ebook img

Delft University of Technology Power Efficient RF/mm-wave Oscillators and Power Amplifiers for PDF

226 Pages·2017·26.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Delft University of Technology Power Efficient RF/mm-wave Oscillators and Power Amplifiers for

Delft University of Technology Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications Babaie, Masoud DOI 10.4233/uuid:456a2f0e-529d-4bd8-91e0-4dba4f623f0f Publication date 2016 Document Version Final published version Citation (APA) Babaie, M. (2016). Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications. https://doi.org/10.4233/uuid:456a2f0e-529d-4bd8-91e0-4dba4f623f0f Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications Masoud Babaie Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben; voorzitter van het College voor Promoties, in het openbaar te verdedigen op donderdag 9 juni 2016 om 12.30 uur door Masoud BABAIE Master of Science in Electrical Engineering, Sharif University of Technology, Tehran, Iran geboren te Teheran, Iran This dissertation has been approved by the promotor: Prof. dr. R. B. Staszewski Composition of the doctoral committee: Rector Magnificus chairman Prof. dr. R. B. Staszewski Delft University of Technology Independent members: Prof. dr. E. Charbon Delft University of Technology Prof. dr. ir. B. Nauta University of Twente Prof. dr. ir. P. Reynaert University of Leuven, Belgium Prof. dr. ing. S. Heinen RWTH Aachen University, Germany Prof. dr. P. Wambacq Vrije Universiteit Brussel, Belgium Dr. J. Craninckx IMEC, Leuven, Belgium Prof. dr. ir. W. A. Serdijn Delft University of Technology, reserve member Masoud Babaie, Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications, Ph.D. Thesis Delft University of Technology, with summary in Dutch. Keywords: RF, mm-wave, transmitter, oscillator, class-F, phase noise, impulse sensitivity function, switched-mode power amplifier, class-E/F, transformer, Bluetooth Low Energy, low voltage, low power, all-digital phase-locked loop (ADPLL). ISBN 978-94-6233-305-5 Copyright © 2016 by Masoud Babaie Cover photo was taken from www.hdwpics.com. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written permission of the copyright owner. Printed in the Netherlands. To my lovely parents, Mahmoud and Shahin To my lovely brothers, Saeed and Kasra And last, but not least, to my lovely wife Mina and her respected family “Insanity is doing the same thing over and over again and expecting different results.” Albert Einstein, 1879-1955 Contents Contents i 1 Introduction 1 1.1 Technology Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Quality Factor of Passives . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Noise of Active Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 A Class-F CMOS Oscillator 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Evolution Towards Class-F Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Realizing a Square-Wave across the LC Tank . . . . . . . . . . . . . . . . 12 2.2.2 Proposed Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Voltage Gain of the Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4 Proposed Class-F Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Class-F Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Quality Factor of Transformer-based Resonator . . . . . . . . . . . . . . . 22 2.3.2 Phase Noise Mechanism in Class-F Oscillator . . . . . . . . . . . . . . . . 23 2.3.3 Class-F Operation Robustness . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Extension of class-F operation to mm-wave frequency generation . . . . . . . . . 33 3 3 An All-Digital PLL Based on Class-F DCO for 4G Phones 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Time-to-Digital Converter (TDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 ADPLL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Digitally Controlled Oscillator (DCO) . . . . . . . . . . . . . . . . . . . . . . . . 42 i ii Contents 3.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 An Ultra-Low Phase Noise Class-F CMOS Oscillator with 191 dBc/Hz FoM 2 and Long-Term Reliability 49 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Challenges in Ultra-Low Phase Noise Oscillators . . . . . . . . . . . . . . . . . . 50 4.3 Evolution Towards Class-F Operation . . . . . . . . . . . . . . . . . . . . . . . . 53 2 4.4 Phase Noise Mechanism in Class-F Oscillator . . . . . . . . . . . . . . . . . . . . 59 2 4.5 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 Reliability of High-Swing RF Oscillators . . . . . . . . . . . . . . . . . . . . . . . 68 4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.8 Extension of class-F operation for reducing flicker noise upconversion . . . . . . 72 2 5 Comprehensive Analysis of Switch-mode PAs 77 5.1 Predicting Switching Amplifier Waveforms . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Determining ZVS and ZdVS Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Waveform Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4 Technology Dependent Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.5 Predicting Switching Amplifier Performance . . . . . . . . . . . . . . . . . . . . . 84 5.6 Effects of Oxide Breakdown on PA Performance. . . . . . . . . . . . . . . . . . . 94 5.7 Single Device Versus Cascode Structure . . . . . . . . . . . . . . . . . . . . . . . 97 5.8 Benefits of Non-zero Voltage Switching . . . . . . . . . . . . . . . . . . . . . . . . 98 5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 A Wideband 60GHz Class-E/F Power Amplifier in 40nm CMOS 105 2 6.1 Transmitter Architectures from mm-wave Viewpoint . . . . . . . . . . . . . . . . 105 6.2 Optimizing Active Devices at mm-wave Frequencies . . . . . . . . . . . . . . . . 109 6.3 Power Amplifier Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.1 Amplifier Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.2 Output Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.3 Output Matching Network Behavior to DM and CM Input Signals . . . . 119 6.3.4 Extended Class-E/F PA . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 2 6.3.5 Effects of CM Resistive Loss on PA’s Performance . . . . . . . . . . . . . 124 6.3.6 Optimum Output Matching Network and Device Size . . . . . . . . . . . 124 6.3.7 Low/Moderate Coupling-Factor Transformer for Wideband PAs. . . . . . 128 6.3.8 Driver Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.9 First Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.3.10 Effects of Dummy Metals on Transformer’s Performance . . . . . . . . . . 133 6.3.11 Power Amplifier Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Contents iii 7 Bluetooth-Low Energy Transmitter 143 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Switching Current-Source DCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2.1 Oscillator Power Consumption Tradeoffs . . . . . . . . . . . . . . . . . . . 146 7.2.2 Switching Current Source Oscillator . . . . . . . . . . . . . . . . . . . . . 150 7.2.3 Thermal Noise Upconversion in The Proposed Oscillator . . . . . . . . . . 153 7.2.4 1/f Noise Upconversion in The Proposed Oscillator . . . . . . . . . . . . . 156 7.2.5 Optimizing Transformer-based Tank . . . . . . . . . . . . . . . . . . . . . 156 7.3 Class-E/F Switched-mode Power Amplifier . . . . . . . . . . . . . . . . . . . . . 157 2 7.3.1 Efficiency and Selectivity Tradeoff in Transformer-based Matching Network158 7.3.2 Impedance Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.3.3 Class-E/F Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 2 7.4 All-Digital Phase-Locked Loop and Transmitter Architecture . . . . . . . . . . . 163 7.5 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.7 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.8 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8 Conclusion 173 8.1 The Thesis Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8.2 Some Suggestions for Future Developments . . . . . . . . . . . . . . . . . . . . . 174 Bibliography 177 List of Publications 191 Summary 195 Samenvatting 197 Chip Micrograph Gallery 199 List of Figures 200 List of Tables 209 Acknowledgments 211 About the Author 215

Description:
Keywords: RF, mm-wave, transmitter, oscillator, class-F, phase noise, .. fundamental oscillation voltage through an additional impedance peak. breakdown (TDDB) issue for less than 0.01% failure rate during ten years of the (a), (b) The drain and gain efficiencies versus X-factor, (c), (d) the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.