Density-functional calculations ofmultivalency-driven formationofTe-based monolayermaterials withsuperior electronic and opticalproperties Zhili Zhu1, Xiaolin Cai1, Chunyao Niu1, Seho Yi2, Zhengxiao Guo3,1, Feng Liu4, Jun-Hyung Cho5,2,1, Yu Jia1∗, and Zhenyu Zhang5∗ 1 International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China 2 DepartmentofPhysics,HanyangUniversity,17Haengdang-Dong, Seongdong-Ku, Seoul133-791, Korea 7 3 Department of Chemistry, UniversityCollegeLondon, London WC1E6BT, UnitedKingdom 1 4 DepartmentofMaterialsScienceandEngineering, UniversityofUtah,SaltLakeCity,Utah84112, USA 0 5 ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, 2 and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China n (Dated:February1,2017) a J Contemporary scienceiswitnessingarapidexpansion of thetwo-dimensional (2D) materialsfamily, each 0 memberpossessingintriguingemergentpropertiesoffundamentalandpracticalimportance.Usingtheparticle- 3 swarmoptimizationmethodincombinationwithfirst-principlesdensityfunctionaltheorycalculations,herewe predictanewcategoryof2Dmonolayersnamedtellurene,composedofthemetalloidelementTe,withstable l] 1T-MoS2-like(a -Te), andmetastabletetragonal (b -Te)and 2H-MoS2-like(g -Te)structures. Theunderlying al formationmechanismofsuchtri-layerarrangementsisuniquelyrootedinthemultivalentnatureofTe,withthe h central-layerTebehavingmoremetal-like(e.g.,Mo),andthetwoouterlayersmoresemiconductor-like(e.g., - S).Inparticular,thea -Tephasecanbespontaneouslyobtainedfromthemagicthicknessestruncatedalongthe s [001]directionofthetrigonalstructureofbulkTe. Furthermore,boththea -andb -Tephasespossesselectron e and hole mobilitiesmuch higher thanMoS , aswell as salient optical absorption properties. These findings m 2 effectivelyextendtherealmof2Dmaterialstogroup-VImonolayers,andprovideanewandgenericformation t. mechanismfordesigning2Dmaterials. a m PACSnumbers:73.20.At,61.46.-w,73.22.-f,73.61.Cw - d n Thetwo-dimensional(2D)materialshavebeenintensively the two outer layers more semiconductor-like. In particular, o investigated in recent years for their intriguingly emergent themonolayerandmultilayersofa -Tecanbereadilyobtained c propertiesthatcanbeexploitedforelectronic,photonic,spin- viaathickness-dependentstructuralphasetransitionfromthe [ tronic, and catalytic device applications [1–10]. Various 2D trigonal bulk Te, with van der Waals-type coupling between 1 monolayers have been synthetized beyond the first member neighboring tri-layers. Furthermore, both the a - and b -Te v system of graphene [1–3], including the group-IV mono- phasespossessnotonlyhighercarriermobilitiesrangingfrom 5 7 layers of silicene [4] and stanene [8], the group-V mono- hundredstothousandsofcm2V−1s−1 comparedtoMoS2,but 8 layer of phosphorene [5], and the group-III monolayer of also significantlyenhancedopticalabsorptionpropertiesdue 8 borophene[6,7].Besidesthesegroup-III,-IV,and-Velemen- toanearlydirectordirectbandgap.Thesefindingseffectively 0 tal monolayers, transition metal dichalcogenides (TMDCs) extendtherealmof2Dmaterialstogroup-VImonolayers,and . 1 have also been attracted much attention because of their rel- providea new and genericformationmechanismfor design- 0 atively wider, tunable, and direct band gaps and inherently ing2Dmaterials. 7 stronger spin-orbit coupling [9, 10]. Yet to date, somewhat 1 surprisingly, no prediction or fabrication of group-VI ele- We perform the particle-swarm optimization (PSO) : v mentalmonolayershasbeenmade,whosepotentialexistence searches [11] in combination with the DFT calculations us- Xi wouldnotonlyfurtherenrichourunderstandingoftherealm ingtheViennaabinitiosimulationpackage(VASP)withinthe ofthe2Dmaterialsworld,butcouldalsooffernewapplication projectoraugmentedwavemethod[12,13].Fortheexchange- r a potentialsstemmingfromtheiruniquelyphysicalandchemi- correlation energy, we employ the PBE functional[14] with calproperties. thevanderWaals(vdW)correctionproposedbyGrimme[15] and the screened hybrid functional, HSE06, which can typ- InthisLetter,weaddanattractivenewcategorytotheever ically describe the band gaps better [16, 17]. Unless other- increasing2Dmaterialsfamilybypredictingtheexistenceand wise specified, theTemonolayersaremodeledbya periodic fabricationofgroup-VIelementalmonolayerscenteredonthe 1×1×1slabgeometrywithavacuumthicknessof20A˚.The metalloidelementTe. Ourtheoreticalcalculationsrevealthat kinetic-energy cutoff for the plane wave basis set is chosen 2D monolayers of Te, named tellurene, can exist in the sta- to be 500 eV, and the k-space integration is done using the ble1T-MoS -like(a -Te)structure,andmetastabletetragonal Monkhorst-Pack scheme with the 21×21×1 meshes in the 2 (b -Te)and2H-MoS -like(g -Te)structures.Thesetri-layerar- Brillouinzones. Alltheatomsareallowedtorelaxalongthe 2 rangements are driven by the unique multivalency nature of calculated forcesof less than 0.01 eV/A˚. The phononcalcu- Te, with the central-layer Te behaving more metal-like, and lationisperformedusinglargersupercells,asimplementedin TypesetbyREVTEX 2 thePhonopycode[18]. furtherinvestigatedusing ab initio moleculardynamicssim- ulations. We findthattheequilibriumstructuresofa -Teand (cid:11)(cid:68)(cid:12) (cid:11)(cid:69)(cid:12) b -Tehardlychangeatroomtemperature,whileg -Tebecomes unstableat temperaturesabove∼200K.In the moviesof the a aa SupplementalMaterial,we illustratethedynamicstabilityof y b b eachphaseat300Kuptoatimeperiodof3pswith1fstime x step. d z z x (cid:11)(cid:70)(cid:12) (cid:11)(cid:71)(cid:12) TABLEI: Structural parameters of tellurene, together with the co- (cid:11)(cid:19)e(cid:17)(cid:18)(cid:20)(cid:99)(cid:19)(cid:22)(cid:12) hesiveenergyEc andthechargetransferD Qfromthecentral atom (cid:19)(cid:17)(cid:19)(cid:27) (cid:60) (cid:48) totheourteratoms: aandbarethelatticeconstants, d isthebond (cid:19)(cid:17)(cid:19)(cid:25) (cid:19)(cid:19)(cid:17)(cid:17)(cid:19)(cid:19)(cid:23)(cid:21) (cid:46) length, anddz istheintervaldistancebetweentheupper andlower (cid:19)(cid:17)(cid:19)(cid:19) (cid:573) (cid:48) (cid:573) (cid:59) Telayers(seeFig. 1). Forcomparison,thestructuralandenergetic (cid:16)(cid:19)(cid:17)(cid:19)(cid:21) (cid:16)(cid:19)(cid:17)(cid:19)(cid:23) propertiesofbulkTearealsolisted. (cid:16)(cid:19)(cid:17)(cid:19)(cid:25) (cid:16)(cid:19)(cid:17)(cid:19)(cid:27) (cid:16)(cid:19)(cid:17)(cid:20)(cid:19) a,b(A˚) d(A˚) dz(A˚) Ec(eV/atom) D Q(e) FIG.1:(Coloronline)Topandsideviewsoftheoptimizedstructures oftellureneindifferentphases: (a)a -Te,(b)b -Te,and(c)g -Te.The a -Te a=b=4.15 3.02 3.67 2.62 0.41 Brillouinzonesfora (org )andb phasesaredrawnin(d).Thedashed a=4.17 3.02 lineindicatestheunitcellofeachstructure.Fordistinction,thelarge, b -Te b=5.49 2.75a 2.16 2.56 0.11 medium, andsmallcirclesrepresentTeatomslocatedintheupper, central, and lower layers, respectively. Thetotal charge density of g -Te a=b=3.92 3.08 4.16 2.46 0.29 eachstructureisplottedatthehorizontalandverticalcrosssections a=b=4.33 indicatedbythebluedottedlines. Te-I 2.90 – 2.79 – c=6.05 Figure1 presentsthe optimizedstructuresof Te monolay- abondlengthbetweentwoTeatomswithnc=3. ers or tellurene. We identify three different phases denoted bya -,b -,andg -Te,asshowninFig. 1(a),1(b),and1(c),re- InFigs. 1(a)-1(c),the totalchargedensitiesofa -, b -, and spectively. Thestructuralparametersandcohesiveenergyof g -Terevealtheirbondingcharacteristics,respectively. Fora - eachoptimizedstructurearelistedinTableI.Itisseenthata - andg -Te,thereexistsametal-ligand-likebondingbetweenthe Te hasthe1T-MoS -like structurecontainingthreeTe atoms central atom and the outer atoms. On the other hand, for b - 2 perunitcell. Here,whencomparedwith1T-MoS monolayer, Te, the outer atoms with are bonded to each other with the 2 therearethetwodistincttypesofTeatomswithdifferentco- s bond,whilethecentralatomsinteractwiththeouteratoms ordinationnumbers(n ): acentralTeatomlocatedattheMo intheformofametal-ligand-likebonding.Consequently,the c site has n = 6, while a Te atom in the upper or lower layer formerbondlength(2.75A˚)ismuchshorterthanthelatterone c at the S sites has n = 3. Meanwhile, b -Te is composed of (3.02A˚).AccordingtotheBaderchargeanalysis,thecharge c theplanarfour-memberedandchair-likesix-memberedrings transferfromthe centralto the outeratomsamountsto 0.41, arrangedalternatelywiththelattice constantsa= 4.17andb 0.11, and 0.29e in a -, b -, and g -Te, respectively (see Table =5.49A˚ [TableI];inthisstructure,acentralTeatomhasn I),andthereforethecentralTeatomsbehavemoremetal-like c =4,whileanupperorlowerTeatomhasn =3. g -Tehasthe withalargern whiletheouterTeatomsmoresemiconduct- c c 2H-MoS -like structure, with smaller lattice constants a = b ingwithasmallern . Thestructuralfeaturesoftellurenecan 2 c = 3.92 A˚ than those (a = b = 4.15 A˚) of a -Te. Correspond- befurtherassociatedwiththebondingcharactersofgroup-VI ingly, the bondlength(d = 3.08A˚) and intervaldistance (d elements,wherethenonmetalliccharacterisweakenedinthe z = 4.16A˚)betweentheupperandlowerTe atomsin g -Teare order of O > S > Se > Te, leading to a complete metallic larger than those (d = 3.02 A˚ and d = 3.67 A˚) in a -Te. To characterof Po. In particular,Te hasthe dualcharacteristics z examinetherelativestabilityofdifferenttellureneallotropes, of both metal and nonmetal. It is thus feasible that the two thecohesiveenergy(E )peratomwithrespecttotheenergy dimensionalmonolayersof Te canadoptthe tri-layeratomic c ofanisolatedTeatomiscalculated. Accordingtotheresults structures,, e.g. MoS -likestructure. Withthe dimensional- 2 in Table1, a -Te is energeticallythe most stable phase, while ityreduction,themultivalency-dominated2Dstructureswith b -,andg -Tearethemeta-stablephases. heterogeneouscoordinationnumbersbecomelowerinenergy. Toexaminethestructuralstabilityoftellurene,weperform Collectively,thesefindingsamplyreflectthedistinctmultiva- thephononcalculations,whichcanidentifythepotentialpres- lentnatureofTeanditsvitalroleintheformationoftellurene. ence of soft phonon modes that may lead to structure insta- Figures2(a)-2(c)showthebandstructuresofa -,b -,andg - bility. The calculated phonon spectra of tellurene are dis- Te,respectively,obtainedusingthePBEcalculation. Wefind playedinFig. S1oftheSupplementalMaterial. Wefirstcon- thata - andb -Tearesemiconductorswith indirectbandgaps firm thatall hephasesare thermodynamicallystable without ofE =0.76and1.17eV,respectively,whileg -Teisametal. g imaginary-frequencyphononmodes.Thedynamicstabilityis It is well-known that the semi-local PBE scheme underesti- 3 (a) (b) locatedbetweenthebandgaps(∼0.7and∼1.1eV)ofbulkGe andSi[19],andthatofb -Teis1.47eV,whichisclosetothat of GaAs. These physically realistic values of the band gaps 4 ofthestableandmeta-stabletellurenephasesmayofferdesir- able(e.g.,ohmic)contactswhensuchmaterialsareintegrated )V 2 fordeviceapplications. e ( y 0 g r enE -2 106(a) (b) armchair chain -4 -1)cm 105 zigzag chain (cid:42) (cid:48) (cid:46) (cid:42) (cid:56) (cid:42) (cid:38) (cid:48) (cid:46) nt ( (c) (d) cie 104 2.5 effi )Ve( ygrenE 024 Energy (eV)112...050 )67.0()64.0)51.1()57.0( )71.1()30.1()97.1()74.1( Absorption co 1110001230 1 E2nergy3 (eV)4 50 1 En2ergy 3(eV) 4 5 -2 0.5 ( FIG.3: (Coloronline)Calculatedopticalabsorptioncoefficientsfor -4 0.0 (a)a -Te,(b)b -Te.In(b),thepolarizationisalongthezigzagorarm- (cid:42) (cid:48) (cid:46) (cid:42) (cid:68)(cid:16)(cid:55)e (cid:69)(cid:16)(cid:55)e chairchaindirection. FIG. 2: (Color online) Band structures of (a) a -Te, (b) b -Te, and (c) g -Te, obtained using the PBE scheme without (solid) and with For potential technological applications in electronic de- (dashed)inclusionoftheSOC.Thecontourplotsoftheelectronden- vices, the newly discovered 2D materials should have suffi- sities for the valence states within 0.5 eV below the valence band ciently high carrier mobilities. To estimate the carrier mo- maximumorFermilevelEF aredrawnonthesamehorizontaland bilityofthetellurenemonolayers,wecalculatetheireffective verticalcrosssectionsasmarkedinFig.1.Theintervalofthecharge masses,whicharerelativelysmallerthanthose(m∗=0.47,and contoursis1×10−3 electrons/A˚3. (d)Bandgapsobtainedusingthe ∗ e m =0.58m )ofmonolayer2H-MoS (seeTableII).Thesere- PBE(PBE+SOC)andHSE(HSE+SOC),asrepresentedbythecyan h e 2 sultssuggestthattellurenemaypossesshighelectronandhole (cyanmeshed)andred(redmeshed)bars,respectively. mobilities. Using the acoustic phonon limited method [20], the room-temperature carrier mobilities of a - and b -Te are found to range from hundreds to thousands of cm2V−1s−1, matesthe bandgap. Inorderto remedysuch a deficiencyin muchhigherthan those of monolayer2H-MoS (see Table II 2 PBE,weperformthehybridDFTcalculationwiththeHSE06 andthe SupplementalMaterial). Here, µ andµ show large e h functional,whichisknowntoprovidebetterpredictionsofthe differencesinmagnitude,indicatingasymmetricmobilitiesof bandgaps.AsshowninFig. 2(d),theHSEcalculationsfora - electronsandholesduetotheirdifferenteffectivemasses. In andb -TegiveincreasedEg = 1.15and1.79eV, respectively. addition,b -Tehasanisotropiccharactersofelectronandhole GiventheheavymetalnatureofTe, we also examinetheef- mobilitiesalongtheydirection. fectsofSOConthebandstructure.Theresultsobtainedusing thePBE+SOCcalculationareplottedwiththedashedlinesin Figs. 2(a)-2(c). We findthatthe inclusionofSOCin a -and TABLEII:Effectivemassesm∗ andcarriermobilitiesµofa -Te,b - b -Teinducesatransformationfromanindirecttoanearlydi- Te, and 2H-MoS , obtained using the PBE+SOC calculation. For 2 rect and a direct band gap at the G point, respectively. This thetetragonalstructureofb -Te,thecomponentsalongthearmchair indirect-to-directband-gapchangeina -andb -Temaysignif- chain(x)andzigzagchain(y)directionsareseparatelygiven. icantly enhance their optical absorbance. Indeed, as seen in Fig. 3, both a - and b -Te exhibit superb optical absorptions, m∗(me) µ(103cm2V−1s−1) whichcanbeexploitedforoptoelectronicsandphotondetec- tion. b -Te also exhibits optical anisotropies, with stronger electron hole electron hole absorbance along the zigzag chain direction, which can be a -Te 0.11 0.17 2.09 1.76 exploited for developing polarized optical sensors. Further- 0.83(x) 0.39(x) 0.05(x) 1.98(x) more, it is noted that the PBE+SOC (HSE+SOC) band gaps b -Te 0.19(y) 0.11(y) 0.10(y) 0.45(y) ofa -andb -Tearereducedby0.30(0.40)and0.26(0.32)eV, comparedtothe PBE (HSE)ones: see Fig. 2(d). Therefore, 2H-MoS 0.47 0.58 0.08 0.29 2 the HSE+SOC band gap of a -Te becomes0.75 eV, which is 4 Now, we turn to discuss possible fabricationroute for tel- (a) (b) 0.6 4 lurene and its multilayers. To date, the existing 2D materi- 0.5 0.4 dzi,i+1: Interlayer spacing aacslhsagncraiacnpahlbleyeneedxaivfnoiddlieMadteoidSnt2fo;rotthmweoiottcshaletaery,geaorcrekideinsb:guoalknleacyotehuranettdecrbapunalkrbt,ecsomuucneh-- E(eV/atom)f 000...234 (cid:21)(cid:39)(cid:40)f-000...202 3 6 9N 1U2Sntsatb1a5lbele18 z d ()(cid:99)i,i+1 23 bulk 0.1 terpart,hastobegrownepitaxiallyonapropersubstrate,such 1 0.0 assiliceneandstanene.Meanwhile,theTe-Ibulkhastheform 3 6 9 N 12 15 18 3 6 9N 12 15 18 (c) (d) ofhelicalchainsalongthec axis, andtheTe filmsmosteas- Before relaxation After relaxation Before relaxation After relaxation ilygrowinthe[001]direction[21],totallydifferentfromthe N=8 N=9 structure of tellurene. Surprisingly, the monolayer or mul- tilayers of tellurene can be generated via the new formation 3 Å mechanismcharacterizedbyathickness-dependentstructural 3 Å phasetransitionintheultrathinfilmregime,asdiscussedbe- low. Wereachtheaboveimportantfindingthroughasystematic FIG.4: (Coloronline)Formationenergies,stabilities,andinterlayer study of the Te film stability with increasing film thickness, spacingsofTeslabsatdifferentthicknesses. (a)Formationenergies determinedbytheformationenergy(E )asafunctionofthe of the fullyrelaxed Teslabs asafunction of thickness. Theinsert f number of atomic layers, N. Here the initial configurations represents the second-order difference of Ef, with positive values of the slabs are taken by truncating the trigonal structure of indicatingstablesystems. (b)Distributionofthelayer-resolvedin- terlayerspacingofrelaxedTeslabsasafunctionofthickness. The bulkTe(hereaftertermedTe-I)alongthe(001)direction.The dashedlinedenotestheatomiclayerspacingofbulkTe. (c)and(d) formation energy is given by the cohesive energy difference arethe geometric structures of Teslabs at N = 8and 9before and Ef =(Eslab(N)−NEbulk)/N,whereEslab(N)andEbulkarethe afterstructuraloptimization,respectively. totalenergiesoftheslabandasinglelayerinbulkTe,respec- tively. For these multilayerd systems, we have included the vdWinteractionsusingtheDFT-D2method[15]. of bulk Te obtained using the vdW-DF2 scheme show more Figure 4(a) shows the formation energy variations of the severe deviation from the experimentalvalues (see Table S1 fully relaxed Te slabs with increasing N, exhibiting a dis- of the Supplemental Material), while the DFT-D2 and DFT- tinctoscillatorybehavior. Therearefivehighlypreferred(or TS schemes agree better with experiments. Together, these magic)thicknessesofN=3,6,9,12,15whenthethicknessof resultsconvincinglyindicatethatatleastafewmonolayersof theTe-IslabsincreasesfromN =1to20. Strikingly,wefind the 2D tellurene structure will be readily obtained in a typi- that the Te slabs automatically transform into multilayered calyetthickness-controlledfabricationapproachonaproper structuresof-Teatthemagiclayerthicknesses,whiletheTe substratefavoringlayeredgrowth. slabswillkeepthechain-likestructuresofbulkTeawayfrom Insummary,ourstate-of-the-artglobalstructuralsearching thesemagicthicknesses. TheinsertinFig. 4(a)highlightsthe combinedwithfirst-principlescalculationshasresultedinthe stabilityofthedifferentslabsbytheseconddifference,while discoveryofanewcategoryof2Dmaterialscomposedofthe Fig. 4(c)and(d)highlightthedifferentstructuralpreferences group-VIelementof Te. These new 2D materialscalled tel- ofTeslabswithN =8and9,respectively. Wefurtherobtain lurenecanbestabilizedintheMoS -like(a -,g -Te)ortetrag- 2 thattheinterlayercouplingstrengthbetweentwoneighboring onal(b -Te)structures,andtheirunderlyingformationmecha- tellurenemonolayers(or,equivalently,twoTetrilayers)ofTe nismisinherentlyrootedinthemultivalencynatureofTe.The is26meV/A˚2,whichisonthesameorderasthatofMoS2(21 a -Teandb -Temonolayersnotonlyexhibitsuperbopticalab- meV/A˚2)[22],suggestingthatasingletellurenelayercanbe sorptions,butalsopossessmuchhighercarriermobilitythan readilyexfoliatedonceitisformed. MoS2. Thea -Te multilayerscan be achievedspontaneously Atpresent,thereisnoaprioriknowledgeaboutwhichvdW fromthebulktruncatedfilmsviaanovelthickness-dependent schemeismoreaccurateforagivensystem. Ascrosschecks, structural phase transition. The coupling between neighbor- we have also examined the Te film stability as a function of ingtellurenelayersisofvdWtype,allowingeasyseparation thefilmthicknesswiththevdWinteractionstreatedwithinthe of a tellurenelayer via mechanicalexfoliation. The superior widelyadoptedfirst-principles-basedschemesofTkatchenko electronic and optical propertiesof tellurene are expected to andScheffler[23](DFT-TS)andvdW-DF2[24],respectively. findbroadtechnologicalapplications. Foreitherscheme,theresultsqualitativelyalsosupporttheex- istenceofastructuralphasetransitionfromthebulk-truncated We thank Dr. Xiaoyu Han and Prof. Qiang Sun for Te structure to multilayered tellurene at the identical film helpful discussions. This work was partially supported thicknesses,butthenumberofsuchmagicthicknessesisvar- by the NSFC (Nos. 11274280, 11504332, 11634011, ieddependingonthespecificversionofthevdWscheme.For 61434002), the National Basic Research Program of China DFT-TS(vdW-DF2),thelayered(orcloseshelled)structures (Nos. 2012CB921300and 2014CB921103). Z.X.G. is sup- arefoundtobehighlypreferredatthethicknessesofN=3,6, ported by the UK EPSRC (No. EP/K021192/1). J.-H.C. 9 (3, 6). Here, we notethat the optimizedlattice parameters is supported by the National Research Foundation of Ko- 5 rea (NRF) grant funded by the Korea Government (No. D.Qian,S.-C.Zhang,andJ.-f.Jia,Nat.Mater.14,1020(2015). 2015M3D1A1070639). F.L. is supported by U.S. DOEBES [9] B.Radisavljevic,Nat.Nanotech.6,147(2011). (No. DE-FG02-04ER46148). [10] X.D.Xu,W.Yao,D.Xiao,andT.F.Heinz,Nat.Phys.10,343 (2014). ∗ [11] Y. C. Wang, J. Lv, and Y. M. Ma, Phys. Rev. B 82, 094116 Corresponding authors: [email protected], (2010). [email protected]. [12] G.KresseandJ.Hafner,Phys.Rev.B48,13115(1993). [13] G.KresseandJ.Furthmller,Comput.Mater.Sci.6,15(1996). [14] J.P.Perdew,K.Burke,andM.Ernzerhof,Phys.Rev.Lett.77, 3865(1996);78,1396(E)(1997). [15] S.Grimme,J.Comp.Chem.27,1787(2006). [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. [16] J.Heyd,G.E.Scuseria,andZ.Ernzerhof,J.Chem.Phys.118, Zhang,S.V.Dubonos,I.V.Grigorieva,andA.A.Firsov,Sci- 8207(2003); ence306,666(2004). [17] A.V.Krukau,O.A.Vydrov,A.F.Izmaylov,andG.E.Scuseria, [2] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. J.Chem.Phys.125,224106(2006). Mayou,T.Li,J.Hass,andA.Marchenkov, Science312,1191 [18] A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106- (2006). 134106(2008). [3] A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. [19] O. Madelung (Editor), in Landolt-Bornstein, New series, Geim,Rev.Mod.Phys.81,109(2009). Springer,Vol.22ap.14.(1987). [4] P.Vogt,P.DePadova,C.Quaresima,J.Avila,E.Frantzeskakis, [20] J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. M.C.Asensio, A.Resta, B.Ealet,andG.LeLay, Phys.Rev. Commun.5,4475(2014). Lett.108,155501(2012). [21] Q.Wang,M.Safdar,K.Xu,M.Mirza,Z.WangandJ.He,vACS [5] L.Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. nano,8,7497(2014). Chen,andY.Zhang,Nat.Nanotechnol.9,372(2014). [22] H.Rydberg,M.Dion,N.Jacobson,E.Schroder,P.Hyldgaard, [6] A.J.Mannix, X.-F.Zhou, B.Kiraly,J.D.Wood, D.Alducin, S. I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. B.D.Myers,X.Liu,B.L.Fisher,U.Santiago,J.R.Guest,M. Lett.91,126402(2003). J.Yacaman,A.Ponce,A.R.Oganov,M.C.Hersam,andN.P. [23] A.TkatchenkoandM.Scheffler,Phys.Rev.Lett.102,073005 Guisinger,Science350,1513(2015). (2009). [7] B.Feng,J.Zhang,Q.Zhong,W.Li,S.Li,H.Li,P.Cheng,S. [24] K.Lee,E.D.Murray,L.Kong,B.I.Lundqvist,andD.C.Lan- Meng,L.Chen,andK.Wu,Nat.Chem.8,563(2016). greth,Phys.Rev.B82,081101(2010). [8] F.-f.Zhu,W.-j.Chen,Y.Xu,C.-l.Gao,D.-d.Guan,C.-h.Liu,