ebook img

Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic PDF

21 Pages·2017·3.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic

RESEARCHARTICLE Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach AnnArfken1☯*,BongkeunSong1☯,JeffS.Bowman2,MichaelPiehler3 1 DepartmentofBiologicalSciences,VirginiaInstituteofMarineScience,GloucesterPoint,Virginia,United StatesofAmerica,2 IntegrativeOceanographyDivision,ScrippsInstitutionofOceanography,Universityof California,SanDiego,California,UnitedStatesofAmerica,3 InstituteofMarineSciences,UniversityofNorth CarolinaatChapelHill,MoreheadCity,NorthCarolina,UnitedStatesofAmerica a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 *[email protected] a1111111111 a1111111111 Abstract Theeasternoyster(Crassostreavirginica)isafoundationspeciesprovidingsignificanteco- systemservices.However,therolesofoystermicrobiomeshavenotbeenintegratedinto OPENACCESS anyoftheservices,particularlynitrogenremovalthroughdenitrification.Weinvestigatedthe Citation:ArfkenA,SongB,BowmanJS,PiehlerM compositionanddenitrificationpotentialofoystermicrobiomeswithanapproachthatcom- (2017)Denitrificationpotentialoftheeastern oystermicrobiomeusinga16SrRNAgenebased bined16SrRNAgeneanalysis,metabolicinference,qPCRofthenitrousoxidereductase metabolicinferenceapproach.PLoSONE12(9): gene(nosZ),andN fluxmeasurements.Microbiomesoftheoysterdigestivegland,theoys- 2 e0185071.https://doi.org/10.1371/journal. tershell,andsedimentsadjacenttotheoysterreefwereexaminedbasedonnextgenera- pone.0185071 tionsequencing(NGS)of16SrRNAgeneamplicons.Denitrificationpotentialsofthe Editor:XiangzhenLi,ChengduInstituteofBiology, microbiomesweredeterminedbymetabolicinferencesusingacustomizeddenitrification CHINA geneandgenomedatabasewiththepaprica(PAthwayPRedictionbyphylogenetICplAce- Received:May15,2017 ment)bioinformaticspipeline.Denitrificationgenesexaminedincludednitritereductase Accepted:September6,2017 (nirSandnirK)andnitrousoxidereductase(nosZ),whichwasfurthersubdividedbygeno- Published:September21,2017 typeintocladeI(nosZI)orcladeII(nosZII).Continuousflowthroughexperimentsmeasuring N fluxeswereconductedwiththeoysters,shells,andsedimentstocomparedenitrification Copyright:©2017Arfkenetal.Thisisanopen 2 accessarticledistributedunderthetermsofthe activities.Papricaproperlyclassifiedthecompositionofmicrobiomes,showingsimilarclas- CreativeCommonsAttributionLicense,which sificationresultsfromSilva,GreengenesandRDPdatabases.Microbiomesoftheoyster permitsunrestricteduse,distribution,and digestiveglandsandshellswerequitedifferentfromeachotherandfromthesediments. reproductioninanymedium,providedtheoriginal Therelativeabundanceofdenitrifyingbacteriainferredbypapricawashigherinoystersand authorandsourcearecredited. shellsthaninsedimentssuggestingthatoystersactashotspotsfordenitrificationinthe DataAvailabilityStatement:Sequencesgenerated marineenvironment.Similarly,theinferrednosZIgeneabundanceswerealsohigherinthe inthisstudymaybedownloadedfromtheNCBI SequenceReadArchive,accessionnumber oysterandshellmicrobiomesthaninthesedimentmicrobiome.GeneabundancesfornosZI SRP106715. wereverifiedwithqPCRofnosZIgenes,whichshowedasignificantpositivecorrelation Funding:FundingwasprovidedbytheNational (F1,7=14.7,p=6.0x10-3,R2=0.68).N2fluxratesweresignificantlyhigherintheoyster ScienceFoundationDivisionofBiological (364.4±23.5μmolN-N m-2h-1)andoystershell(355.3±6.4μmolN-N m-2h-1)compared 2 2 Oceanography,https://www.nsf.gov/funding/pgm_ tothesediment(270.5±20.1μmolN-N m-2h-1).Thus,bacteriacarryingnosZIgeneswere summ.jsp?pims_id=11696,grantnumber 2 foundtobeanimportantdenitrifier,facilitatingnitrogenremovalinoysterreefs.Inaddition, 1321373toBS;NationalScienceFoundation DivisionofBiologicalOceanography,https://www. thisisthefirststudytovalidatetheuseof16Sgenebasedmetabolicinferenceasamethod nsf.gov/funding/pgm_summ.jsp?pims_id=11696, PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 1/21 Denitrificationpotentialoftheoystermicrobiome grantnumber1233327toMP;NationalScience fordeterminingmicrobiomefunction,suchasdenitrification,bycomparinginferenceresults FoundationDivisionofPolarPrograms,https:// withqPCRgenequantificationandratemeasurements. www.nsf.gov/div/index.jsp?div=PLR,grantnumber 1641019toJSB;aswellascontributionsfromthe NationalScienceFoundation,theCommonwealth ofVirginiaEquipmentTrustFundandtheOfficeof NavalResearch.Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. Introduction Competinginterests:Theauthorshavedeclared ChesapeakeBay,thelargestestuaryintheUnitedStates,isoneofmanysystemsthathasexpe- thatnocompetinginterestsexist. riencedthedetrimentaleffectsofexcessnitrogen(N)andculturaleutrophication,including bottomwaterhypoxia,reducedfisheriesharvests,andlossofsubmergedaquaticvegetation [1,2].Overthelastseveralyears,restorationoftheeasternoyster(Crassostreavirginica)tothe BayhasgainedmomentumasapotentialmeanstoenhanceNremovalandmitigateeutrophi- cationbyincreasingratesofdenitrification[3,4].Denitrificationisthemicrobially-mediated stepwisereductionofnitrate(NO -)andnitrite(NO -)togaseousnitricoxide(NO),nitrous 3 2 oxide(N O)anddinitrogen(N )[5]. 2 2 Themajorityofstudiesaddressingdenitrificationassociatedwithoystershaveprimarily focusedonwhetheroystersenhancedenitrificationinsedimentswithinandadjacenttooys- terreefs[6–9].Oystersmaystimulatedenitrificationbysupplyingorganiccarbon(C)andN intheformofbiodepositstodenitrifyingcommunitiesinsediments[4,10,11].Ammonium (NH +)remineralizedfromoysterbiodepositsandexcretionscanbenitrifiedtoNO -,which 4 3 supportsdenitrification[3,12].Inaddition,theoysteritselfcanprovideamicrobialhabitat fordenitrification(oysterdenitrification).Liveoystershavebeenshowntohavesignificantly higherratesofdenitrificationthansediments[13].Oystergutorgansinparticular,maybe hotspotsfordenitrification,asgutorgansofseveralinvertebratesincludinginsects,earth- worms,andmusselshaveshowntoexhibitdenitrificationactivity[14–17].Denitrificationin theinvertebrategutisthoughttobearesultoftheanoxicconditionsandavailabilityoflabile organiccarbonprovidedwithinthegutenvironment[15,18].Oystershellswerealsofound tohavedenitrificationactivityeventhoughtheratesweremuchlowerthanthosemeasured inliveoysters[19].Shelldenitrificationmaybeinfluencedbyfactorssimilartothoseimpact- ingsedimentarydenitrification.Likeoysterreefsediments,theshellmicrobiomeisexposed toincreasedCandNfrombiodepositsandexcretions,whichmayenhancedenitrification. Boththegutandshellmicrobiomesarelikelyimportantcontributorstooysterdenitrifica- tion,however,nopreviousstudieshaveidentifieddenitrifyingtaxaorgenesintheoyster microbiome. Studiesinvestigatingthecompositionofoystermicrobiomesarealsolimitedcomparedto thoseregardingsedimentmicrobiomes.Previousexaminationsofoystermicrobiomesby cloningandsequencingof16SrRNAgenes,DNAfingerprintingandfluorescentinsitu hybridization(FISH)revealedProteobacteriaandFirmicutesasdominanttaxaindifferentoys- terspecies,butwererestrictiveinscaleorresolution[20–25].Kingetal.[26]wasoneofthe firststudiesusinghigh-throughputnext-generationsequencing(NGS)of16SrRNAgene ampliconstocharacterizetheintestineandstomachmicrobiomeoftheeasternoyster.This studyshowedadominanceofMollicutesorPlanctomycetesintheoysterstomach,whileintes- tineswerefoundtobemorespeciesrichandlargelycomposedofthephylaChloroflexi,Proteo- bacteria,Verrucomicrobia andPlanctomycetes[26].Follow-upmicrobiomestudiesusing16S NGSincludedfurtherexaminationoftheoystergutmicrobiome,aswellasmicrobiomesof oystergills,mantleandhemolymph[27–30].Forexample,inLokmeretal.[28]higherabun- dancesofGammaproteobacteriawerereportedinthegut,gill,mantle,andhemolymphmicro- biomescomparedtothesurroundingseawater.However,noneofthestudiestodatehave PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 2/21 Denitrificationpotentialoftheoystermicrobiome attemptedtoconnecttheoystermicrobiomestructuretoitsfunctionusingNGSof16SrRNA geneamplicons. Exploringthelinkagebetweenthestructureandfunctionofmicrobiomespresentsafinan- cialandlogisticalchallenge.Whole-genomeshotgunmetagenomicsoffertheabilitytoidentify communitystructureandfunctionalgenesrelatedtometabolicprocessesinanenvironment, suchasthoseofmicrobiomes.Wide-scale,whole-genomemetagenomicstudieshowever,are oftenprohibitivelycostlyandmaynotbesufficientforlargesamplesetsorforsampleswhere prokaryoticgeneticcontributiontothemetagenomeislow[31].Asaresult,manymicrobiome studiesrelyonmuchlessexpensiveandaccessible16SrRNAgenebasedampliconsequencing, whichtraditionallyhasofferedlittleinsightintofunctionality.Toaddressthisshortcoming with16SrRNAgenesequencing,bioinformaticprograms,PhylogeneticInvestigationofCom- munitiesbyReconstructionofUnobservedStates(PICRUSt)[32],andmorerecentlyPAthway PRedictionbyphylogenetICplAcement(paprica)[33],havebeendevelopedtoinfermetabolic pathwaysfrom16SrRNAgenesequences.Severalrecentstudieshaveusedmetabolicinference programstoinfermicrobialmetabolismsinmarinemicrobiomessuchasthoseofmacrobiota biofilms[34],sponges[35],andcorals[36].Somekeydifferencesintheprogramsareinthe assignmentofpathwaysanduserflexibility.PICRUStusesancestralstatereconstructionto infertheprobablemetabolism(accordingtotheKEGGontology[37])ofextantGreengenes operationaltaxonomicunits(OTUs)[38].Incomparison,papricadescribescommunitystruc- turethroughphylogeneticplacementwithpplacer[39]ontoareferencetreecreatedfromall completedgenomeinGenbank[40].Papricathenusesapre-computeddatabasetoassign genomicfeatures(includinggenesandmetabolicpathwaysviatheMetaCycontology[41]). Papricaisdesignedtomaximizeuserflexibilityandhasoptionsforaddingreferencedraft genomesandcustomizingtheenzymecommission(EC)numbersassociatedwithreference genomes. Wecombinedacustomizeddatabaseofgenomesanddenitrificationgeneswiththepaprica programtolinktheoysterdigestivegland(gut),shell,andreefsedimentmicrobiomestruc- turestodenitrificationbycharacterizingthecompositionofmicrobiomesandidentifying potentialdenitrifiersfrom16SrRNAampliconsequences.Ourmainobjectiveswereto(1) comparetheoystermicrobiomes’taxonomicclassificationsdeterminedbypapricaandother taxonomicdatabases,(2)examinethestructureanddiversityoftheoystermicrobiomesusing ataxonomicallyindependentOTUanalysis,and(3)connecttheoystermicrobiometoratesof denitrificationbycomparingtherelativeabundancesandcompositionofdenitrificationgenes ineachmicrobiometomeasuredN fluxes.Acustomizedpapricadatabasewasconstructed 2 withdissimilatorynitritereductasegenes(nirSandnirK),andnitrousoxidereductasegene (nosZ)identifiedfromcompletedordraftgenomes.NirSandnirKencodeenzymesresponsi- bleforthereductionofnitrite(NO -)tonitricoxide(NO),whilenosZencodesforenzymein 2 thereductionofnitrousoxide(N O)tonitrogengas(N )inthedenitrificationpathway.The 2 2 nosZgeneclassificationwasfurtherdividedintotwoseparateclades;cladesI(nosZI)andII (nosZII).GenecladesnosZIandnosZIIdifferbasedonvariationsinsignalingpeptides,phy- logeny[42],andresponsestoenvironmentalconditions[43,44].Continuousflowexperiments wereperformedwithliveoysters,emptyshells,andreefsedimentstomeasuretheassociated denitrificationactivity. Materialsandmethods Samplecollectionandflow-throughexperiment Triplicatesamplesofliveoysters,pairsofemptyoystershells,andintertidalsurficialsediment corestakenwithinoysterreefs[45]werecollectedon7July2013atlowtidefromHoopHole PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 3/21 Denitrificationpotentialoftheoystermicrobiome Creek(Latitude34.706483,Longitude76.751931),atidalcreeklocatedinAtlanticBeach,NC, andimmediatelytransportedtotheUniversityofNorthCarolinaInstituteofMarineSciences (UNCIMS).OysterssampleswereacquiredaccordingtoconditionsdetailedinUNCIMS’s researchcollectionpermitfromNCDivisionofMarineFisheries.Temperature,salinity,dis- solvedoxygen(DO)weremeasuredusingaYSIwaterqualitysonde(YSI,Inc.).Waterwasfil- teredthroughWhatmanGF/Ffilters(25mmdiameter,0.7lmnominalporesize)andthe filtratewasanalyzedwithaLachatQuick-Chem8000automatedionanalyzerforNO -. 3 Sedimentcoreswereleftinawaterbathovernightwithcontinuousaerationwithairstones. Oystersandshellswerestoredovernightinracewayflumesandthenaddedtoindividualcores andcappedthefollowingmorning.Continuous,flow-throughcoreincubationexperimentsto measureN fluxeswereconductedunderdarkconditionsinanenvironmentalchamberheld 2 atconstantsitewatertemperaturesusingeachofthecollectedsamples.Thetreatmentscon- sistedof:(1)liveoyster,(2)oystershellsonly,and(3)sediment.Samplesfromthebypassline (floweddirectlyfromreservoirto5mlgroundglassvial)andeachcore’soutflowwerecollected followingtheacclimationperiod.Inflowwaterandoutflowwaterleavingthecoreswereana- lyzedfordissolvedN ,O andArusingaBalzersPrismaQME200quadruplemassspectrome- 2 2 ter[46].ConcentrationsofO andN weredeterminedusingtheratiowithAr[46,47]. 2 2 Followingtheexperiment,oysters,oystershells,and50mLofsedimentfromthecoreswere frozenandshippedtotheVirginiaInstituteofMarineScience,wheretheywerestoredat -80˚C. Wholeoysterswerepartiallythawedatroomtemperatureforapproximately30minutes beforedissection.Dissectionswerecarriedoutusingsterilescalpelblades.Digestiveglands werecarefullyexcised,transferredto2.0mLmicrocentrifugetubes,andfrozenat-80˚C.Fol- lowingdissection,theremainingoystertissuewasremovedfromitsshell,andtheinteriorof theshellwasscrubbedwith75%ethanol.Oystershellsfromliveoysters(shell(live))and pairedoystershellscollectedfromthereef(shell(only))werecrushedintoroughly0.5–5.0 mmsizedpiecesusingsterilizedhammerstohomogenizetheexteriorshellbiofilm.Shellfrag- mentswerethentransferredto50mLfalcontubes,andfrozenat-80˚C. DNAextractionandamplification DNAwasextractedfrom0.25–0.30gramsofdigestiveglandusingtheQiagenDNAstoolmini kit(Qiagen,Hilden,Germany)followingthepathogendetectionprotocol.Shell(0.40–0.60 grams)andsediment(0.50–0.75grams)extractionswereconductedusingMoBIOPowersoil extractionkits(Mo-BioLaboratories,Inc.,Carlsbad,CA)followingthemanufacture’sproto- col.Asaresultofvariationinthesourcematerial,differentkitswereusedtoextractDNA fromtheoysterdigestiveglandandtheoystershellorreefsedimentinordertooptimizeDNA qualityandDNAyieldforPCRandsequencingefficiency.Whilethismayintroducesome bias,thesebiasestendtohaveaminimalimpacton16SNGSmicrobiomestudies[48].Overall, 12DNAsampleswereextracted:triplicateDNAsamplesfrom(1)oysterdigestivegland, (2)shellfromliveoysters,(3)collected(empty)pairedshells,and(4)oystersediment. InitialamplificationofthetargetedhypervariableV4regionofthe16SrRNAgenewasper- formedonextractedDNAusingforwardprimer515Fandmodified,barcodedreverseprimer 806R[49],adaptedforusewiththeIonTorrentPersonalGenomeMachine(PGM).Thebasic manufacturer’sPCRprotocolwasusedwithTaqDNAPolymerase(Invitrogen,Carlsbad,CA) tocreateaPCRmastermixwiththefollowingmodification:1mMdNTPmixturewasusedin placeof10mMforafinalconcentrationof0.02mMdNTP.Thermalcyclingconditionscon- sistedofaninitialdenaturationstepat94˚Cfor3min,followedby30cyclesof94˚Cfor1min, 54˚Cfor1min,68˚Cfor2min.Afinalelongationstepof68˚Cfor10minwasaddedtoensure PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 4/21 Denitrificationpotentialoftheoystermicrobiome completeamplification.TheamplifiedproductsweregenecleanedusingtheUltraCleanGel- SpinDNAPurificationKit(Mo-BioBioLaboratories,Inc.,Carlsbad,CA).Theresulting ampliconlibrarieswerethenusedastemplatesforsequencingwiththeIonS5platformfollow- ingthemanufacture’sinstruction(ThermoFisherScientific,Waltham,MA).Sequencesgener- atedinthisstudymaybedownloadedfromtheNCBISequenceReadArchive,accession numberSRP106715. Bioinformaticanalyses Anoverviewofthebioinformaticpipelineusedforthe16SrRNAbasedmicrobiomeanalyses isshowninsupplementarymaterials(S1Fig).Removalofbarcodesandprimersfromraw sequencesandtrimmingofsequencelengthwereconductedusingtheRibosomalDatabase Project(RDP)pipelineinitialprocess[50](http://rdp.cme.msu.edu)withaminimumquality scoreof20,minimumlengthof200bases,andamaximumlengthof500.Mothurv1.35.1[51] wasusedtofurthertrimsequencesagainsttheSILVAv123[52]alignmenttemplate,preclus- ter,andscreenforchimericsequencesusingtheuchimedenovoprogram[53].Unknowntaxa, mitochondria,chloroplast,archaea,andeukaryoticsequenceswereremovedfromanalysis usingSILVAv123referencetaxonomyandtheWangclassificationmethod[54]withan80% minimumidentity.Archaeawereexcludedfromthisanalysisduetotheirlowabundances; archaeacomprised<1.0%ofthetotaloverallsequencingreadsandmadeup<3.8%ofthe readsinanyonesample.Furtheranalysesfocusedonhighqualitybacterialsequencesonly. PhylotypeanalysesusingMothurwereconductedonhighquality,trimmedbacterial sequencestodeterminethetaxonomicalcompositionofoysterdigestivegland,oystershell, andoysterreefsedimentmicrobiomes.SequenceswereclassifiedwithSILVAv123,Green- genesv13_5,orRDPv14referencetaxonomydatabasesusingtheWangclassificationmethod describedpreviously.Forallphylotypeanalyses,resultingtaxonomicrelativeabundancesfrom triplicatemicrobiomesampleswereaveragedtogether,withoystershellsfromliveoysters (shell(live))andcollectedpairedshells(shell(only))combinedtogethertofromtheoyster shellmicrobiome.Inaddition,anoperationaltaxonomic(OTU)analysiswasconductedon themicrobiomesequencestoassessmicrobiomediversity.Sequenceswereclusteredinto OTUsbasedona97%identityusingtheaverageneighborclusteringalgorithm.Toremove samplingintensityerrorandnormalizesamples,individualsamplereadswererandomlysub- sampledtothelowestnumberofreadsfoundinthesampledataset(n=66,687).Alldiversity metricsarebasedonmicrobiomeaverages.Fordiversitymetrics,bothshell(live)andshell (only)treatmentsdescribedpreviouslywerecombinedtoformtheshellmicrobiome;forprin- ciplecoordinateanalysis(PCoA),shell(live)andshell(only)microbiomeswereanalyzedsepa- ratelytodetermineshellmicrobiomestructuresimilarity. Toconductphylotypeanddenitrificationgeneinferenceanalysesusingpaprica,acustom- izedpapricadatabasewasconstructedwith5,445completeand222draftbacterialgenomes (S1andS2Tables).Highqualitydraftgenomes,whereavailable,wereselectedforinclusionin thedatabasebasedontheirrelevancetooystermicrobiometaxonomicalstructuresdeter- minedbytheSilva,Greengenes,andRDPphylotypeanalyses.Alldraftgenomesweredown- loadedfromGenBank(https://www.ncbi.nlm.nih.gov/genbank/).Eachindividualgenomewas curatedforthepresenceofnirS,nirK,andnosZgenesusingeithertheKEGGdatabasefor completedgenomesorgeneannotationsfordraftgenomes.Constructionofthepapricarefer- encedatabaseandinclusionofthegene-specificinferenceswereconductedfollowingthe instructionsfoundonthedeveloper’swebsite(http://www.polarmicrobes.org/building-the- paprica-database/).Phylotypeandgeneinferenceanalyseswereperformedbyfirstaligningthe qualitycontrolledqueryreadstothereferencealignmentwithInfernal,thenplacingthemon PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 5/21 Denitrificationpotentialoftheoystermicrobiome thephylogeneticreferencetreewithpplacer[39].Taxonomicalclassificationandgeneinfer- enceswerebasedonedgeplacementandconsensusidentitywitheitherinternalorterminal nodesasdescribedinBowmanandDucklow[33].Resultingabundancesfrompapricawere givenaseithervaluesnormalizedto16SrRNAgenecopynumberorasuncorrectedvalues. Normalizedvalueswerecalculatedasthemeasuredabundancedividedbythenumberof16S rRNAgenecopiespredictedforeachtaxon.Uncorrectedvalueswereusedforthephylotype analysistoperformanequivalentcomparisonwiththeMothurphylotypeanalyses,whilenor- malizedvalueswereusedwithgeneabundancestobettercapturepotentialdenitrifiers.Dis- tinctionsbetweennosZIandnosZIIgeneabundancesandtaxonomicclassificationwerebased onedgetaxonomiesonly. QuantitativePCR QuantitativePCR(qPCR)assayswereperformedonoysterandsedimentsamplestodeter- minetherelativeabundanceofnosZIgenes.RelativeabundancesofnosZIgenesineachsam- plewerecalculatedusingtheratioofnosZIabundancetotheabundanceof16SrRNAgenes. GeneabundancesfornosZIand16SrRNAweredeterminedusingthe6FlexReal-TimePCR system(ThermoFisherScientific,Waltham,MA).16SrRNAgeneqPCRassayswerecarried outinavolumeof20μLconsistingof10μLof2XSYBRgreenbasedGoTaqqPCRMaster Mix,0.05μLCXRreferencedye(PromegaCorporation,Madison,WI),0.01mg/mLBSA(Pro- megaCorporation,Madison,WI),0.5μMeachof16SrRNAspecificprimersEU341Fand 685RtargetinghypervariableregionsV3,and1uLoftemplateDNA.Thermalcyclingcondi- tionsconsistedofaninitialdenaturingstepat95˚Cfor10min,followedby30cyclesof95˚C for15s,55˚Cfor30s,and72˚Cfor30swithfluorescencedetection.QuantificationofnosZI wasperformedusingthesamereactionvolumesandcomponentsdescribedfor16S,with nosZIspecificprimersnosZ1FandnosZ1R[55].ThermalcyclingconditionsfornosZIqPCR werethesameas16Swiththeexceptionthattotalcyclenumberwasincreasedto50cycles, elongationstepat55˚Cwasincreasedto45s,andadditionalstepat80˚Cwithfluorescence detectionwasadded.Allreactionswereperformedon96-wellplateswithduplicatenegative controlsandstandards.Standardswerepreparedbyseriallydilutingplasmidscarryingeither the16SornosZIgeneandquantifiedwiththeAgilent220TapeStationSystem(AgilentTech- nologies,SantaClara,CA).Standardcurvesandgelelectrophoresiswereusedtoconfirmreac- tionspecificity. Statisticalanalyses Forallresults,variationwithineachmicrobiomeisreportedasthestandarddeviation.Diver- sitystatisticsincludingcoverage,ChaoI,andShannonwereconductedusingthesummary. singlecommandinMothur.Aprinciplecoordinateanalysis(PCoA)andtheAdonisfunction forPermanova(non-parametricpermutationalmultivariateanalysisofvariance;Anderson [56])usingBray-CurtisdissimilaritywereperformedonOTUdistributionswiththePhyloseq package[57]inR(version3.1,https://wwww.R-project.org).Fluxdatawasassessedfornor- malityusingtheqqplotfunctionandShapiro-Wilknormalitytest(p<0.05).One-wayanalysis ofvariance(ANOVA)andapost-hocTukeyhonestsignificantdifference(HSD)testswere performedonfluxmeasurementstotestforsignificantdifferences.Aone-tailed,pairedt-test wasusedtodeterminedifferencesbetweennosZIandnosZIIwithintheshellandsediment microbiomes,andaone-tailed,Welch’st-testwasusedtocomparegeneabundancesbetween theshellandsedimentmicrobiomes.Forcomparisonsbetweentheoyster,shell,andsediment microbiomes,relativeabundancesofthedigestiveglandmicrobiomeandshell(live)micro- biomewerecombinedtoformtheoystermicrobiome.Asimplelinearregressionanalysiswas PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 6/21 Denitrificationpotentialoftheoystermicrobiome conductedtocomparetherelativeabundancesofnosZImeasuredbyqPCRandtheuncor- rectednosZIgeneabundancespredictedbypaprica;uncorrectedpapricavalueswereusedso thatequivalentcomparisonsbetweengeneabundancesandqPCRrelativeabundancescould bemade.UnlessotherwisestatedallstatisticswereconductedinRandsignificancewasbased onp<0.05. Results Phylotypecomparisonofmicrobiomes Atotalof982,504trimmed,highquality16SrRNAgenesequenceswereobtainedfrom theoysterandsedimentmicrobiomesamples.Sequencingdepthaveragesforeachmicro- biomewere85,640±1.5x104foroysterdigestivegland,86,745±1.6x104forshell,and 68,378±1.5x103forsediment.Amongthe4databases,papricaclassifiedthegreatestnumber ofsequencesatthefamilylevel(85.4±9.8%),followedbySilva(76.5±18.9%),Greengenes (75.8±18.5%),andRDP(57.2±18.7%).Allfourdatabasesshowedanoverallsimilarpattern atthefamilyclassificationlevelfortheaveragerelativeabundanceofsequences(cid:21)1%(Fig1). Withtheexceptionofoneshellintheshell(only)treatmenthavingaslightlydifferentprofile Fig1.Averagerelativeabundancesofbacterialfamiliesintheoyster-relatedmicrobiomes,classifiedbydifferentreference databases.Familieswith(cid:21)1%relativeabundanceinsamplesareshown.Shellmicrobiomeconsistsofshell(live)andshell(only) treatments. https://doi.org/10.1371/journal.pone.0185071.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 7/21 Denitrificationpotentialoftheoystermicrobiome (S2Fig),phylotypecomparisonsbetweentheshell(live)andshell(only)microbiomeswere similarintaxonomyandrelativeabundance,andwerethuscombinedtogethertoformthe shellmicrobiome.Oftheoyster-relatedmicrobiomes,thesedimentmicrobiomeshowedthe greatestnumberoffamilies(n=12.5±1.7)andthelowestpercentofsequencesidentified (47.7±6.7%),theoysterdigestiveglandmicrobiomeshowedthelowestnumberoffamilies (n=1.3±0.5)andthehighestnumberofsequencesidentified(73.1±24.5%),andtheoyster shellmicrobiomefellsomewhereinthemiddle(n=8.8±2.5;59.7±7.7%)(Fig1).Eachofthe fourdatabasesconsistentlyidentifiedfamilyMycoplasmataceae fromphylumTenericutes as thedominantfamilyinthedigestiveglandmicrobiome.Papricawastheonlymethodtoalso includetheclassificationofOdoribacteraceaeasanotherdominantfamilymemberinthe digestiveglandmicrobiome.Withintheoystershellmicrobiome,allfourdatabasesshoweda dominanceoffamiliesSphingomonadaceae, Erythrobacteraceae,andRhodobacteraceaefrom phylumProteobacteria,andFlammeovirgaceae,Flavobacteriaceae,andSaprospiraceaefrom phylumBacteroidetes.DesulfobacteraceaeandRhodobacteraceaefromphylumProteobacteria, andFlavobacteriaceaeandSaprospiraceaefromphylumBacteroidetes,werethedominantfami- liesconsistentlyidentifiedinthesedimentmicrobiomesacrossallfourdatabases.Thegreatest variationamongthedatabasesintheclassificationoffamiliesoccurredinpaprica’sidentifica- tionofsequencesfromphylumBacteroidetesandGreengenes’sidentificationofsequences fromphylumProteobacteria.However,atthephylumlevel,identificationofsequencesfor eachphylumwasrelativelyconsistentamongthefourdatabases. DiversitycomparisonofmicrobiomesusingOTUanalysis All12microbiomesamplesweresubsampledto66,687sequencestoconductanOTUdiversity analysis(Table1andFig2).Averagecoverageofsequencesrangedfrom89.1±0.9%inthesedi- mentmicrobiometo99.6±0.0%intheoysterdigestivegland.Significantdifferencesamongthe microbiomesweredetectedwithPermanova(F =8.19,p=0.001)anddemonstratedusing 2,11 PCoA(Fig2),whichexplained65.8%ofthevariationfound.Theoysterdigestivegland,shell, andsedimentsamples,formeddistinctmicrobiomes,clusteringseparatelybasedonsample type.Thegreatestdissimilarityoccurredbetweentheoysterdigestiveglandandthesediment microbiome.Therewerenodifferencesbetweentheshellmicrobiomes,whethertheshellcame Table1. Summarystatisticsof16SrRNAgeneampliconsequencingforoyster-relatedmicrobiomes. Sample No.ofOTUsa Coverage(%) ChaoIndex ShannonDiversity DigestiveGland1 477 1.00 1038.17 1.06 DigestiveGland2 545 1.00 1292.67 1.10 DigestiveGland2 552 1.00 1372.33 1.33 Shell(Live)1 6,508 0.93 18777.19 5.46 Shell(Live)2 7,491 0.93 22004.59 6.31 Shell(Live)3 6,387 0.94 19435.59 5.90 Shell(Only)1 7,027 0.93 18966.56 6.24 Shell(Only)2 5,616 0.94 16288.26 5.37 Shell(Only)3 4,555 0.96 12681.37 5.19 Sediment1 10,946 0.89 33237.59 6.88 Sediment2 9,417 0.90 29882.63 6.57 Sediment3 11,106 0.89 32986.13 7.00 Allmetricsarebasedonsubsamplesofn=66,687. aOTUsarebasedon97%sequenceidentityusingMothur’saverageneighborclusteringalgorithm https://doi.org/10.1371/journal.pone.0185071.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 8/21 Denitrificationpotentialoftheoystermicrobiome Fig2.Principalcoordinateanalysis(PCoA)ofoyster-relatedmicrobiomes.PCoAbasedon16SrRNAgenesequencesusingBray- Curtissimilaritymatrix. https://doi.org/10.1371/journal.pone.0185071.g002 fromaliveoysteroradiscarded,emptyshell.Similartrendswerefoundamongthemicro- biomesregardingChaoIrichness,Shannondiversity,andOTUabundances(Table1).Sediment microbiomeshadthehighestlevelofdiversityandrichnessthanallothermicrobiomes(Chao 1=32,035±1.8x103,Shannon=6.8±0.2),andanaverageOTUabundanceof10,489±9.3x102. Shellmicrobiomehadmoderatediversityandrichness(Chao1=18,025±3.2x103,Shan- non=5.7±0.5)withanaverageOTUabundanceof6,264±1.5x103,andtheoysterdigestive glandshadthelowestlevelsofdiversityandrichness(Chao1=1,234±1.7x102,Shan- non=1.2±0.1)withanaverageOTUabundanceof525±4.1x101. Microbiomedenitrificationgeneinferenceswiththepapricadatabase Thesedimentandshellmicrobiomeshadaninferredaveragerelativeabundanceof 23.8±2.8%and26.1±3.0%,respectively,ofdenitrificationgenes(Fig3).Thedigestivegland microbiomewascomprisedofa(cid:20)0.1%relativeabundanceofdenitrificationgenes.Thegreat- estdifferencesamongthemicrobiomeswerefoundintherelativeabundancesofthenirK, nirS,ornosZgenesonly.Combined,organismscarryingoneofthesegenesweremore PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 9/21 Denitrificationpotentialoftheoystermicrobiome Fig3.Predictedaveragerelativeabundancesofdenitrificationgenesbypapricaforoyster-relatedmicrobiomes. Shellmicrobiomeincludesshell(live)andshell(only)treatments.Eachfullcirclerepresentsarelativeabundanceof 26.1%. https://doi.org/10.1371/journal.pone.0185071.g003 dominantthanorganismscarryingbothnirSandnosZornirKandnosZgenes.Betweenthe shellandsedimentmicrobiomes,theshellmicrobiomehadasignificantlyhigherrelative abundanceofbacteriacarryingthenirKonlygene(unpairedt-testt =6.48,p=2.6x10-5), 5 whilethesedimenthadasignificantlyhigherabundanceofthenirSonly(unpairedt-testt = 7 8.75,p=2.6x10-5)andahigher,butnotsignificant,abundanceofnosZonly(unpairedt-test t =2.74,p>0.05)genes.Amongthemicrobiomes,theaveragerelativeabundanceoforgan- 7 ismscarryingnosZIIgenewasoverallhigherthanthosecarryingthenosZIgene(Fig4).Inthe sedimentmicrobiome,thisdifferencewassignificant(pairedt-testt=7.14,p=9.5x10-3),but itwasnotsignificantintheshellordigestiveglandmicrobiomes.Taxonomically,nosZIbacte- riawereprimarilyfromclassAlphaproteobacteria,whilenosZIIbacteriawerefromclasses CytophygiaandFlavobacteriiaintheshell,andGammaproteobacteria,Cytophygia,andFlavo- bacteriiainthesediments(S3Fig). N fluxexperiments 2 Sitewaterphysicalandchemicalparametersusedinthefluxexperimentswereasfollows: 30˚Ctemperature,30pptsalinity,6.8mg/Ldissolvedoxygen(DO),and0.51μmolN/LNO -. 3 LiveoystercoreshadthehighestaveragefluxofN at364.4±23.5μmolN-N m-2h-1,followed 2 2 bytheshellonlycoresat355.3±6.4μmolN-N m-2h-1,andsedimentcoreswiththelowestat 2 270.5±20.1μmolN-N m-2h-1(Fig5).TherewerenosignificantdifferencesintheN fluxes 2 2 betweentheliveoysterandshell,butbothweresignificantlyhigherthanthesedimentcores (ANOVA,F =23.7,p=1.4x10-3;TukeyHSD,p<0.05). 2,6 MicrobiomenosZIgeneinferencecomparisontofluxmeasurementsand qPCR TheratesofN fluxesfollowedasimilartrendtotheaveragerelativeabundanceofnosZI 2 genesinferredinoyster,shell,andsedimentmicrobiomes(Figs5and6B).Oystersandshells hadsimilarlyhighN fluxratesandnosZIgenes,whilesedimentsampleshadlowerratesofN 2 2 fluxandlowerabundancesofnosZIgenes.Thistrendwasnotfoundintheaveragerelative abundanceofthenosZIIgenesorinoverallnosZgeneabundance(Figs5,6Aand6C).Asignif- icant,positivelinearcorrelationwasdeterminedbetweenthecopynumberofnosZIgenes quantifiedintheshellandsedimentmicrobiomesbyqPCRandtherelativeabundanceof PLOSONE|https://doi.org/10.1371/journal.pone.0185071 September21,2017 10/21

Description:
Ann Arfken1☯*, Bongkeun Song1☯, Jeff S. Bowman2, Michael Piehler3 Open-source, platform-independent, community-supported software for
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.