Sayyad Nojavan Kazem Zare Editors Demand Response Application in Smart Grids Operation Issues - Volume 2 Demand Response Application in Smart Grids (cid:129) Sayyad Nojavan Kazem Zare Editors Demand Response Application in Smart Grids Operation Issues - Volume 2 Editors SayyadNojavan KazemZare DepartmentofElectricalEngineering FacultyofElectricalandComputerEngineering UniversityofBonab UniversityofTabriz Bonab,Iran Tabriz,Iran ISBN978-3-030-32103-1 ISBN978-3-030-32104-8 (eBook) https://doi.org/10.1007/978-3-030-32104-8 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface After restructuring and deregulation of the electricity industry, it is stated that the power system will be more efficient if the differences between peak and low load periods are kept as small as possible. It has been demonstrated that the perfect balance between thesupply and demand inthe real time is necessary for a reliable operationofelectricitysystem.Demandresponseprogramisdefinedaschangesin electricconsumptionpatternsofend-userclientsinresponsetochangesofelectricity priceovertimeortoincentivepaymentsdesignedtodecreasehighelectricityusage athighwholesalemarketpricestimesorwhenthesystemreliabilityproblemsoccur. Inotherwords,theprocedurethroughwhichconsumersrespondtothepricesignals inserted in tariffs by changing their consumption patterns is called the demand response programs (DRPs). Moreover, DRPs can help the independent system operator (ISO) to reduce the price volatility during peak demand hours. Different DRPscanbeclassifiedintotwomaincategories:incentive-basedprograms(IBPs), which are further divided into classical programs and market-based programs, and price-based programs, (PBPs), which are based on the dynamic pricing rates in which the electricity tariffs are not flat. The rates fluctuate following the real-time costofelectricity.Theultimateobjectiveoftheseprogramsistoflattenthedemand curvebyofferingahighpriceduringpeakperiodsandlowerpricesduringoff-peak periods.Theseratesincludethetimeofuse(TOU)rate,criticalpeakpricing(CPP), extreme day pricing (EDP), extreme day CPP (ED-CPP), and real-time pricing (RTP). The basic type of PBP is the TOU rates, which are the rates of electricity price per unit consumption that differ in different blocks of time. The rate during peakperiodsishigherthantherateduringoff-peakperiods.ThesimplestTOUrate hastwotimeblocks:thepeakandtheoff-peak.Theratedesignattemptstoreflectthe average cost of electricity during different periods. The CPP rates include a pre-specified higher electricity usage price superimposed on TOU rates or normal flat rates. CPP prices are used during contingencies or high wholesale electricity prices for a limited number of days or hours per year. On the other hand, EDP is similartoCPPinhavingahigherpriceforelectricityanddiffersfromCPPinthefact that the price is in effect for the whole 24 h of the extreme day. Furthermore, in ED-CPPrates,CPPratesforthepeakandoff-peakperiodsarecalledduringextreme v vi Preface days.RTPsaretheprogramsinwhichthecustomersarechargedhourlyfluctuating pricesreflectingtherealcostofelectricityinthewholesalemarket.RTPcustomers areinformedaboutthepricesonaday-aheadorhour-aheadbasis.Manyeconomists areconvincedthatRTPprogramsarethemostdirectandefficientDRPssuitablefor competitive electricity markets and should be the focus of policymakers. In other words, PBPs have a wide range of planning horizon from a few minutes to many years. DRP can be categorized into long-term, midterm, and short-term programs based on their planning intervals. Programs with more than a day period are long- term or midterm programs. Finally, this book seeks to analyze economic and technicaleffectsofdemandresponseprogramsinsmartgridsinoperationissues. Bonab,Iran SayyadNojavan Tabriz,Iran KazemZare Contents 1 SmartGridsandGreenWirelessCommunications. . . . . . . . . . . . . 1 FarzadH.PanahiandFereidounH.Panahi 2 ImplementationofDemandResponsePrograms onUnitCommitmentProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 FarkhondehJabari,MousaMohammadpourfard, andBehnamMohammadi-Ivatloo 3 HourlyPrice-BasedDemandResponseforOptimal SchedulingofIntegratedGasandPowerNetworks ConsideringCompressedAirEnergyStorage. . . . . . . . . . . . . . . . . 55 MohammadAminMirzaei,MortezaNazari-Heris, BehnamMohammadi-Ivatloo,KazemZare,MousaMarzband, andAmjadAnvari-Moghaddam 4 EnergyManagementofHybridAC-DCMicrogrid UnderDemandResponsePrograms:Real-TimePricing VersusTime-of-UsePricing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 RaminNourollahi,KazemZare,andSayyadNojavan 5 DistributionFeederReconfigurationConsidering Price-BasedDemandResponseProgram. . . . . . . . . . . . . . . . . . . . . 95 EhsanHooshmandandAbbasRabiee 6 Risk-ConstrainedIntelligentReconfiguration ofMulti-Microgrid-BasedDistributionSystems underDemandResponseExchange. . . . . . . . . . . . . . . . . . . . . . . . . 119 AtaAjoulabadi,FarhadSamadiGazijahani, andSajadNajafiRavadanegh vii viii Contents 7 ACOptimalPowerFlowIncorporatingDemand-Side ManagementStrategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 FarkhondehJabari,MousaMohammadpourfard, andBehnamMohammadi-Ivatloo 8 DemandSideIntegrationintheOperation ofLVSmartGrids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 SusannaMocciandSimonaRuggeri 9 Multi-ObjectiveOptimizationModelforOptimal PerformanceofanOff-GridMicrogridwithDistributed GenerationUnitsinthePresenceofDemand ResponseProgram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 AfshinNajafi-Ghalelou,KazemZare,SayyadNojavan, andMehdiAbapour 10 OptimalOperationoftheMicrogridConsidering NetworkLossesandDemandResponsePrograms UnderConditionofUncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . 217 KazemZareandSaberMakhandi 11 Techno-EconomicFrameworkforCongestionManagement ofRenewableIntegratedDistributionNetworks ThroughEnergyStorageandIncentive-Based DemandResponseProgram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 AryaAbdolahi,FarhadSamadiGazijahani, NavidTaghizadeganKalantari,andJavadSalehi 12 StochasticOptimalPreventiveVoltageStabilityControl inPowerSystemsunderDemandResponseProgram. . . . . . . . . . . 265 MortezaNojavan,HereshSeyedi, andBehnamMohammadi-Ivatloo Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Chapter 1 Smart Grids and Green Wireless Communications FarzadH.PanahiandFereidounH.Panahi Nomenclature AMI Advancedmeteringinfrastructure AP Accesspoint BS Basestation CR Cognitiveradio D2D Devicetodevice DR Demandresponse DSM Demand-sidemanagement EE Energyefficiency EH Energyharvesting FQL FuzzyQ-learning FSL FuzzySARSAlearning GA Geneticalgorithm GHG Greenhousegas HetNet Heterogeneousnetwork HPPP HomogeneousPoissonpointprocess ICT Informationandcommunicationstechnology IoT Internetofthings LTE-A Long-termevolutionadvanced M2M Machinetomachine MNO Mobilenetworkoperator NE Nashequilibrium OPEX Operationalexpenditure PLC Powerlinecommunications PSM Powersavingmode F.H.Panahi(*)·F.H.Panahi DepartmentofElectricalEngineering,UniversityofKurdistan,Sanandaj,Kurdistan,Iran e-mail:[email protected] ©SpringerNatureSwitzerlandAG2020 1 S.Nojavan,K.Zare(eds.),DemandResponseApplicationinSmartGrids, https://doi.org/10.1007/978-3-030-32104-8_1 2 F.H.PanahiandF.H.Panahi QoS Qualityofservice RES Renewableenergysource RPS Renewablepowersupplier SEP Smartenergyprofile SG Smartgrid SGFAN Smartgridfieldareanetwork SGHAN Smartgridhomeareanetwork SGNAN Smartgridneighborhoodareanetwork SGWAN Smartgridwideareanetwork SINR Signaltointerferenceandnoiseratio UDN Ultradensenetwork UE Userequipment UMTS Universalmobiletelecommunicationssystem WSN Wirelesssensornetwork 1.1 Introduction Inatraditionalelectricgrid,themaincausesofpowerinefficiencyarehigh-voltage, long-distancetransmission,andlarge-scalecentralizedelectricitygeneration[1].To improve thepower efficiency and reliability of the grid, the concept of smartgrids (SGs) has been proposed by using information and communications technology (ICT). Demandresponse(DR),decentralized powergeneration, demand-sideman- agement (DSM), and price signaling are the key characteristics of a SG associated withgreenwirelesscommunications.WithDRandDSM,bothpowergeneratorsand consumers can interact to optimize the process of power supply and consumption. The power generation may be performed by small distributed power plants (e.g., small wind turbines and solar panels) and consumers using decentralized design. Therefore,thiscouldhelpconsumerstobelessdependentonthemainelectricalgrid. With price signaling, the consumers will know about the present power price. Moreover, the generators can encourage consumers to consume electrical energy when the demand is low, i.e., during the off-peak period, by giving them a lower priceforelectricityduringthosetimes.Thiswillresultinalowerinvestmentforthe infrastructureasthepeakloadwillbereduced. Inrecentyears,theintegrationofwirelesscommunicationsandSGshasattracted a significant research attention [2]. On one hand, wireless communication technol- ogieswillplayanessentialroleintherevolutionofSGsbycommunicatingavariety ofdataandmeasurementoverallnodesoftheelectricalgrid.Ontheotherhand,fora better power usage when providing a wireless service to mobile units, SGs can be usedtosupportgreenwirelesscommunications.Inwirelessnetworks,eachwireless basestation(BS)poweredbyaSGmightbeselfishinoptimizingitsownoperation in terms of capacity or quality of service (QoS). In this chapter, how to design energy-efficient communication infrastructures without negative effects on the