ν<1.5 0.7<ν<1.0 8 6 4 2 0 2 − − − − 0.5<ν<0.7 γ =dlogρ/dlogr(r =R ) 200m Figure6. Distributionofthelogarithmicslopeγ≡dlogρ/dlogratR200m, forthreebinsinpeakheight.Theslopeismeasuredforabout3000individual haloprofilesinthelower-νbins, andabout220inthehighest-νbin. The 1 slopesspanawiderange: somehaloshaveouterslopesassteepas−6or − −7,whileotherhaloshaveflatorevenpositiveslopes.Thelatterhaloslikely havenearbymassiveneighbors,whiletheformerhalosaccretemassatahigh r g rate,aswewillshowinSection3.2. o l ρ/d −2 distribution of slopes at R200m for three of the ν bins shown in Figure 5. The distributions are quite broad, with particu- g o larlylongtailstowardshallower,orevenpositive,slopes. On l d theotherhand,thetailstowardverysteepslopesindicatethat = 3 thesteepeningdemonstratedinFigure5canactuallybeeven γ − more pronounced for individual halos, as many halos have slopes significantly steeper than γ ≈ −4. We have verified this observation by examining individual profiles. The radii ofthesteepestslope,however,donotexactlyoverlap,andare 4 − thussmoothedoutinthemedianprofiles. Figure6alsodemonstrateswhywechosetoinvestigatethe 0.1 0.5 1 5 median rather than mean profiles in this section. The distri- r/R 200m butions of slopes are not symmetric and have long tails that stronglyinfluencethemean,butnotthemedian.Furthermore, Figure5. Mediandensityprofiles(toppanel)andtheirlogarithmicslopes (bottompanel)forvariousbinsinpeakheight,ν,atz = 0. Forclarity,the wefindthatthemeanandmedianoftheslopedistributioncan densityisplottedinunitsofρr2, whichmakesiteasiertoseedifferences differfromtheslopeofthemeanandmedianprofile. Wewill betweenprofiles. Theνbinsrangefromsmallpeaks(ν=0.5,Mvir =1.4× returntothisissuewhenconsideringindividualhaloprofiles 1010h−1M(cid:12))torarepeaks(ν>3.5,Mvir>1.4×1015h−1M(cid:12)).Thesteepest inSection4.3. slopeoftheprofilesincreaseswithpeakheight,butallprofilesofsamples A similarly large scatter in the outer profiles was reported withν>1reachslopessteeperthan−3. by Prada et al. (2006), who also showed that the mean outer profiledependsonhowsubhalosareexcludedfromthesam- ple. Forexample,ifoneusesalargerradiustodefinethehalo meandensitymaybepreferable. Giventhatwefocusonthe outerprofilesinthisstudy,wewillscaletheprofilesatdiffer- boundaryanddefinesubhalos,thislowerstheaveragedouter profileoftheisolatedhalosamplebecauseitlowersthefrac- ent redshifts using ρ and R in the subsequent analyses. m 200m tionofhaloslocatedrightnexttoalarger,isolatedhalo. Wefurtherdiscusstheself-similarityoftheprofilesinSection 4.2. 3.2. DependenceontheMassAccretionRate Finally,weinvestigatewhethertheshapeoftheprofilesfol- lows a continuous function of peak height, as indicated by In the previous section, we showed that the outer profiles the trend with ν in Figure 4. Figure 5 shows the density of halos exhibit systematic variations, with their logarithmic profiles (in units of ρ(r)r2 to minimize the dynamic range) slope at r ≈ 0.5−1R becoming steeper with increasing 200m and corresponding slope profiles for a range of peak heights peakheight,independentofredshift.Tounderstandtheorigin spanning five orders of magnitude in mass. As the peak of this trend we must seek the corresponding physical prop- heightincreases, theslopeoftheprofilesbecomesshallower ertyofhalosthatshapestheprofiles. Oneofthemostsalient at r (cid:46) 0.5R , but steeper at 0.5 (cid:46) r (cid:46) 1.5R . At differences between halos of different peak height is the de- vir 200m r(cid:38)1.5R theprofilesareremarkablyself-similarforhalos greetowhichtheydominatetheirenvironment,andarecapa- 200m ofdifferentνwhenrescaledusingR . bleofaccretingmatter. Tothisend, weexaminethemedian 200m Althoughtheshapeofthemedianprofilesfollowsacontin- profiles of halos binned by their mass accretion rate, which uoustrendwithν,thescatteroftheindividualprofilesaround wedefineas themedianofeachνsampleissubstantial.Figure6showsthe Γ≡∆log(M )/∆log(a), (3) vir 8 Diemer&Kravtsov By accretion rate, 1.5 < ν < 2 Mean 1 68%interval 102 r − R500c R200c RvirR200m 3 m g ρ o / l 2ρ /d 2 )m ρ − 2 0 g Γ 0 o R2 dl / = r( 3 γ − 1 0<Γ<1 1<Γ<2 2<Γ<3 Γ>3 4 Allacc.rates 101 − 0 0.1 0.5 1 5 0.1 0.5 1 5 1 2 3 4 r/R200m No recent mra/joRr20m0merger ν 1 m 102 rg − R500c R200c RvirR200m Fslihnigaedusersdeh8oc.wonMttoheuear6ni8nm%daicsisanttaeecsrcvtrahelet.iouTnnhcreaetmreta,eidΓni,tayansoΓaniftsuhnseclimtgiohentalnyo,flowpwehaeekrrethahesaingthhteth,edνa.msTheehadne ρ o atallν. ThedependenceofΓonνexplainswhyhigh-νhalosampleshave / l 2ρ /d 2 similarprofilesassamplesselectedbyahighaccretionrate(Figures5and7). ) ρ − m 0 g estimateofthephysicalaccretion(basedontheminimumes- 0 o R2 dl timator of pseudo-evolution defined in Diemer et al. 2013b) / = leadstoqualitativelysimilarresults. r( 3 The top panel of Figure 7 shows the median profile of the γ − 1.5 < ν < 2 halo sample at z = 0. This sample is further splitbytheaccretionrateofhalos,Γ,asindicatedintheleg- end. The figure shows a strikingly clear correlation between 4 massaccretionrateandthesteepnessofthemedianouterpro- 101 − file: rapidly accreting halos exhibit steepest slopes as steep 0.1 0.5 1 5 0.1 0.5 1 5 as those observed in the highest-ν bin in Figure 5, whereas r/R r/R slowly accreting halos reach slopes comparable to those of 200m 200m the median profile of the overall ν sample. We can also see Figure7. Dependenceoftheslopeprofilesonthemassaccretionrateand thattheradiusatwhichthesteepestslopeisreacheddecreases occurrenceofarecentmajormerger. Inbothpanels,theredlineshowsthe withincreasingaccretionrate,althoughthevariationoccursin mediandensityprofileofallhalosinthepeakheightrange1.5 < ν < 2at z = 0, previouslyshowninFigure5. Inthetoppanel, thesampleisfur- arathernarrowrangearoundR200m.Thesedifferencesdemon- thersplitbyaccretionrate,measuredasthelogarithmicchangeinhalomass, strate that the median profiles for a given range of ν are not Γ≡∆log(Mvir)/∆log(a),withdifferencesevaluatedforthemainprogenitor representativeofallhalosinthatrange.Instead,theouterpro- anddescendanthaloatz = 0.5andz = 0. Haloswithhighmassaccretion ratesexhibitverydifferentmedianprofilescomparedtotheirslowlyaccret- filesdependonthemassaccretionrate. Thecorrelationofthe ingcounterparts. Thebottompanelshowsthesamesamples,butwiththe profileshapewithνissecondaryandarisesbecausehigher-ν additionalconditionthatthehaloshavenotundergoneamajormergersince halos tend to dominate their environment and thus generally z=0.5.Theprofilesareverysimilartothoseinthetoppanel,whichdemon- havelargermassaccretionrates,asshowninFigure8. stratesthatsystematicdeviationsintheshapeoftheouterprofilecorrelate Furthermore,thebottompanelofFigure7showsthesame withtheoverallmassaccretionrateratherthanasharpincreaseofmassdue toarecentmajormerger. halosamplesasthetoppanelbutexcludinghalosthatunder- wentamajormergerafterz=0.5. Wehavecheckedthatonly excludingmajormergersafterz = 0.25leadstoverysimilar usingthemassesofthemainprogenitoratz=0.5anditsde- results. Amajormergerhereisdefinedasamergerofhalos scendantatz = 0. Wenotethathalomasseschangebothdue withmassratiolargerthan0.3. Itisclearthattheprofilesin to actual physical accretion and due to changes of the refer- the two panels are very similar. In fact, the profiles of ha- encedensitywithrespecttowhichthehaloradiusisdefined. los without major mergers reach somewhat steeper slopes at TheaccretionrateΓisthusthesumoftherealphysicalaccre- r ≈ R , which may be due to variations in the outer pro- 200m tionandtheso-calledpseudo-evolutionofmass(Diemeretal. filesproducedbymergersthatsmoothoutfeaturesintheme- 2013b). However,forourcurrentpurposesweareinterested dian profile. The similarity of the samples with and without not in the absolute value of the accretion rate but in its rela- majormergersimpliesthattheprimaryfactorindefiningthe tive differences between halos. The contribution to Γ due to shapeoftheouterprofilesismassaccretionrate, ratherthan pseudo-evolutionissimilarforallhalosindependentofmass, majormergers. Inanadditionalexperiment, weverifiedthat meaning that a higher Γ still implies a higher rate of physi- selectinghalosbythetimeoftheirlastmajormergerdoesnot calaccretion. Thus,thesimpledefinitionofΓinEquation(3) preferentiallyselectprofileswithsteepouterslopes. issufficientforourpurposes. Wehaveverifiedthatusingan These results highlight an important point: significant Outerdensityprofilesofhalos 9 3 dialvelocitiesthanlow-νhalos,evenwhenrescaledtov . 200m 0.4 Infact,thelowest-νbinappearstoexperiencenoaveragein- fallinanyradialshell(seealsoDiemandetal.2007;Cuesta 2 ) etal.2008). ThebottompanelofFigure9showsthevelocity m 0 profilesofthesame1.5 < ν < 2sampleasinFigure7,again 0.2 R20 s1plitbythemassaccretionrate,Γ. Itisclearthatforagiven / mass the halos with the highest Γ have a more pronounced 200m 0.0 /dr( im0nfaaxlilmreugmioinnfcaolRlm500cvpealroRe200ccditRytviroiRst200mhreealochwe-dΓahtarlaodsi.iIanbtoeuretsatinfagcltyo,rthoef v v/r ν>3.5 )00m 1es.5tsllaorpgee.rTthhaenltahtteerrardaiduisuswahpepreeatrhsetoprcoofirrleessproeancdhtothtehierrsatedeiups- 3.0<ν<3.5 v2 w1herethemedianradialinfallvelocityapproacheszero. Fur- 0.2 / − − 2.5<ν<3.0 r thermore,theradiusofthelargestinfallvelocityshowsasim- 2.0<ν<2.5 v( ilardependenceonΓastheradiuswheretheprofilesreachthe 1.5<ν<2.0 d 2 1.0<ν<1.5 −steepestslope(comparethebottompanelsofFigures7and9). 0.4 0.7<ν<1.0 Finally, Figure 10 shows the median profiles of halos of − 0.5<ν<0.7 differentpeakheightsbutwithasimilaraccretionrateΓ. The 3 0.1 0.5 1 5 −h3i0g.h1est-νbinisomi0tt.e5dasit1containstoofewh5alostobesplit into subsamples. The figure shows that the profiles of halos 0.4 r/R r/R 200m withagivenaccretionrat2e00smhowlittlevariationwithν,except f2or those samples with the lowest accretion rates and peak ) m heights. For these samples, a significant fraction of systems 0 0.2 20 arelocatednexttobiggersystems, andtheirprofilesthusdo R n1otreflecttheintrinsicshapeofthehaloprofileitselfbutthe / 200m 0.0 /dr( ct0hoentortihbeurtihoannfdr,oRtm500chethhRei200cgphrReovirrfi-Rνl200messyostfetmhesirarmearesslaivtievenleyigishobloartse.dOonn v average,andtheprofilesofhaloswithν>1.5areindependent / ) vr 0m ofνforagivenrangeinΓ. v20 1 The results presented in this section clearly demonstrate 0.2 / −that the outer (0.5 (cid:46) r/R (cid:46) 2) density profiles of ha- − 0<Γ<1 vr los forming in the ΛCDM20c0omsmology depend on the halo’s ( 1<Γ<2 d m2ass accretion rate. The profiles are sensitive to the overall 2<Γ<3 −mass accretion rate rather than the mass accreted via major 0.4 Γ>3 − 1.5<ν<2 mergers. Thisresultopensaninterestingpossibilityofusing o3bservational signatures of the mass distribution in galaxies, − 0.1 0.5 1 5 gr0o.u1ps,andclusters0.t5oestim1atetheirmassacc5retionrate(see r/R thediscussioninSecrt/ioRn4.3). 200m 200m Figure9. Medianradialvelocityprofilesofhalos.Toppanel:profilesofthe 3.3. FittingFormula sameνbinsasinFigure5,atz=0.Asexpected,thehigh-νbinshavemuch higherinfallvelocities, evenwhenrescaledbytheirv200m. Bottompanel: Several analytic fitting formulae for the outer halo density halosfromthe1.5 < ν < 2bin,splitaccordingtotheiraccretionrateasin profiles have been proposed in the recent literature (Prada thetoppanelofFigure7,withtheredlineshowingthemedianprofileofthe etal.2006;Tavioetal.2008;Hayashi&White2008;Oguri entire1.5 < ν < 2.0sample. Theradiuswheretheinfallvelocityismost negativeshowsasimilarevolutionwithΓastheradiusofthesteepestslope &Hamana2011). However,wefindthattheseformsarenot inFigure7. sufficientlyflexibletoaccuratelyfitthevariationsoftheouter profilesdiscussedintheprevioussections(seeAppendixA.1 andFigure15). Thus,wedevelopedanewfittingformulato growth of halos, in particular in observational analyses of accountforthetrendsandfeaturesweobserve, groups and clusters, is often identified with apparent distur- bances, such as asymmetries, substructure, deviations from ρ(r)=ρinner× ftrans+ρouter hydrostatic equilibrium, etc. However, real halos grow by (cid:32) 2 (cid:34)(cid:32)r(cid:33)α (cid:35)(cid:33) a combination of major mergers and the accretion of many ρinner =ρEinasto =ρsexp −α r −1 low-masshalos. Thelattermodeofaccretionactuallydomi- s nitasteinsnaetrmreogsitoenpsoccahns.thAunsosbtijlelcbtethianttahpeppearorsceqsusitoefraeclacxreetdining ftrans =1+(cid:32)rr(cid:33)β−γβ massatahighratebecausetheaccretionofmanysmallhalos t fromdifferentdirectionswillnotproducestrongdisturbances (cid:34) (cid:32) r (cid:33)−se (cid:35) typicallyassociatedwithunrelaxedclusters,forexample. ρouter =ρm be 5R +1 . (4) Additional evidence for the connection between the mass 200m accretion rate and the shape of the outer density profiles is TheinnerpartofthehaloisdescribedbytheEinastoprofile, provided by the infall velocity profiles of halos. The top which is characterized by three parameters. The transition panel of Figure 9 shows the median radial velocity profiles term, f , captures the steepening of the profile around a trans of the same ν bins as in Figure 5, rescaled by v ≡ truncationradius,r. Theparametersγandβdefinethesteep- 200m t (GM /R )1/2. As could be expected, the high-ν halos ness of the profile at r ∼ R and how quickly the slope 200m 200m 200m havemuchmorenegative(correspondingtoinfall)averagera- changes, respectively. Finally, the outermost profile is de- 10 Diemer&Kravtsov 0 < Γ < 1 1 < Γ < 2 1 1 102 102 − − r r m m g g ρ ρ o 2 o 2 / / l − l − ρ ρ d d 2 2 / / ) ) ρ ρ m m 0 0 g g 0 0 o o R2 R2 dl −3 dl −3 / / = = r r 3.0<ν<3.5 ( ( γ 2.5<ν<3.0 γ 4 2.0<ν<2.5 4 − 1.5<ν<2.0 − 1.0<ν<1.5 0.7<ν<1.0 0.5<ν<0.7 5 5 − − 0.1 0.5 1 5 0.1 0.1 0.5 1 0.5 1 5 5 0.1 0.5 1 5 r/R 2 <rΓ/R< 3 r/R Γ > 3 r/R 200m 200m 200m 200m 1 1 102 102 − − r r m m g g ρ ρ o 2 o 2 / / l − l − ρ ρ d d 2 2 / / ) ) ρ ρ m m 0 0 g g 0 0 o o R2 R2 dl −3 dl −3 / / = = r r ( ( γ γ 4 4 − − 5 5 − − 0.1 0.5 1 5 0.1 0.1 0.5 1 0.5 1 5 5 0.1 0.5 1 5 r/R r/R r/R r/R 200m 200m 200m 200m Figure10. MedianslopeprofilesofhalosampleswithdifferentmassaccretionratesΓ=∆log(Mvir)/∆log(a);eachrangeofΓisfurthersplitintosubsamplesof differentν.Thefigureshowsthatforν(cid:38)1.5theprofilesatagivenΓbecomemoreorlessindependentofν.Thisindependenceillustratesthattheprimarycause ofthevariationintheshapeoftheouterprofilesisavariationinthemassaccretionrate.Theprofilesoftheν<1.5halosdoshowsomeresidualdependenceon ν,whichweattributetoenvironmentvariationsaroundhalosoflowerpeakheights. scribedbyapowerlaw,plusthemeandensityoftheuniverse, z = 6, and at radiibetween 0.1R and 9R , with fractional vir vir ρ . Ourchoiceofthepivotradiusat5R issomewhatar- errorsof(cid:46)5%. m 200m bitrary,butwehavecheckedthatourresultsarenotsensitive However, we note that some of the parameters are corre- to the exact choice in the range of 1−5R . Profiles with lated, indicating that the number of free parameters can be 200m apowerlawthatdecreaseswithradius(s > 0)approachρ reduced. Forexample,wecanfixtheEinastoparameterαto e m atsufficientlylargeradii. Note, however, thatthepower-law therelationwithνcalibratedbyGaoetal.(2008), functionisonlyaconvenientapproximationfortherangeof radiiweareconsideringhere.Atlargerradii,theprofileisnot α(ν)=0.155+0.0095ν2. (5) expectedtofollowapowerlaw,ortoreachthemeandensity until much larger radii. Instead, the profile at r (cid:38) 9R will Furthermore,wefindthatfixingβ = 4andγ = 8inthe ftrans vir termprovidesanaccuratefitifthetruncationradiusisrelated followashapeproportionaltothemattercorrelationfunction. toνandR as Wediscussalternativewaystoparameterizetheouterprofile 200m basedonthe2-haloterminAppendixA.2. Forthepurposes r =(1.9−0.18ν)×R , (6) ofdescribingtheprofilesatradiiR (cid:46)r<9R ,wefindthat t 200m vir vir a simple power law is accurate, and therefore we adopt it as sothat ourfiducialchoiceduetoitsrelativesimplicity. funWcetiofinrsotfcpoenaskidheerigthhet,tνre.nWdsheonf vthaerybinesgt-afilltepiagrhatmoeftethrseafrseae ftrans =1+(cid:32)(1.9−0.18rν)×R (cid:33)4−2 . (7) 200m parameters in Equation (4), the analytic profile fits both the mean and median profiles as a function of ν, for all peak Wefindthatequallygoodfitscanbeobtainedbyfixingr but t height bins considered in this paper, at all redshifts up to varying γ with ν, setting γ = 4ν and r = 1.495R . The t 200m