ebook img

Density functional theory study of skyrmion pinning by atomic defects in MnSi PDF

1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Density functional theory study of skyrmion pinning by atomic defects in MnSi

DensityfunctionaltheorystudyofskyrmionpinningbyatomicdefectsinMnSi Hong Chul Choi and Shi-Zeng Lin TheoreticalDivision, LosAlamosNationalLaboratory, LosAlamos, NewMexico87545, USA Jian-Xin Zhu TheoreticalDivision, LosAlamosNationalLaboratory, LosAlamos, NewMexico87545, USAand CenterforIntegratedNanotechnologies,LosAlamosNationalLaboratory,LosAlamos,NewMexico87545,USA (Dated:January6,2016) Amagneticskyrmionobservedexperimentallyinchiralmagnetsisatopologicallyprotectedspintexture.For theiruniqueproperties,suchashighmobilityundercurrentdrive,skyrmionshavehugepotentialforapplications innext-generationspintronicdevices.Defectsnaturallyoccurringinmagnetshaveprofoundeffectsonthestatic 6 anddynamicalpropertiesofskyrmions.Inthiswork,westudytheeffectofanatomicdefectonaskyrmionusing 1 0 thefirst-principlescalculationswithinthedensityfunctionaltheory,takingMnSiasanexample.Bysubstituting 2 onesiteofMnorSiwithdifferentelements,wecantunethepinningenergy.Theeffectsofpinningbyanatomic defectcanbeunderstoodqualitativelywithinaphenomenologicalmodel. n a PACSnumbers:12.39.Dc,73.20.Hb,71.15.Nc J 5 I. INTRODUCTION namically,suchasarrangementofskyrmionsanddirectionof ] motionofskyrmions. Forapplications,itisnecessarytocon- i c troltheenergylandscapegeneratedbydefects. Forinstance, s A skyrmions in(cid:82) magnets is a spin texture with a topologi- - cal charge N = d2rn·(∂ n×∂ n)/(4π) = ±1, where the oneneedstopinskyrmionsatadesiredpositioninthemem- l x y oryapplications. Therefore,itisrequiredtounderstandorigin r unit vector n represents the direction of local magnetic mo- t of pinning of skyrmions by defects. There are several work, m ments. Skyrmions in chiral magnets without inversion sym- metry were predicted in 19921 and were later discovered in where the effects of defects were modeled phenomenologi- t. MnSibysmallangleneutronscattering.2 Realspaceimaging cally,20–22 but the microscopic mechanism of pinning effect a has not been considered. In this work, we address this issue m by Lorentz transmission electron microscopy was performed byperformingthefirst-principlescalculationswithintheden- inthinfilmsandhasrevealedadetailedspinarrangementinan d- individualskyrmion3. Furthermoreadilutegasofskyrmions sityfunctionaltheory(DFT).Westudytheeffectofanatomic n wasobservednearphaseboundarybetweentheskyrmionlat- defect on a single skyrmion by focusing on the prototypical o tice and ferromagnetic state, where the systems undergo a skyrmion-hosting materials MnSi as an example. We show c thatthedefectenergylandscapecanbetunedbysubstitution first-order phase transition between these two states. Since [ of Mn or Si with different elements. The impurity modifies then skyrmions have been observed in many compounds, in- 1 cludingmagneticmetals,2,3semiconductors4andinsulators,5,6 the local electronic density of states (LDOS) and spin-orbit v suggesting that skyrmions may be ubiquitous in magnets. coupling,whichinturnchangetheinteractionsbetweenmag- 3 netic moments. We then provide a qualitative understanding In these magnets, the spatial inversion symmetry is broken, 3 where the Dzyaloshinskii-Moriya (DM) interaction7–9 is re- ofthepinningeffectbasedonaphenomenologicalmodel. 9 sponsible for the stabilization of skyrmions. Because of the 0 0 weakness of the DM interaction compared to the ferromag- . neticexchangeinteraction,thesizeofskyrmionismuchbig- II. METHOD 1 gerthantheatomiclatticeconstantandistypicallyabouttens 0 6 ofnanometers. The cubic primitive cell (lattice constant= 0.4559 nm) of 1 Skyrmions can be manipulated by various external fields, MnSi, which belongs to the P2 3 space group symmetry, is 1 : suchaselectricandmagneticfields,temperaturegradientand displayedinFig. 1(a). Theprimitivecellhas4Mnand4Si v i electriccurrentetc.10–15 Theabilitytodriveskyrmionsbyan atoms without an inversion center. The lack of an inversion X electric current is particularly interesting from the viewpoint symmetry together with the spin-orbit coupling gives rise to r of spintronic applications. Remarkably the threshold current the DM interaction. There is also ferromagnetic exchange a todrivetheskyrmionisabout106A/m2whichisabout5to6 interaction between Mn atoms due to the double-exchange ordersofmagnitudeweakerthanthatforamagneticdomain mechanism mediated by conduction electrons. The compe- wall.10–12 Thereareseveralinterestingtheoreticalproposalto tition between the weak DM interaction and exchange inter- utilize skyrmions in memory devices.16–18 To this end, it is action stabilizes a long wavelength magnetic normal spiral crucialtounderstandandcontrolthedynamicsofskyrmions. in the ground state, with a pitch period λ =18 nm in bulk Defectsoccurringnaturallyinrealmaterialsprovideapin- and8.5nminthinfilms. Inbulk, thenormalspiralbecomes ning barrier for skyrmions and is responsible for the exper- the conical spiral state under moderate magnetic field of the imental observed threshold current to drive skyrmions into order of 0.1 Tesla in the most region of the magnetic field- motion. Similartovorticesinsuperconductors19,defectsim- temperature phase diagram. Near T = 30 K, a triangular N pact the behavior of skyrmions both in equilibrium and dy- latticeofskyrmionisstabilizedinasmallregionofthephase 2 spinspointdownwhilespinspointupintheregionawayfrom (a) (b) theskyrmioncenter. Thespinsrotateintheazimuthaldirec- tion with the rotation direction fixed by the DM vector. We initializethesystemaccordingto (S ,S ,S )=S [cos(ϕ)sin(θ), sin(ϕ)sin(θ), cos(θ)], (1) x y z 0 θ(r)=π[1−tanh(r/r )], and ϕ=φ+π/2, (2) 0 In the above notation, we have projected all Mn into the x- y plane. The phase shift π/2 accounts for the helicity of (c) skyrmion in MnSi. The Si atoms do not carry magnetic mo- ment actively. We then relax the system in the calculations untilconvergenceisachieved. Thesystemmaybetrappedby alocal energyminimum. Toobtaina lowerenergy state, we usedifferentinitialconditionbychangingr . Thecalculated 0 magneticmomentofMndoesnotdependontheinitialvalue 4 S . 0 (cid:82) 3 ThedefinitionofskyrmiontopologicalchargeN = d2rn· 2 (∂ n×∂ n)/(4π)validinthecontinuumlimitdoesnotapply x y 1 herebecauseofthesmallskyrmionsize.Weuseanalternative definitionbycalculatingthesolidangle (cid:34) (cid:35) S ·(S ×S ) Θ =2arctan i j k , (3) i 1+S ·S +S ·S +S ·S i j j k k i FIG.1. (coloronline)(a)PrimitiveunitcellofMnSihas4Mnand 4Siatomsinthecubicsymmetry. (b)The8×8×1supercellwas subtended by three neighboring spins, S in the projects x-y i adoptedtoaccommodateaskyrmionspintexturewith256Mnatoms plane. WethensumΘ inthewholesystemandtheskyrmion i and256Siatoms. (c)ThefourMnatomsinaunitcellarelocated topologicalchargeisgivenby N = (cid:80) Θ/4π. Here N = 1 at z =0.1395, 0.3605, 0.6395, and 0.8605, respectively. The 8× S i i s fortheskyrmionconsideredinEqs.(1)and(2). 8×1supercellcanberegardedasfour8×8twodimensional(2D) ThecalculatedmagneticmomentofaMnionis1µ ,which latticesstackedalongthez-axis.Welabelthepositionat(1,1),(2,2), B is larger than the experimental value 0.4 µ ,25 which is con- (3,3), and(4,4)inthe2Dcoordinateas1, 2, 3, 4respectively, for B sistentwiththepreviousfirst-principlescalculationsforafer- convenience. romagneticstateofMnSi.26Theoverestimateofthemagnetic momentmaybeduetothestrongcorrelationeffectandquan- diagram. Inthinfilms,theskyrmionphaseisstabilizeddown tumfluctuationofmomentsneglectedintheDFTcalculations. tozerotemperature. Despitetheoverestimateofmomentandthefinitesizeeffect, Weperformfirst-principlescalculationswithintheDFTto wehopethatthequalitativefeaturesoftheeffectofanatomic study the effect of an impurity on a skyrmion in MnSi, em- impurityonaskyrmioncanbecapturedbythepresentstudy ploying the projector augmented plane-wave method23 im- andprovidesguidancetounderstandmicroscopicoriginofthe plementedinViennaab-initiosimulationpackage(VASP)24. pinningofskyrmions. We used the VASP pseudopotential (Mn, Si), a 1 × 1 × 1 In the calculations, we fix the center of a skyrmion at the Monkhorst-pack-kpoint mesh, and a 300 eV cutoff. The lin- centerofthesupercell.WesubstituteoneMnorSiatdifferent ear mixing method for updating spin-polarized electron den- site by Co, Ir, Zn and Pb and calculate the total energy. No sitywasadopted. Thespin-orbitcouplingisaccountedforto externalmagneticfieldisappliedinthecalculations. includetheDMinteractioninthecalculation. TheskyrmionsizeinMnSiisabout10nm. Thisrequiresa large number of unit cell, which renders the calculations ex- III. COMPUTATIONALRESULTS tremelyexpensive. Tomaketheproblemtractable, weintro- duceasmallersystemsizewiththeperiodicboundarycondi- Before proceeding to investigate the effect of an impurity, tion and confine a skyrmion at the center of the unit cell. In we first obtain the optimal skyrmion texture in the 8×8×1 thiscase,thesizeofskyrmionisdeterminedbythecompeti- supercellofMnSibystartingfromdifferentinitialconditions tionofexchange,DMinteractionsandthegeometryconfine- parameterizedbyr . Thedependenceofthetotalenergyand 0 mentduetothesmallsystemsize. Inthecalculations,weuse thecorrespondingskyrmionstructureareshowninFig.2.The 8×8×1supercell,asshowninFig. 1(b). Wethenintroduce optimalskyrmionsizeinthissupercellisaboutr = 2. This 0 askyrmionintothesystembypatternizingthespinconfigura- canbeunderstoodasfollows. Forasmallskyrmionsize,such tiononMnatoms, S(x,y,z). Askyrmioniscentrosymmetric asr = 1.5,itcostsenergyintheferromagneticexchangein- 0 and we use the polar coordinate r = (r,φ). At its center, the teractionbecausetheskyrmiondeviatessignificantlyfromits 3 atom. Becauseofthecentrosymmetryoftheskyrmion,wein- troduce an impurity at a varying distance from the skyrmion center, as labeled by 1,2, 3, and 4 in Fig 1(c). When one of 64formulaunitatomsissubstitutedwithoneimpurityatom, suchasCo,Ir,ZnandPbconsideredhere,thedopingconcen- trationbecomes1/64,whichcorrespondstoMn Co Si, 63/64 1/64 Mn Ir Si, Mn Zn Si, and MnSi Pb . The 63/64 1/64 63/64 1/64 63/64 1/64 total energy as a function impurity position for different im- purity atom is depicted in Fig. 3. For the Zn and Pb im- purities, the energy decreases when the impurity is close to the skyrmion center, indicating an attraction between the skyrmion and the impurity. Therefore the Zn and Pb im- FIG. 2. (color online) (a)-(d) Skyrmion spin textures and (e) total purities behave as pinning centers for skyrmions. On the energyofaskyrmionrelativetotheenergyintheferromagneticstate other hand, for the Co impurity, the energy increases mean- as a function of the initial skyrmion size r in Eq. (2) in the 8× ing a repulsive interaction between the skyrmion and the 0 8×1 supercell. In Fig. (a)-(d), arrows demonstrate the in-plane impurity. The Co impurity works as an energy barrier for componentoflocalmomentsateachsite.Theblue(red)colorofthe skyrmions. For the Ir impurity, the interaction between the arrow means a negative (positive) value of the z component of the impurityandtheskyrmionisnonmonotonic. Whentheimpu- localmoment. rity approaches the skyrmion center, the interaction is repul- sive and then becomes attractive when the impurity is at the skyrmioncenter. Aqualitativeunderstandingofthesebehav- optimal size determined by the competition between the ex- iorwillbepresentedbelow. change and DM interaction, which is much bigger than the TheZndopedattheskyrmioncenterhasdramaticeffectas supercell size. On the other hand, when skyrmions size in- indicated by a sharp decrease of energy in Fig. 3. The cal- creasessuchasthoseshowninFigs.2(c)and(d),thespinsare culatedskyrmiontopologicalchargeis N ≈ 0.5. Inrealsys- notparallelandhavein-planecomponentsthatwindcounter- s temswithalargeskyrmionsize,asingleatomicimpuritycan- clockwiseattheboundary. Thiscostsenergybecausethein- notmodifythewholeskyrmiontexturebecauseaskyrmionis planecomponentsofspinsareantiparallelattheboundarydue topologicallyprotectedagainstlocalperturbations. Therefore to the periodic arrangement of the supercell. The skyrmion we ascribe the reduction of N here to the finite size effect. energyishigherthanthatofaferromagneticstate. s Inrealsystems,theskyrmionenergyisexpectedtodecreases AfterobtainingametastableskyrmionsolutionbytheDFT monotonically when the skyrmion approaches to the Zn im- calculations,withallthemicroscopicinteractionsbeingtaken purity. into account, we then introduce an atomic impurity by re- The spatial variations of the local moments S are investi- placing one of the Mn or Si atom in a supercell by an alien gated in MnSi and doped MnSi. The red and blue lines in Fig. 4 show how the S of each local moment is distributed along the two different diagonals when the impurity atoms (Co, Ir, Zn, Pb) are placed at (4,4). The magnetic moment ofthelocalizeddelectronsseemstobehardlyaffectedbythe Pbatom. Themagneticmomentismainlydeterminedbyon- site interactions, and the screening effect of p electrons has weak impact on the moments. As Co and Ir atoms have two morevalenceelectronscomparedtoMnatoms,themagnetic momentswithmorethanhalffilledoccupancyattheimpurity sites are reduced. Zn atom has the fully-occupied d orbital and it can also influence the reduction of the local moments of the neighboring sites. The local moment at (4,3) is also suppressedthanthatinMnSi,asshowninFig.4(d). The LDOS can provide information about the real-space electronic structure, which can be measured in experiments, suchasthescanningtunnelingmicroscopy.Meanwhilethein- teractionbetweenmagneticmomentsdependsontheLDOS, the knowledge of LDOS is helpful to understand the effect of impurity on skyrmion. Here we consider the effect of FIG.3. (coloronline)Relativetotalenergyasfunctionoftheimpu- rity position for various impurity atoms in the 8×8×1 supercell. skyrmion spin texture on the LDOS in MnSi with an impu- Herewetaketheskyrmionenergywithanimpurityatomlocatedat rity. (1,1) as an energy reference. All the spin configurations have the Figure 5 demonstrates the LDOS at (1, 1)-(4, 4) from the skyrmiontopologicalchargeNs =1exceptforMn63/64Zn1/64Siwith boundary to center for the various doped MnSi’s, where the N ≈0.5.The2DcoordinateisdefinedFig.1(c). s impurity atom is located at (4, 4). The LDOS at (1, 1) and 4 (a) (b) ). )Ve u/f.(  (a) MnSi /estat s( .u S .f (b) Mn63/64Co1/64Si OD r L ep on (c) (d) t rct n e em (c) Mn63/64Ir1/64Si eld- om lartia P c (d) Mn Zn Si i 63/64 1/64 t e n g a M (e) MnSi Pb 63/64 1/64 FIG.5. (coloronline)LDOSatdifferentsites: (a)theboundary(1, Position 1), (b) (2, 2), (c) (3, 3), and (d) the center (4, 4). The impurity is located at the skyrmion center (4, 4). For comparison, the LDOS ofthepureMnSisystemisalsoshown. The2Dcoordinateforthe supercellisdefinedinFig.1(c). FIG.4. (coloronline)MagneticmomentS asafunctionofthepo- sitionin(a)MnSianddopedMnSisuchas(b)Mn Co Si,(c) 63/64 1/64 Mn Ir Si, (d) Mn Zn Si, and (e) MnSi Pb . The 63/64 1/64 63/64 1/64 63/64 1/64 impurityatomsarelocatedat(4,4),whichareindicatedbythesmall IV. DISCUSSIONS arrow.Theredandbluelinesrepresentthedifferentdiagonals(x, x) and(x, 9−x),asxchangesfrom1to8. Based on the DFT results, we now discuss the effect of impuritiesontheskyrmionusingaphenomenologicaltheory withaneffectiveinteractionbetweenmagneticmoments. The effectiveHamiltoniandensityis (2, 2) are almost identical, because they are away from the J (cid:88) impurity site. The LDOS at (3, 3) shows the slight differ- H = (∂ n)2+Dn·∇×n−B·n, (4) µ ence,asshowninFig.5(c). Theimpurityhasstrongeffecton 2 µ=x,y the LDOS at the impurity site as displayed in Fig. 5(d). The LDOS at the Fermi energy E is reduced for the Co, Ir and where J and DaretheexchangeandDMinteractionrespec- F ZnimpuritiesincomparisontothecaseofthepureMnSisys- tively. Equation(4)hassuccessfullycapturedseveralkeyex- tem. Thisbehaviorcanbeunderstoodasfollows. Theenergy perimentalobservationsinB20compounds.27,28 Atzerotem- levelofthefullyoccupieddelectronsintheZnionislocated perature,theHamiltonianEq.(4)stabilizesamagneticspiral, below E so that the d states of Zn hardly contribute to E . triangular lattice skyrmion and spin-polarized ferromagnetic F F For Ir, because 5d electrons are much more extended, which stateuponincreasingthefield. Bothtransitionsareofthefirst leadstoabroadereffectivebandwidthandareducedintensity order.29 ofLDOSattheFermienergy; whileforCo,the3d electrons Here we consider a single skyrmion solution in the ferro- aremorelocalizedthanthoseofIr5dandclosetoMn3delec- magneticbackgroundincleansystems. Thetotalenergyand trons,thereforetheintensityofLDOSonCoissimilartothat the contributions due to the exchange interaction, DM inter- onMn. action as a function of distance r from the skyrmion center are displayed in Fig. 7. The single skyrmion is a metastable Figure6summarizesthelocalmagneticmomentandLDOS whichhashigherenergythantheferromagnet. Themainen- at Fermi surface on the impurity size with different atomic ergycontributioncomesfromthecoreregionoftheskyrmion. impuritiesincomparisontothepuresystem. Theimpurityis The skyrmion solution costs energy in the exchange interac- fixedat(4,4)andthelocalmomentisaveragedoverthefour tion and save energy in the DM interaction. Based on this neighboringsitessuchas(4,4),(4,5),(5,5),and(5,4). The observation, an impurity can attract or pin a skyrmion if the momentissuppressedinCo,Ir,andZndopedMnSi,whileit exchange interaction or magnetic moment is reduced, or the does not change much in the Pb doped MnSi. The LDOS at DMinteractionisenhanced. Thisobservationprovidesacon- E inIrandZndopedMnSiarereducedlessthanhalfofthat sistent understanding of the effects of an atomic impurity on F ofMnSi. FortheCodopedcase,thereductionisabout10% theskyrmionobtainedbytheDFTcalculations. andisrelativelysmall. For the Zn impurity, it reduces the magnetic moment and 5 )B (a) m ( o at y urit p m at i nt e m o m c eti n g a M MnSi Mn Co SiMn Ir SiMn Zn Si MnSi Pb 63/64 1/64 63/64I 1/64 63/64 1/64 63/64 1/64 m o (b) at y urit p m at i s e at st of y sit n e d al c o L MnSi Mn Co Si Mn Ir Si Mn Zn Si 63/64 1/64 63/64I 1/64 63/64 1/64 FIG.6. (coloronline)(a)Magneticmoment(b)LDOSattheimpu- rityatomforMnSianddopedMnSi,wheretheimpurityatomsare placedat(4,4)inthe8×8×1supercell. Theredcircleandblack linesarethepeakpositionsandareguidetoeyes. LDOS.ForthePbimpurity,themagneticmomentandLDOS do not change much. Due to the large atomic number of Pb,thespin-orbitinteraction,hencetheDMinteractionisen- hanced. ThereforeboththeZnimpurityandPbimpuritypro- videattractivepotentialtotheskyrmion. FortheIrdefect, it FIG.7. (coloronline)(a)Totalskyrmionenergyrelativetothefer- also attracts skyrmion because the reduction of LDOS, mag- romagneticstate, (b)exchange, and(c)DMinteractionenergiesas neticmomentandenhancementofDMinteractionwhenitis afunctionofthedistancefromthecenterofthesingleskyrmionin doped at the skyrmion center. For the Co impurity, both the puresystems. TheenergyisinunitofD2/Jandthelengthisunitof exchangeandDMinteractionsareexpectedtobeslightlyre- J/D. duced because of the reduction of the LDOS and magnetic moment. It could be possible that the energy loss due to the decreaseofDMinteractionsoutweightheenergygaindueto the reduction of the exchange interaction, which leads to a weak repulsion between the Co impurity and the skyrmion. This simple explanation is consistent with the rests obtained bytheDFTcalculationsinFig.3. of magnitude smaller than that of DFT calculations. There Finally we provide an estimate of J in Eq. (4) based on aretworeasons: firstlytheDFTcalculationsoverestimatethe the DFT results. The calculated skyrmion energy relative to magneticmomentbyafactorof2.5andthusoverestimatethe the ferromagnetic state is about ∼ 0.84 meV /f.u., therefore energybyafactorof6.25;secondly,thethermalandquantum theskyrmionenergyinthe8×8meshisabout∼54meV(∼ fluctuationsthatarenotaccountedforintheDFTcalculations 540 K). The skyrmion self-energy in Eq. (4) is of the order canreducethemean-fieldT byoneorderofmagnitude. Af- N of J. The Ne´el temperature T is of the order of JN with tertakingthesetwoeffectsintoaccount,theestimatedJbythe N c N thecoordinationnumberofspins. ForMnSiaccordingto DFTcalculationsandexperimentscanbecomparablewithin c experiments,T ≈ 45K3 andtheestimated J isoneoforder thesameorderofmagnitude. N 6 V. SUMMARY densityfunctionaltheoryresults,wehaveprovidedaqualita- tive understanding using a phenomenological model. Due to thelimitationofthedensityfunctionaltheoryforalargespin texture, the calculations are subjected to the finite size finite We have studied the effect of an atomic impurity on the effect. Nevertheless we believe that the qualitative features skyrmion in MnSi by performing the density functional the- presentedhereshouldstillholdinthelargesystemsize. ory calculations. We have demonstrated that the interactions between the defects and skyrmion can be tuned by substitu- tionofdifferentelements. ForMnsubstitutedbyZnorIrand ACKNOWLEDGMENTS Si substituted by Pb, the interaction is attractive, indicating a pinning of the skyrmion. While for Mn substituted by Co, WethankYuan-YenTaiforhelpfuldiscussions. Thiswork theinteractionbetweenthedefectandtheskyrmionisweakly was carried out under the auspices of the National Nuclear repulsive. We have also computed the local density of state SecurityAdministrationoftheUSDOEatLANLunderCon- and magnetic moments to understand the impacts of impuri- tract No. DE-AC52-06NA25396 and was supported by the ties on the magnetic and electronic properties. Based on the LANLLDRD-DRProgram. 1 A.N.BogdanovandD.A.Yablonskii,Sov.Phys.JETP68,101 15 K. Shibata, J. Iwasaki, N. Kanazawa, S. Aizawa, T. Tanigaki, (1989). M. Shirai, T. Nakajima, M. Kubota, M. Kawasaki, H. S. Park, 2 S. Mu¨hlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, D. Shindo, N. Nagaosa, and Y. Tokura, Nat. Nanotechnol. 10, A.Neubauer,R.Georgii, andP.Bo¨ni,Science323,915(2009). 589(2015). 3 X.Z.Yu,Y.Onose,N.Kanazawa,J.H.Park,J.H.Han,Y.Matsui, 16 A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 N.Nagaosa, andY.Tokura,Nature465,901(2010). (2013). 4 X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, 17 Y.ZhouandM.Ezawa,Nat.Commun.5,4652(2014). S.Ishiwata,Y.Matsui, andY.Tokura,Nat.Mater10,106(2011). 18 J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. 5 T.Adams,A.Chacon,M.Wagner,A.Bauer,G.Brandl,B.Ped- Nanotechnol.8,839(2013). ersen,H.Berger,P.Lemmens, andC.Pfleiderer,Phys.Rev.Lett. 19 G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, 108,237204(2012). andV.M.Vinokur,Rev.Mod.Phys.66,1125(1994). 6 S.Seki,X.Z.Yu,S.Ishiwata, andY.Tokura,Science336,198 20 S.-Z.Lin,C.Reichhardt,C.D.Batista, andA.Saxena,Phys.Rev. (2012). B87,214419(2013). 7 I.Dzyaloshinsky,J.Phys.Chem.Solids4,241(1958). 21 K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Mu¨hlbauer, 8 T.Moriya,Phys.Rev.120,91(1960). C.Pfleiderer, andA.Rosch,Phys.Rev.B86,054432(2012). 9 T.Moriya,Phys.Rev.Lett.4,228(1960). 22 J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Commun. 4, 10 F.Jonietz,S.Mu¨hlbauer,C.Pfleiderer,A.Neubauer,W.Mu¨nzer, 1463(2013). A.Bauer,T.Adams,R.Georgii,P.Bo¨ni,R.A.Duine,K.Ever- 23 G.KresseandD.Joubert,Phys.Rev.B59,1758(1999). schor,M.Garst, andA.Rosch,Science330,1648(2010). 24 G.KresseandJ.Furthmu¨ller,Phys.Rev.B54,11169(1996). 11 X.Z.Yu,N.Kanazawa,W.Z.Zhang,T.Nagai,T.Hara,K.Ki- 25 T.Ishikawa,K.Tajima,P.Bloch, andM.Roth,SolidStateCom- moto,Y.Matsui,Y.Onose, andY.Tokura,Nat.Commun.3,988 mun.19,525(1976). (2012). 26 T.JeongandW.E.Pickett,Phys.Rev.B70,075114(2004). 12 T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, 27 Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, C.Pfleiderer,K.Everschor,M.Garst, andA.Rosch,Nat.Phys. S.Ishiwata,M.Kawasaki,Y.Onose, andY.Tokura,Nat.Com- 8,301(2012). mun.4,2391(2013). 13 J.S.White, I.Levatic, A.A.Omrani, N.Egetenmeyer, K.Prsa, 28 T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, I. Zivkovic, J. L. Gavilano, J. Kohlbrecher, M. Bartkowiak, H. Berger, C. Pfleiderer, and D. Grundler, Nat. Mater. 14, 478 H. Berger, and H. M. Ronnow, J. Phys.: Condens. Matter 24, (2015). 432201(2012). 29 A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 14 J. S. White, K. Prsˇa, P. Huang, A. A. Omrani, I. Zˇivkovic´, (1994). M.Bartkowiak, H.Berger, A.Magrez, J.L.Gavilano, G.Nagy, J.Zang, andH.M.Rønnow,Phys.Rev.Lett.113,107203(2014).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.