3 1 0 2 Dense QCD and phenomenology of compact stars n a J 2 1 ] E H Armen Sedrakian∗ . InstituteforTheoreticalPhysics,J.W.GoetheUniversity, h p D-60438FrankfurtamMain,Germany - E-mail:[email protected] o r t s a Idiscussthreetopicsinphysicsofmassive(twosolar-mass andlarger)neutronstarscontaining [ deconfinedquarkmatter: (i)theequationofstateofdeconfineddensequarkmatteranditscolor 1 superconductingphases,(ii)thethermalevolutionofstarswithquarkcores,(iii)color-magnetic v 5 fluxtubesintype-IIsuperconductingquarkmatterandtheirdynamicsdrivenbyAharonov-Bohm 7 interactionswithunpairedfermions. 6 2 . 1 0 3 1 : v i X r a XthQuarkConfinementandtheHadronSpectrum, October8-12,2012 TUMCampusGarching,Munich,Germany ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Massivecompactstars ArmenSedrakian 1. Introduction Compact star phenomenology offers a unique tool to address the outstanding challenges of the modern particle and nuclear physics, in particular the phase structure of dense quantum chro- modynamics (QCD). The integral parameters of compact stars depend on their equation of state (hereafter EoS) at high densities. Measurements of pulsar masses in binaries provide the most valuable information ontheunderlying EoSbecause these, beingdeduced from binary system pa- rameters, are model independent within a given theory of gravity [1]. The recent discovery of a compact star with a mass of 1.97 M , which sets an observationally “clean” lower bound on the ⊙ maximummassofacompactstarviathemeasured Shapirodelay [2],spurred anintensive discus- sionofthephasestructure ofdensematterincompactstarsconsistent withthislimit[3,4]. Pulsar radii have been extracted, e.g., from modeling the X-ray binaries under certain reasonable model assumptions,buttheuncertaintiesarelarge[5]. Arecentexampleisthepulsephase-resolvedX-ray spectroscopy of PSRJ0437-4715, which sets alowerlimit on the radius of a1.76 M solar mass ⊙ compactstarR>11kmwithin3s error(Bogdanov, inRef.[5]). Large masses and radii are an evidence for the stiffness of the EoS of dense matter at high densities. Commonly, phase transitions, e.g. the onset of quark matter, softens the EoS close to thetransition point,andtherefore reducesthemaximumachievable massofaconfiguration. Thus, if quark matter exists in compact stars, there should be a delicate balance in Nature which allows large enough densities in compact stars to achieve quark deconfinement and stiff enough EoS of strongly interacting matter to support large masses and radii [3]. Indeed, as I review below, one can construct stellar configurations that are dense enough for baryons to deconfine into quarks and are massive enough to be consistent with the maximum mass bound mentioned above. These configurations havealsoradiilargeenoughtobeconsistent withtheexistingbounds [5]. Theinformation gained frommeasurements ofthegross parameters ofcompactobjects, such as the mass, radius or the moment of inertia give us only indirect information on potential phases of matter in their interiors. The studies of rotational, thermal and magnetic evolutions of neutron starsprovide complementary information, whichissensitive tothecomposition ofmatter. Indeed, modelingcoolingneutronstarsrequiresadetailedknowledgeofquantitiessuchasthespecificheat of components of matter and its neutrino emissivity, which are strongly composition dependent. Thus, the cooling of massive neutron stars needs to be consistent with the ideas of formation of quarkmatterwithstiffequationsofstate. Thestudiesofcoolingofsuchstarsrevealsthecomplexity of the problem (for the recent work see Refs. [6]). Furthermore, the recent observation of the substantial change inthetemperature oftheneutron starin CasAposes achallenge forthetheory toexplaindrasticshort-term dropinthetemperatureofthisneutronstar(forareviewseeRef.[7]). Magneticevolutionofacompactstarwillalsodependonthestructureofmagneticfieldinthequark phases, which in turn depends on the dynamics of quantum vorticity in the quark superconductor or superfluid [8, 9]. Forexample, if the flux-tube dynamics in the type-II superconducting phases ofthestaroccursonevolutionary time-scales, itwilldirectlyaffectthemagneticfieldcomponents ofthestarthatleadtoitssecularspin-down. 2 Massivecompactstars ArmenSedrakian 2.00 4 N+HYP 2CSFCL r tr=3.4 r 0 2.03 MO TARS 1.99 S L F 3.5 1.97 M C s] G/G=0.6 O as1.98 v s m 0 M [solar 1.97 r/rtr 3 1.90 MO 2SC STARS 0.4 d = 0 0.05 0.1 0.12 1.96 1.80 M 0.2 O G/G=0 2.5 v s 13.4 13.45 13.5 13.55 13.6 0 0.1 0.2 0.3 0.4 0.5 R [km] G/G v s Figure 1: Left panel. Mass vs radius for configurations with quark-hadrontransition density r =3.4r tr 0 for four values of vector coupling G /G =0,0.2,0.4,0.6, where G is the scalar coupling. The purely V S S hadronic sequence (i.e. the sequence that includes nucleons and hyperons) is shown by black solid line. The dashed lines and the gray solid lines show the branches where the 2SC and CFL quark phases are present. Thefilledcirclesmarkthemaximummassesofthesequences. Thehorizontallineshowsthemass measurementofRef.[2]. Rightpanel. Propertiesofthestarsasafunctionthefreeparameters G andthe V transitiondensityto quarkmatter r in unitsofsaturationdensity r . The solidlinesshow themaximum tr 0 massconfigurationsrealizedforthepairofparameters G andr . Thedashedcurvesshowtheamountof V tr CFLmatterintheconfigurationsviatheratio d =R /R,whereR istheradiusoftheCFLcore, Ris CFL CFL thestarradius. Theparameterspacetotherightfrom d =0lineproducesCFLstars. Theparameterspace belowthedashed-dottedcurvecorrespondstostarscontaining2SCmatter. 2. Two solar-masscompactstars withhyperons andcolorsuperconducting quarks Hybridstars,i.e. baryonicstarscontainingquarkcores,withtwosolarmasseshaveattracteda lotofattentioninrecentyears. Coldquarkmattershouldbe inoneofthepossiblesuperconducting phases duetothe attractive component inthe gluon exchange quark-quark interaction [10]. These twoaspects-highmassesandcolorsuperconductivity-appeartobeminimalingredientofrealistic hybrid starmodeling. Here I describe briefly arecent work on amodel [4], which exemplifies the keyfeatures ofthisclassofcompactstars. The nuclear EoS, as is well known, can be constructed starting from a number of principles. In Ref. [4]relativistic mean-field models wereemployed tomodel the low density nuclear matter. Asiswell-known,thesemodelsarefittedtothebulkpropertiesofnuclearmatterandhypernuclear data to describe the baryonic octet and its interactions [11]. Among the existing parameterization the stiffest EoS is achieved with the NL3 and GM3 parameterizations. The high-density quark matter wasdescribed in Ref. [4]by an NJLLagrangian, which is extended toinclude the t’Hooft interaction term and the vector interactions with a coupling G . The mass-radius relationship for V massive stars constructed on the basis of the EoSs described above is shown in the left panel of Fig. 1 together with the mass measurement M = 1.97±0.04M⊙ [2]. Masses above the lower bound on the maximum mass are obtained for purely hadronic stars; this feature is prerequisite 3 Massivecompactstars ArmenSedrakian for finding similar stars with quark phases. Evidently only for high values of vector coupling G onefindsstablestarsthatcontain(atthebifurcationfromthehadronicsequence)thetwo-flavor V superconducting(2SC)phase,whicharefollowedbystarsthatadditionallycontainthecolor-flavor- locked (CFL) phase (for higher central densities). Thus, we find that the stable branch of the sequence contains starswithquarkmatterinthe2SCandCFLphases. TherightpanelofFig.1showsthechangesinthemassesandcompositionofcompactstarsas theparameters ofthemodel G andr arevaried. First,itshowsthetracks ofconstant maximum V tr masscompactstarswithintheparameterspace. Thedecrease ofmaximummasseswithincreasing vector coupling reflects the fact that non-zero vector coupling stiffens the EoS. In other words, to obtain a given maximum mass one can admit a small amount of soft quark matter with vanishing vector coupling bychoosing ahigh transition density; the sameresult isobtained withalow tran- sition density, but large vector coupling, i.e., a stiffer quark EoS. Forlow transition densities one finds 2SCmatterinstars, which means thatweakervectorcouplings slightly disfavor 2SCmatter. Substantial CFLcoresappearinconfigurations forstrong vectorcoupling andalmostindependent ofthetransition density(nearlyverticaldashedlineswithd ∼0.1inFig. 1,rightpanel). Notethat for a high transition density there is a direct transition from hypernuclear to the CFL phase. For transitiondensitiesblow3.5r a2SClayeremergesthatseparatesthesephases. Ontheother hand, 0 weakvectorcouplings andlowtransition densities produce starswitha2SCphaseonly. 3. Thermal evolutionofmassivestars Having developed the models of massive compact stars, we are in a position to study their cooling, using asaninput aparticle composition, that isconsistent withtheunderlying EoS.Such program was carried out with the sequences of massive compact stars constructed in Refs. [12]. These sequences of stable stars permit atransition from hadronic to quark matter in massive stars (M >1.85M⊙) with the maximal mass of the sequence ∼2M⊙. Hess and Sedrakian, in Ref. [6], assumedquarkmatteroflightuanddquarksinbetaequilibriumwithelectrons. Thepairingamong the u and d quarks occurs in two channels: the red-green quarks are paired in a condensate with a gap of order of the electron chemical potential; the blue quarks are paired with a gap of order of keV, which is thus comparable to the core temperature during the neutrino-cooling epoch [13]. Forthered-greencondensate, aparameterization ofneutrinoemissivitywaschosenintermsofthe gaplessness parameter z =D /dm , where D is the pairing gap in the red-green channel, dm is the shift in the chemical potentials of the uand d quarks (Jaikumar et al, in Ref. [6]). Themagnitude ofthegapinthespectrum ofbluequarkswastreatedasafreeparameter. Thestellarmodelswereevolvedintime,withtheinputdescribedabove,toobtainthetemper- ature evolution oftheisothermal interior. Theinterior of astarbecomes isothermal fortimescales t ≥100 yr, which are required to dissolve temperature gradients by thermal conduction. Unless the initial temperature of the core is chosen too low, the cooling tracks exit the non-isothermal phase and settle at a temperature predicted by the balance of the dominant neutrino emission and the specific heat of the core at the exit temperature. The low-density envelope maintains substan- tialtemperature gradients throughout theentireevolution; thetemperaturedropsbyabout2orders of magnitude within this envelope. The input parameters in the evolution code are the neutrino and photon luminosities, the specific heat of the core, and the heating processes. The resulting 4 Massivecompactstars ArmenSedrakian D = 0 MeV D = 0.1 MeV b b 106 z = 0.9 105 K] T [S 110061502 103 104 105 106 103 104 105 106 z = 1.1 t [yrs] Figure2: Timeevolutionofthesurfacetemperatureoffourmodelswithcentraldensities5.1(solidline), 10.8(long-dashedline), 11.8(short-dashedline),21.0(dottedline)giveninunitsof1014 gcm−3. Forthe observationaldataseeHessandSedrakianinRef.[6]. Theuppertwopanelscorrespondtocoolingwhenthe red-greencondensatehasz =0.9,i.e.,isnotfullygapped;thelowerpanelscorrespondtoz =1.1,i.e.,the red-greencondensateisfullygapped.Thelefttwopanelscorrespondtoevolutionwithnegligibleblue-quark pairing(D =0);therighttwopanelsshowtheevolutionforlargebluepairingD =0.1MeV. b b evolution tracks are shown in Fig. 2, where wedisplay the dependence of the (redshifted) surface temperature on time. Each panel of Fig. 2 contains cooling tracks for the same set of four mod- els with increasing central density. The cooling tracks for the purely hadronic model (solid lines) are the same in all four panels. The panels differ in the values of micro-physics parameters (for further explanations see the caption of Fig. 2). It can be seen that (i) the neutrino-cooling is slow for hadronic stars and becomes increasingly fast with an increase of the size of the quark core, in thosescenarioswherethereareunpairedquarksorgaplessexcitationsinthesuperconductingquark phase. The temperature scatter of the cooling curves in the neutrino cooling era is significant and canexplaintheobservedvariationsinthesurfacetemperaturedataofsameageneutronstars. (ii)If quarks of all colors have gapped Fermi surfaces, the neutrino cooling shuts off early, below the pairingtemperatureofbluequarks;inthiscase,thetemperaturespreadofthecoolingcurvesisnot assignificantasinthefastcoolingscenarios. (iii)Asthestarsevolveintothephotoncoolingstage thetemperaturedistribution isinverted,i.e.,thosestarsthatwerecoolerintheneutrino-cooling era arehotterduringthephotoncooling stage. Our preliminary studies show that the rapid cooling of Cas A can be understood as an evi- dence of a phase transition from perfect 2SC phase to a crystalline color superconducting state. WeassumetheFulde-Ferrelltypesuperconductivity asdiscussed inRefs.[14];(formorecomplex orderparameters seeRef.[15]andreferences therein). The phase transition ischaracterized byits temperatureT∗andthetimescalet ∗neededtocompletesuchaphasetransition. Whileequilibrium 5 Massivecompactstars ArmenSedrakian 1e+07 1,65 T*=0.01816 T*=0.01818 T*=0.025 T*=0.01816 T*=0.0 T*=0.01820 1,6 Ts (K)1e+06 Ts6 (K) 1,55 1,5 1e+05 310 320 330 340 100 10000 1e+06 t (yr) t (yr) Figure3: Leftpanel. Dependenceofthesurfacetemperatureontimeforthe values ofthe transitiontem- peratureT∗ (inMeV)indicatedintheplotandforfixedt ∗. Theunderlyingmodelisthe1.91M⊙ compact starmodelfromRef.[12]. Rightpanel. Dependenceofthesurfacetemperature(inunitsof106 K)ontime forthesamemodel. ThepointswitherrorbarsshowtheCasAdata,thesolidlinesarefitstothesedataby variationofT∗. modelcalculationsprovideavalueforT∗∼10MeVinaparticular(NJLLagrangianbased)model, the physically realizable value of T∗ may depend on dynamical factors and nucleation history of the quark phase. Because of the density dependence of the critical temperature T∗ in the stellar interiors, thisphase transition willnotoccurglobally in thequark core, butgradually withinsome shells. Therefore, the values of T∗ andt ∗ willbe determined bythe local conditions intheshells, thetransition beingagradualpropagation ofphase-separation frontsratherthanacoherent instan- taneous transition. Inourstudywetreatthetransition temperature T∗ asthekeyfreeparameterto fitthe cooling model tothe CasAdata. Thesefitsare notsensitive tothe precise value oftime t ∗ characterizing theduration ofthetransition. Fig. 3, left panel, shows the cooling evolution of the M =1.91M⊙ model of a compact star for several values of T∗ and fixed t ∗. It is seen that for a specific value of T∗ the cooling curves pass through the location of Cas A in the log T-log t plain. The right panel of Fig. 3 shows the observationally coveredevolutionofCasAforthesamevalueoft ∗andseveral(fine-tuned)values of T∗. It is seen that the data can be accurately fitted by fine-tuning a single parameter T∗. In eachcasethecriticaltemperature ofpairingforthebluequarks isassumedtosatisfythecondition T ≫T∗,whichimpliesthatbluequarkshavenoeffectonthedynamicsofthetransition process. cb ThenumericalvalueT =0.1MeVwasusedinthesimulations. cb 4. Color-magneticflux tubes We turn now to the response of dense quark matter to a magnetic field. Our discussion will befocused ontheformation anddynamics ofcolor-magnetic fluxtubes inthetwo-flavorcolorsu- 6 Massivecompactstars ArmenSedrakian perconducting (2SC) phase. Type-II superconductivity leads to formation of flux tubes if the cost ofinserting afluxtube,whichhasalwaysapositive self-energy (flux-tension) inasuperconductor is compensated by the interaction energy of the flux tube with external magnetic field intensity. The critical intensity (lower critical field) H for the formation of Abrikosov flux tubes contain- c1 ing color-magnetic flux is large, of order 1017 G. However, when the quark matter cools into the 2SC phase, the process ofdomain formation and amalgamation is likely to leave some ofthe flux trappedintheformoffluxtubes[9]. Theseflux-tubesmaybetopologicallyunstable,howevertheir formation anddecaytimescales inanexternally imposedfieldareunknown. The 2SC phase contains three species of gapless fermions: two quarks (“blue up” and “blue down”) andthe electron. Theseare expected to dominate itstransport properties. Light ungapped fermions will be scattered from color-magnetic flux tubes due to the Aharonov-Bohm (hereafter AB) effect [16]. The scattering of electrons and blue quarks of the flux tubes in the 2SC cores of compact stars contributes to the transport coefficients of matter and acts as a dissipative force on the flux tubes. The relaxation time for incident light fermion on a flux tube is given by [9] t −1 =(n /p )sin2(p b˜), where n is the flux density, p is the fermion momentum and b is the f v F v F dimensionless ABparameter computed inRef. [9]. It iseasy to understand this result. Itis of the standardformforclassicalgases t −1=cns ,wherec=1isthespeedoftheparticles, n=n isthe v density of scattering centers, and s (cid:181) sin2(p b˜)/p isthe cross section for ABscattering. Oneof F thebluequarks,thebluedownquark,hasnoABinteraction withthefluxtubes(b˜ =0). Theother twolightfermions, theelectron andblueupquark, haveidentical ABfactors although theirFermi momentaaredifferent. Because the ambient magnetic fieldinaneutron starisbelow the lowercritical fieldrequired toforcecolor-magneticfluxtubesinto2SCquarkmatter,thetrappedfluxtubeswillfeelaboundary force pulling them outwards. This force will be balanced by the drag force (“mutual friction”) on the moving flux tube due to its AB interaction with the thermal population of gapless quarks and electrons, andalsobytheMagnus-Lorentz force. Anestimateofthetimescalefortheexpulsionof color-magnetic flux tubes from a 2SC core on the basis of balance of forces acting on the vortex shows that it is of order1010 years [9]. Therefore, it is safe to assume that the magnetic field will betrappedinthe2SCcoreoverevolutionary timescalesintheabsenceofotherexternalforces. 5. Final remarks Much remains to be done. First, our understanding of the EoS of dense quark matter and its phases needs further exploration. The strangeness degrees of freedom including hypernuclear matter and three-flavor quark matter should be further explored building, e.g., upon the work of Ref. [4]. The equilibrium and stability of massive compact objects, constructed from these EoSs, should bestudied including rapidrotations andoscillations. Second, weneed abetterunderstand- ing of the weak interaction rates in quark and (hyper)nuclear matter, which are required input in coolingsimulationsofcompactstars. Third,thetransport coefficientsofdensecolorsuperconduct- ingquarkmatter,suchasthethermalconductivity, areinputformodellinganarrayofphenomena, whichinclude thermalevolution, magneticevolution, andoscillation modes. I would like to thank M. Alford, L. Bonanno, D. Hess, X.-G. Huang, D. Rischke for the collaboration onthetopicsdiscussed inthiscontribution. 7 Massivecompactstars ArmenSedrakian References [1] M.Kramer,arXiv:1211.2457[astro-ph.HE]. [2] P.B.Demorest,etal.Nature467,1081(2010). [3] K.Masuda,T.HatsudaandT.Takatsuka,arXiv:1212.6803[nucl-th];P.-C.ChuandL.-W.Chen, arXiv:1212.1388[astro-ph.SR];C.H.LenziandG.Lugones,Astrophys.J.759,57(2012); J.L.ZdunikandP.Haensel,arXiv:1211.1231[astro-ph.SR].V.Dexheimer,J.Steinheimer, R.NegreirosandS.Schramm,arXiv:1206.3086[astro-ph.HE];R.Lastowiecki,D.Blaschke, H.GrigorianandS.Typel,ActaPhys.Polon.Supp.5,535(2012);A.Sedrakian,ActaPhys.Polon.B 5,867(2012);N.K.Johnson-McDanielandB.J.Owen,Phys.Rev.D86,063006(2012); J.M.LattimerandM.Prakash,arXiv:1012.3208[astro-ph.SR];A.Sedrakian,AIPConf.Proc.1317, 372(2011)SeealsoM.Alford,M.Braby,M.W.ParisandS.Reddy,Astrophys.J.629,969(2005); A.Kurkela,P.Romatschke,A.VuorinenandB.Wu,arXiv:1006.4062[astro-ph.HE]. [4] L.BonannoandA.Sedrakian,Astron.Astrophys.539,A16(2012). [5] S.Guillot,R.E.RutledgeandE.F.Brown,Astrophys.J.732,88(2011);S.Bogdanov, arXiv:1211.6113[astro-ph.HE];D.K.GallowayandN.Lampe,Astrophys.J.747,75(2012); T.Guver,P.Wroblewski,L.CamarotaandF.Ozel,Astrophys.J.719,1807(2010). [6] M.Alford,P.Jotwani,C.Kouvaris,J.KunduandK.Rajagopal,Phys.Rev.D71,114011(2005); H.Grigorian,D.BlaschkeandD.Voskresensky,Phys.Rev.C71,045801(2005);P.Jaikumar, C.D.RobertsandA.Sedrakian,Phys.Rev.C73,042801(2006).R.Anglani,G.Nardulli, M.RuggieriandM.Mannarelli,Phys.Rev.D74,074005(2006);D.HessandA.Sedrakian,Phys. Rev.D84,063015(2011);T.Noda,M.-a.Hashimoto,Y.Matsuo,N.Yasutake,T.Maruyama, T.TatsumiandM.Fujimoto,arXiv:1109.1080[astro-ph.SR];N.Yasutake,T.Noda,H.Sotani, T.MaruyamaandT.Tatsumi,arXiv:1208.0427[astro-ph.HE]. [7] P.S.Shternin,etal.Mon.Not.Roy.Astron.Soc.412,L108(2011). [8] D.Blaschke,D.M.SedrakianandK.M.Shahabasian,Astron.Astrophys.350,L47(1999). D.M.Sedrakian,D.Blaschke,K.M.ShahabasyanandD.N.Voskresensky,Astrofiz.44,443(2001) K.IidaandG.Baym,Phys.Rev.D65,014022(2002);K.IidaandG.Baym,Phys.Rev.D66,014015 (2002);K.IidaandG.Baym,Phys.Rev.D63,074018(2001)[Erratum-ibid.D66,059903(2002)]; K.Iida,Phys.Rev.D71,054011(2005);A.P.Balachandran,S.Digal,andT.Matsuura,Phys.Rev. D73,074009(2006);D.M.Sedrakianetal.,Astrophys.51,544(2008). [9] M.G.AlfordandA.Sedrakian,J.Phys.G37,075202(2010). [10] M.G.Alford,etal.Rev.Mod.Phys.80,1455(2008);Q.Wang,Prog.Phys.30,173(2010); [11] N.K.GlendenningandS.A.Moszkowski,Phys.Rev.Lett. 67,2414(1991). [12] N.Ippolito,etal.Phys.Rev.D77,023004(2008);B.KnippelandA.Sedrakian,Phys.Rev.D79, 083007(2009). [13] M.G.Alford,J.A.Bowers,J.M.CheyneandG.A.Cowan,Phys.Rev.D67,054018(2003); M.Buballa,J.HosekandM.Oertel,Phys.Rev.Lett.90,182002(2003);A.Schmitt,Q.Wang,and D.H.Rischke,Phys.Rev.Lett.91,242301(2003);A.Schmitt,Phys.Rev.D71,054016(2005). [14] A.SedrakianandD.H.Rischke,Phys.Rev.D80,074022(2009);X.-G.HuangandA.Sedrakian, Phys.Rev.D82,045029(2010). [15] M.Mannarelli,K.RajagopalandR.Sharma,Phys.Rev.D76,074026(2007). [16] M.G.AlfordandF.Wilczek,Phys.Rev.Lett.62,1071(1989). 8