ebook img

Density-functional calculations of multivalency-driven formation of Te-based monolayer materials with superior electronic and optical properties PDF

0.82 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Density-functional calculations of multivalency-driven formation of Te-based monolayer materials with superior electronic and optical properties

Density-functional calculations ofmultivalency-driven formationofTe-based monolayermaterials withsuperior electronic and opticalproperties Zhili Zhu1, Xiaolin Cai1, Chunyao Niu1, Seho Yi2, Zhengxiao Guo3,1, Feng Liu4, Jun-Hyung Cho5,2,1, Yu Jia1∗, and Zhenyu Zhang5∗ 1 International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China 2 DepartmentofPhysics,HanyangUniversity,17Haengdang-Dong, Seongdong-Ku, Seoul133-791, Korea 7 3 Department of Chemistry, UniversityCollegeLondon, London WC1E6BT, UnitedKingdom 1 4 DepartmentofMaterialsScienceandEngineering, UniversityofUtah,SaltLakeCity,Utah84112, USA 0 5 ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, 2 and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China n (Dated:February1,2017) a J Contemporary scienceiswitnessingarapidexpansion of thetwo-dimensional (2D) materialsfamily, each 0 memberpossessingintriguingemergentpropertiesoffundamentalandpracticalimportance.Usingtheparticle- 3 swarmoptimizationmethodincombinationwithfirst-principlesdensityfunctionaltheorycalculations,herewe predictanewcategoryof2Dmonolayersnamedtellurene,composedofthemetalloidelementTe,withstable l] 1T-MoS2-like(a -Te), andmetastabletetragonal (b -Te)and 2H-MoS2-like(g -Te)structures. Theunderlying al formationmechanismofsuchtri-layerarrangementsisuniquelyrootedinthemultivalentnatureofTe,withthe h central-layerTebehavingmoremetal-like(e.g.,Mo),andthetwoouterlayersmoresemiconductor-like(e.g., - S).Inparticular,thea -Tephasecanbespontaneouslyobtainedfromthemagicthicknessestruncatedalongthe s [001]directionofthetrigonalstructureofbulkTe. Furthermore,boththea -andb -Tephasespossesselectron e and hole mobilitiesmuch higher thanMoS , aswell as salient optical absorption properties. These findings m 2 effectivelyextendtherealmof2Dmaterialstogroup-VImonolayers,andprovideanewandgenericformation t. mechanismfordesigning2Dmaterials. a m PACSnumbers:73.20.At,61.46.-w,73.22.-f,73.61.Cw - d n Thetwo-dimensional(2D)materialshavebeenintensively the two outer layers more semiconductor-like. In particular, o investigated in recent years for their intriguingly emergent themonolayerandmultilayersofa -Tecanbereadilyobtained c propertiesthatcanbeexploitedforelectronic,photonic,spin- viaathickness-dependentstructuralphasetransitionfromthe [ tronic, and catalytic device applications [1–10]. Various 2D trigonal bulk Te, with van der Waals-type coupling between 1 monolayers have been synthetized beyond the first member neighboring tri-layers. Furthermore, both the a - and b -Te v system of graphene [1–3], including the group-IV mono- phasespossessnotonlyhighercarriermobilitiesrangingfrom 5 7 layers of silicene [4] and stanene [8], the group-V mono- hundredstothousandsofcm2V−1s−1 comparedtoMoS2,but 8 layer of phosphorene [5], and the group-III monolayer of also significantlyenhancedopticalabsorptionpropertiesdue 8 borophene[6,7].Besidesthesegroup-III,-IV,and-Velemen- toanearlydirectordirectbandgap.Thesefindingseffectively 0 tal monolayers, transition metal dichalcogenides (TMDCs) extendtherealmof2Dmaterialstogroup-VImonolayers,and . 1 have also been attracted much attention because of their rel- providea new and genericformationmechanismfor design- 0 atively wider, tunable, and direct band gaps and inherently ing2Dmaterials. 7 stronger spin-orbit coupling [9, 10]. Yet to date, somewhat 1 surprisingly, no prediction or fabrication of group-VI ele- We perform the particle-swarm optimization (PSO) : v mentalmonolayershasbeenmade,whosepotentialexistence searches [11] in combination with the DFT calculations us- Xi wouldnotonlyfurtherenrichourunderstandingoftherealm ingtheViennaabinitiosimulationpackage(VASP)withinthe ofthe2Dmaterialsworld,butcouldalsooffernewapplication projectoraugmentedwavemethod[12,13].Fortheexchange- r a potentialsstemmingfromtheiruniquelyphysicalandchemi- correlation energy, we employ the PBE functional[14] with calproperties. thevanderWaals(vdW)correctionproposedbyGrimme[15] and the screened hybrid functional, HSE06, which can typ- InthisLetter,weaddanattractivenewcategorytotheever ically describe the band gaps better [16, 17]. Unless other- increasing2Dmaterialsfamilybypredictingtheexistenceand wise specified, theTemonolayersaremodeledbya periodic fabricationofgroup-VIelementalmonolayerscenteredonthe 1×1×1slabgeometrywithavacuumthicknessof20A˚.The metalloidelementTe. Ourtheoreticalcalculationsrevealthat kinetic-energy cutoff for the plane wave basis set is chosen 2D monolayers of Te, named tellurene, can exist in the sta- to be 500 eV, and the k-space integration is done using the ble1T-MoS -like(a -Te)structure,andmetastabletetragonal Monkhorst-Pack scheme with the 21×21×1 meshes in the 2 (b -Te)and2H-MoS -like(g -Te)structures.Thesetri-layerar- Brillouinzones. Alltheatomsareallowedtorelaxalongthe 2 rangements are driven by the unique multivalency nature of calculated forcesof less than 0.01 eV/A˚. The phononcalcu- Te, with the central-layer Te behaving more metal-like, and lationisperformedusinglargersupercells,asimplementedin TypesetbyREVTEX 2 thePhonopycode[18]. furtherinvestigatedusing ab initio moleculardynamicssim- ulations. We findthattheequilibriumstructuresofa -Teand (cid:11)(cid:68)(cid:12) (cid:11)(cid:69)(cid:12) b -Tehardlychangeatroomtemperature,whileg -Tebecomes unstableat temperaturesabove∼200K.In the moviesof the a aa SupplementalMaterial,we illustratethedynamicstabilityof y b b eachphaseat300Kuptoatimeperiodof3pswith1fstime x step. d z z x (cid:11)(cid:70)(cid:12) (cid:11)(cid:71)(cid:12) TABLEI: Structural parameters of tellurene, together with the co- (cid:11)(cid:19)e(cid:17)(cid:18)(cid:20)(cid:99)(cid:19)(cid:22)(cid:12) hesiveenergyEc andthechargetransferD Qfromthecentral atom (cid:19)(cid:17)(cid:19)(cid:27) (cid:60) (cid:48) totheourteratoms: aandbarethelatticeconstants, d isthebond (cid:19)(cid:17)(cid:19)(cid:25) (cid:19)(cid:19)(cid:17)(cid:17)(cid:19)(cid:19)(cid:23)(cid:21) (cid:46) length, anddz istheintervaldistancebetweentheupper andlower (cid:19)(cid:17)(cid:19)(cid:19) (cid:573) (cid:48) (cid:573) (cid:59) Telayers(seeFig. 1). Forcomparison,thestructuralandenergetic (cid:16)(cid:19)(cid:17)(cid:19)(cid:21) (cid:16)(cid:19)(cid:17)(cid:19)(cid:23) propertiesofbulkTearealsolisted. (cid:16)(cid:19)(cid:17)(cid:19)(cid:25) (cid:16)(cid:19)(cid:17)(cid:19)(cid:27) (cid:16)(cid:19)(cid:17)(cid:20)(cid:19) a,b(A˚) d(A˚) dz(A˚) Ec(eV/atom) D Q(e) FIG.1:(Coloronline)Topandsideviewsoftheoptimizedstructures oftellureneindifferentphases: (a)a -Te,(b)b -Te,and(c)g -Te.The a -Te a=b=4.15 3.02 3.67 2.62 0.41 Brillouinzonesfora (org )andb phasesaredrawnin(d).Thedashed a=4.17 3.02 lineindicatestheunitcellofeachstructure.Fordistinction,thelarge, b -Te b=5.49 2.75a 2.16 2.56 0.11 medium, andsmallcirclesrepresentTeatomslocatedintheupper, central, and lower layers, respectively. Thetotal charge density of g -Te a=b=3.92 3.08 4.16 2.46 0.29 eachstructureisplottedatthehorizontalandverticalcrosssections a=b=4.33 indicatedbythebluedottedlines. Te-I 2.90 – 2.79 – c=6.05 Figure1 presentsthe optimizedstructuresof Te monolay- abondlengthbetweentwoTeatomswithnc=3. ers or tellurene. We identify three different phases denoted bya -,b -,andg -Te,asshowninFig. 1(a),1(b),and1(c),re- InFigs. 1(a)-1(c),the totalchargedensitiesofa -, b -, and spectively. Thestructuralparametersandcohesiveenergyof g -Terevealtheirbondingcharacteristics,respectively. Fora - eachoptimizedstructurearelistedinTableI.Itisseenthata - andg -Te,thereexistsametal-ligand-likebondingbetweenthe Te hasthe1T-MoS -like structurecontainingthreeTe atoms central atom and the outer atoms. On the other hand, for b - 2 perunitcell. Here,whencomparedwith1T-MoS monolayer, Te, the outer atoms with are bonded to each other with the 2 therearethetwodistincttypesofTeatomswithdifferentco- s bond,whilethecentralatomsinteractwiththeouteratoms ordinationnumbers(n ): acentralTeatomlocatedattheMo intheformofametal-ligand-likebonding.Consequently,the c site has n = 6, while a Te atom in the upper or lower layer formerbondlength(2.75A˚)ismuchshorterthanthelatterone c at the S sites has n = 3. Meanwhile, b -Te is composed of (3.02A˚).AccordingtotheBaderchargeanalysis,thecharge c theplanarfour-memberedandchair-likesix-memberedrings transferfromthe centralto the outeratomsamountsto 0.41, arrangedalternatelywiththelattice constantsa= 4.17andb 0.11, and 0.29e in a -, b -, and g -Te, respectively (see Table =5.49A˚ [TableI];inthisstructure,acentralTeatomhasn I),andthereforethecentralTeatomsbehavemoremetal-like c =4,whileanupperorlowerTeatomhasn =3. g -Tehasthe withalargern whiletheouterTeatomsmoresemiconduct- c c 2H-MoS -like structure, with smaller lattice constants a = b ingwithasmallern . Thestructuralfeaturesoftellurenecan 2 c = 3.92 A˚ than those (a = b = 4.15 A˚) of a -Te. Correspond- befurtherassociatedwiththebondingcharactersofgroup-VI ingly, the bondlength(d = 3.08A˚) and intervaldistance (d elements,wherethenonmetalliccharacterisweakenedinthe z = 4.16A˚)betweentheupperandlowerTe atomsin g -Teare order of O > S > Se > Te, leading to a complete metallic larger than those (d = 3.02 A˚ and d = 3.67 A˚) in a -Te. To characterof Po. In particular,Te hasthe dualcharacteristics z examinetherelativestabilityofdifferenttellureneallotropes, of both metal and nonmetal. It is thus feasible that the two thecohesiveenergy(E )peratomwithrespecttotheenergy dimensionalmonolayersof Te canadoptthe tri-layeratomic c ofanisolatedTeatomiscalculated. Accordingtotheresults structures,, e.g. MoS -likestructure. Withthe dimensional- 2 in Table1, a -Te is energeticallythe most stable phase, while ityreduction,themultivalency-dominated2Dstructureswith b -,andg -Tearethemeta-stablephases. heterogeneouscoordinationnumbersbecomelowerinenergy. Toexaminethestructuralstabilityoftellurene,weperform Collectively,thesefindingsamplyreflectthedistinctmultiva- thephononcalculations,whichcanidentifythepotentialpres- lentnatureofTeanditsvitalroleintheformationoftellurene. ence of soft phonon modes that may lead to structure insta- Figures2(a)-2(c)showthebandstructuresofa -,b -,andg - bility. The calculated phonon spectra of tellurene are dis- Te,respectively,obtainedusingthePBEcalculation. Wefind playedinFig. S1oftheSupplementalMaterial. Wefirstcon- thata - andb -Tearesemiconductorswith indirectbandgaps firm thatall hephasesare thermodynamicallystable without ofE =0.76and1.17eV,respectively,whileg -Teisametal. g imaginary-frequencyphononmodes.Thedynamicstabilityis It is well-known that the semi-local PBE scheme underesti- 3 (a) (b) locatedbetweenthebandgaps(∼0.7and∼1.1eV)ofbulkGe andSi[19],andthatofb -Teis1.47eV,whichisclosetothat of GaAs. These physically realistic values of the band gaps 4 ofthestableandmeta-stabletellurenephasesmayofferdesir- able(e.g.,ohmic)contactswhensuchmaterialsareintegrated )V 2 fordeviceapplications. e ( y 0 g r enE -2 106(a) (b) armchair chain -4 -1)cm 105 zigzag chain (cid:42) (cid:48) (cid:46) (cid:42) (cid:56) (cid:42) (cid:38) (cid:48) (cid:46) nt ( (c) (d) cie 104 2.5 effi )Ve( ygrenE 024 Energy (eV)112...050 )67.0()64.0)51.1()57.0( )71.1()30.1()97.1()74.1( Absorption co 1110001230 1 E2nergy3 (eV)4 50 1 En2ergy 3(eV) 4 5 -2 0.5 ( FIG.3: (Coloronline)Calculatedopticalabsorptioncoefficientsfor -4 0.0 (a)a -Te,(b)b -Te.In(b),thepolarizationisalongthezigzagorarm- (cid:42) (cid:48) (cid:46) (cid:42) (cid:68)(cid:16)(cid:55)e (cid:69)(cid:16)(cid:55)e chairchaindirection. FIG. 2: (Color online) Band structures of (a) a -Te, (b) b -Te, and (c) g -Te, obtained using the PBE scheme without (solid) and with For potential technological applications in electronic de- (dashed)inclusionoftheSOC.Thecontourplotsoftheelectronden- vices, the newly discovered 2D materials should have suffi- sities for the valence states within 0.5 eV below the valence band ciently high carrier mobilities. To estimate the carrier mo- maximumorFermilevelEF aredrawnonthesamehorizontaland bilityofthetellurenemonolayers,wecalculatetheireffective verticalcrosssectionsasmarkedinFig.1.Theintervalofthecharge masses,whicharerelativelysmallerthanthose(m∗=0.47,and contoursis1×10−3 electrons/A˚3. (d)Bandgapsobtainedusingthe ∗ e m =0.58m )ofmonolayer2H-MoS (seeTableII).Thesere- PBE(PBE+SOC)andHSE(HSE+SOC),asrepresentedbythecyan h e 2 sultssuggestthattellurenemaypossesshighelectronandhole (cyanmeshed)andred(redmeshed)bars,respectively. mobilities. Using the acoustic phonon limited method [20], the room-temperature carrier mobilities of a - and b -Te are found to range from hundreds to thousands of cm2V−1s−1, matesthe bandgap. Inorderto remedysuch a deficiencyin muchhigherthan those of monolayer2H-MoS (see Table II 2 PBE,weperformthehybridDFTcalculationwiththeHSE06 andthe SupplementalMaterial). Here, µ andµ show large e h functional,whichisknowntoprovidebetterpredictionsofthe differencesinmagnitude,indicatingasymmetricmobilitiesof bandgaps.AsshowninFig. 2(d),theHSEcalculationsfora - electronsandholesduetotheirdifferenteffectivemasses. In andb -TegiveincreasedEg = 1.15and1.79eV, respectively. addition,b -Tehasanisotropiccharactersofelectronandhole GiventheheavymetalnatureofTe, we also examinetheef- mobilitiesalongtheydirection. fectsofSOConthebandstructure.Theresultsobtainedusing thePBE+SOCcalculationareplottedwiththedashedlinesin Figs. 2(a)-2(c). We findthatthe inclusionofSOCin a -and TABLEII:Effectivemassesm∗ andcarriermobilitiesµofa -Te,b - b -Teinducesatransformationfromanindirecttoanearlydi- Te, and 2H-MoS , obtained using the PBE+SOC calculation. For 2 rect and a direct band gap at the G point, respectively. This thetetragonalstructureofb -Te,thecomponentsalongthearmchair indirect-to-directband-gapchangeina -andb -Temaysignif- chain(x)andzigzagchain(y)directionsareseparatelygiven. icantly enhance their optical absorbance. Indeed, as seen in Fig. 3, both a - and b -Te exhibit superb optical absorptions, m∗(me) µ(103cm2V−1s−1) whichcanbeexploitedforoptoelectronicsandphotondetec- tion. b -Te also exhibits optical anisotropies, with stronger electron hole electron hole absorbance along the zigzag chain direction, which can be a -Te 0.11 0.17 2.09 1.76 exploited for developing polarized optical sensors. Further- 0.83(x) 0.39(x) 0.05(x) 1.98(x) more, it is noted that the PBE+SOC (HSE+SOC) band gaps b -Te 0.19(y) 0.11(y) 0.10(y) 0.45(y) ofa -andb -Tearereducedby0.30(0.40)and0.26(0.32)eV, comparedtothe PBE (HSE)ones: see Fig. 2(d). Therefore, 2H-MoS 0.47 0.58 0.08 0.29 2 the HSE+SOC band gap of a -Te becomes0.75 eV, which is 4 Now, we turn to discuss possible fabricationroute for tel- (a) (b) 0.6 4 lurene and its multilayers. To date, the existing 2D materi- 0.5 0.4 dzi,i+1: Interlayer spacing aacslhsagncraiacnpahlbleyeneedxaivfnoiddlieMadteoidSnt2fo;rotthmweoiottcshaletaery,geaorcrekideinsb:guoalknleacyotehuranettdecrbapunalkrbt,ecsomuucneh-- E(eV/atom)f 000...234 (cid:21)(cid:39)(cid:40)f-000...202 3 6 9N 1U2Sntsatb1a5lbele18 z d ()(cid:99)i,i+1 23 bulk 0.1 terpart,hastobegrownepitaxiallyonapropersubstrate,such 1 0.0 assiliceneandstanene.Meanwhile,theTe-Ibulkhastheform 3 6 9 N 12 15 18 3 6 9N 12 15 18 (c) (d) ofhelicalchainsalongthec axis, andtheTe filmsmosteas- Before relaxation After relaxation Before relaxation After relaxation ilygrowinthe[001]direction[21],totallydifferentfromthe N=8 N=9 structure of tellurene. Surprisingly, the monolayer or mul- tilayers of tellurene can be generated via the new formation 3 Å mechanismcharacterizedbyathickness-dependentstructural 3 Å phasetransitionintheultrathinfilmregime,asdiscussedbe- low. Wereachtheaboveimportantfindingthroughasystematic FIG.4: (Coloronline)Formationenergies,stabilities,andinterlayer study of the Te film stability with increasing film thickness, spacingsofTeslabsatdifferentthicknesses. (a)Formationenergies determinedbytheformationenergy(E )asafunctionofthe of the fullyrelaxed Teslabs asafunction of thickness. Theinsert f number of atomic layers, N. Here the initial configurations represents the second-order difference of Ef, with positive values of the slabs are taken by truncating the trigonal structure of indicatingstablesystems. (b)Distributionofthelayer-resolvedin- terlayerspacingofrelaxedTeslabsasafunctionofthickness. The bulkTe(hereaftertermedTe-I)alongthe(001)direction.The dashedlinedenotestheatomiclayerspacingofbulkTe. (c)and(d) formation energy is given by the cohesive energy difference arethe geometric structures of Teslabs at N = 8and 9before and Ef =(Eslab(N)−NEbulk)/N,whereEslab(N)andEbulkarethe afterstructuraloptimization,respectively. totalenergiesoftheslabandasinglelayerinbulkTe,respec- tively. For these multilayerd systems, we have included the vdWinteractionsusingtheDFT-D2method[15]. of bulk Te obtained using the vdW-DF2 scheme show more Figure 4(a) shows the formation energy variations of the severe deviation from the experimentalvalues (see Table S1 fully relaxed Te slabs with increasing N, exhibiting a dis- of the Supplemental Material), while the DFT-D2 and DFT- tinctoscillatorybehavior. Therearefivehighlypreferred(or TS schemes agree better with experiments. Together, these magic)thicknessesofN=3,6,9,12,15whenthethicknessof resultsconvincinglyindicatethatatleastafewmonolayersof theTe-IslabsincreasesfromN =1to20. Strikingly,wefind the 2D tellurene structure will be readily obtained in a typi- that the Te slabs automatically transform into multilayered calyetthickness-controlledfabricationapproachonaproper structuresof-Teatthemagiclayerthicknesses,whiletheTe substratefavoringlayeredgrowth. slabswillkeepthechain-likestructuresofbulkTeawayfrom Insummary,ourstate-of-the-artglobalstructuralsearching thesemagicthicknesses. TheinsertinFig. 4(a)highlightsthe combinedwithfirst-principlescalculationshasresultedinthe stabilityofthedifferentslabsbytheseconddifference,while discoveryofanewcategoryof2Dmaterialscomposedofthe Fig. 4(c)and(d)highlightthedifferentstructuralpreferences group-VIelementof Te. These new 2D materialscalled tel- ofTeslabswithN =8and9,respectively. Wefurtherobtain lurenecanbestabilizedintheMoS -like(a -,g -Te)ortetrag- 2 thattheinterlayercouplingstrengthbetweentwoneighboring onal(b -Te)structures,andtheirunderlyingformationmecha- tellurenemonolayers(or,equivalently,twoTetrilayers)ofTe nismisinherentlyrootedinthemultivalencynatureofTe.The is26meV/A˚2,whichisonthesameorderasthatofMoS2(21 a -Teandb -Temonolayersnotonlyexhibitsuperbopticalab- meV/A˚2)[22],suggestingthatasingletellurenelayercanbe sorptions,butalsopossessmuchhighercarriermobilitythan readilyexfoliatedonceitisformed. MoS2. Thea -Te multilayerscan be achievedspontaneously Atpresent,thereisnoaprioriknowledgeaboutwhichvdW fromthebulktruncatedfilmsviaanovelthickness-dependent schemeismoreaccurateforagivensystem. Ascrosschecks, structural phase transition. The coupling between neighbor- we have also examined the Te film stability as a function of ingtellurenelayersisofvdWtype,allowingeasyseparation thefilmthicknesswiththevdWinteractionstreatedwithinthe of a tellurenelayer via mechanicalexfoliation. The superior widelyadoptedfirst-principles-basedschemesofTkatchenko electronic and optical propertiesof tellurene are expected to andScheffler[23](DFT-TS)andvdW-DF2[24],respectively. findbroadtechnologicalapplications. Foreitherscheme,theresultsqualitativelyalsosupporttheex- istenceofastructuralphasetransitionfromthebulk-truncated We thank Dr. Xiaoyu Han and Prof. Qiang Sun for Te structure to multilayered tellurene at the identical film helpful discussions. This work was partially supported thicknesses,butthenumberofsuchmagicthicknessesisvar- by the NSFC (Nos. 11274280, 11504332, 11634011, ieddependingonthespecificversionofthevdWscheme.For 61434002), the National Basic Research Program of China DFT-TS(vdW-DF2),thelayered(orcloseshelled)structures (Nos. 2012CB921300and 2014CB921103). Z.X.G. is sup- arefoundtobehighlypreferredatthethicknessesofN=3,6, ported by the UK EPSRC (No. EP/K021192/1). J.-H.C. 9 (3, 6). Here, we notethat the optimizedlattice parameters is supported by the National Research Foundation of Ko- 5 rea (NRF) grant funded by the Korea Government (No. D.Qian,S.-C.Zhang,andJ.-f.Jia,Nat.Mater.14,1020(2015). 2015M3D1A1070639). F.L. is supported by U.S. DOEBES [9] B.Radisavljevic,Nat.Nanotech.6,147(2011). (No. DE-FG02-04ER46148). [10] X.D.Xu,W.Yao,D.Xiao,andT.F.Heinz,Nat.Phys.10,343 (2014). ∗ [11] Y. C. Wang, J. Lv, and Y. M. Ma, Phys. Rev. B 82, 094116 Corresponding authors: [email protected], (2010). [email protected]. [12] G.KresseandJ.Hafner,Phys.Rev.B48,13115(1993). [13] G.KresseandJ.Furthmller,Comput.Mater.Sci.6,15(1996). [14] J.P.Perdew,K.Burke,andM.Ernzerhof,Phys.Rev.Lett.77, 3865(1996);78,1396(E)(1997). [15] S.Grimme,J.Comp.Chem.27,1787(2006). [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. [16] J.Heyd,G.E.Scuseria,andZ.Ernzerhof,J.Chem.Phys.118, Zhang,S.V.Dubonos,I.V.Grigorieva,andA.A.Firsov,Sci- 8207(2003); ence306,666(2004). [17] A.V.Krukau,O.A.Vydrov,A.F.Izmaylov,andG.E.Scuseria, [2] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. J.Chem.Phys.125,224106(2006). Mayou,T.Li,J.Hass,andA.Marchenkov, Science312,1191 [18] A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106- (2006). 134106(2008). [3] A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. [19] O. Madelung (Editor), in Landolt-Bornstein, New series, Geim,Rev.Mod.Phys.81,109(2009). Springer,Vol.22ap.14.(1987). [4] P.Vogt,P.DePadova,C.Quaresima,J.Avila,E.Frantzeskakis, [20] J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. M.C.Asensio, A.Resta, B.Ealet,andG.LeLay, Phys.Rev. Commun.5,4475(2014). Lett.108,155501(2012). [21] Q.Wang,M.Safdar,K.Xu,M.Mirza,Z.WangandJ.He,vACS [5] L.Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. nano,8,7497(2014). Chen,andY.Zhang,Nat.Nanotechnol.9,372(2014). [22] H.Rydberg,M.Dion,N.Jacobson,E.Schroder,P.Hyldgaard, [6] A.J.Mannix, X.-F.Zhou, B.Kiraly,J.D.Wood, D.Alducin, S. I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. B.D.Myers,X.Liu,B.L.Fisher,U.Santiago,J.R.Guest,M. Lett.91,126402(2003). J.Yacaman,A.Ponce,A.R.Oganov,M.C.Hersam,andN.P. [23] A.TkatchenkoandM.Scheffler,Phys.Rev.Lett.102,073005 Guisinger,Science350,1513(2015). (2009). [7] B.Feng,J.Zhang,Q.Zhong,W.Li,S.Li,H.Li,P.Cheng,S. [24] K.Lee,E.D.Murray,L.Kong,B.I.Lundqvist,andD.C.Lan- Meng,L.Chen,andK.Wu,Nat.Chem.8,563(2016). greth,Phys.Rev.B82,081101(2010). [8] F.-f.Zhu,W.-j.Chen,Y.Xu,C.-l.Gao,D.-d.Guan,C.-h.Liu,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.