ebook img

Delft University of Technology Cr(VI)-free pre-treatments for adhesive bonding of aerospace ... PDF

197 Pages·2017·17.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Delft University of Technology Cr(VI)-free pre-treatments for adhesive bonding of aerospace ...

Delft University of Technology Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys Abrahami, Shoshan DOI 10.4233/uuid:d5850b96-ec5b-4639-aac0-e05f81681800 Publication date 2016 Document Version Final published version Citation (APA) Abrahami, S. (2016). Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys. https://doi.org/10.4233/uuid:d5850b96-ec5b-4639-aac0-e05f81681800 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys Ph.D. thesis Shoshan Tamar Abrahami This research was performed in Delft University of Technology Department of Materials Science and Engineering Mekelweg 2, 2628 CD Delft, The Netherlands This research was carried out under the project number M11.6.12473 in the framework of the Research Program of the Materials innovation institute (M2i) in the Netherlands (www.m2i.nl). Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. Ir. K.C.A.M Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op woensdag 7 december 2016 om 15:00 uur door Shoshan Tamar ABRAHAMI Master of Science in Materials Science and Engineering, Delft University of Technology, Delft, the Netherlands geboren te Haifa, Israël. This dissertation has been approved by the Promotor: Prof. Dr. H. Terryn Copromotor: Dr. J.M.C Mol Composition of the doctoral committee: Rector Magnificus chairman Prof. dr. H. Terryn Delft University of Technology, promotor Dr. J.M.C. Mol Delft University of Technology, copromotor Dr. J.M.M de Kok Fokker Aerostructures, The Netherlands Independent members: Prof. dr. B.J. Thijsse Delft University of Technology, The Netherlands Prof. dr. J.F. Watts University of Surrey, United Kingdom Prof. dr. P. Marcus École Nationale Supérieure de Chimie de Paris, France Dipl. Ing. T. Hack Airbus Group Innovations, Germany Prof. dr. J. Sietsma Delft University of Technology, The Netherlands (reserve member) Keywords: Aluminium, Cr(VI)-free, Surface pretreatments, Anodizing, Adhesive bonding, Adhesion, Durability. ISBN 978-94-91909-43-6 Cover design: Visual Essence, Utrecht, NL Copyright © 2016 by S.T. Abrahami All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission from the author. Printed by Proefschriftmaken.nl Content Summary VII Samenvatting IX Abbreviations and acronyms XI CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 7 CHAPTER 3 The role of acid-base properties in the interactions across the oxide-primer interface in aerospace applications 47 CHAPTER 4 XPS analysis of the surface chemistry and interfacial bonding of barrier-type Cr(VI)-free anodic oxides 67 CHAPTER 5 Effect of anodic aluminium oxide chemistry on adhesive bonding of epoxy 87 CHAPTER 6 Interfacial bonding strength and stability of epoxy and phenol resins on different aluminium oxide and silane chemistries 105 CHAPTER 7 Potentiodynamic anodizing of aluminium alloys in Cr(VI)-free electrolytes 127 CHAPTER 8 The effect of Cr(VI)-free anodizing conditions on interfacial bonding strength and durability of adhesively joined aluminium 141 CHAPTER 9 Conclusions & recommendations 163 Appendix 173 Acknowledgments 179 List of publications 181 Curriculum Vitae 183 V Summary For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminium for adhesively bonded aircraft structures in Europe. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and carcinogenic properties. The approaching ban on the use of hexavalent chromium (Cr(VI)) makes its elimination a high-priority R&D topic within the aerospace industry and the Cr(VI)-era will soon have to come to an end. Anodizing aluminium in acid electrolytes produces a self-ordered porous oxide layer with a thin barrier layer underneath. This special type of oxide readily adheres to the organic resin and provides protection against corrosion. Although Cr(VI)-free candidates such as sulphuric acid- (SAA), phosphoric acid- (PAA) and mixtures of phosphoric-sulphuric acid anodizing (PSA) can be used to create this type of structure, the excellent adhesion and corrosion resistance that is currently achieved by the Cr(VI)-based process is not easily matched. To gain a better understanding of the underlying physical and chemical mechanisms that contribute to the adhesion and durability in these structures, this study investigates the correlation between the oxide’s chemical and morphological characteristics, as influenced by the anodizing electrolyte, and bond performance. The major challenge in the mechanistic understanding of the adhesion in bonded components is to differentiate between the different forces acting at the oxide/resin interface. In the first part of this PhD thesis, studies focus on the role of surface chemistry. To exclude the contribution of mechanical interlocking between the oxide and the resin, featureless oxides were prepared by stopping the anodizing during the formation of the barrier layer. Surface characterization of the different anodic oxides by means of Fourier transform infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS) revealed no significant net change in the acid-base properties of the different anodic oxides. It was found that local chemical changes were introduced due to the incorporation of electrolyte-driven anions. Therefore, a model was developed to quantify the relative amounts of O2-, OH−, PO 3−, and SO 2−, showing significant changes in the type and 4 4 amount of surface species. Consequently, measurements showed that the pretreatments and the molecule type affected oxide/molecule interfacial interactions. To evaluate the contribution of adsorptive interaction in practice, peel tests were performed on featureless oxides bonded with commercial aerospace adhesives. Results showed that significant initial dry adhesion is achieved with FM 73 epoxy without mechanical interlocking, and independent of the type of pretreatment. However, the formed bonding was not water resistant, with the amount of applied stress needed for peeling linearly increasing with the amount of surface hydroxyls. Moreover, the application of a thin γ-APS silane layer before bonding with epoxy has confirmed that the stability of VII Summary the interface is also determined by the nature of the bond, showing much more stable interfaces in the presence of covalent interactions. When peel tests were performed with a phenolic-based adhesive (Redux 775), no correlation to the surface chemistry was found. Nevertheless, the bonded joints on the basis of the weakly acidic character of the phenolic adhesive showed better resistance to corrosion in salt spray tests, compared to those on the basis of the epoxy adhesive. Therefore, we conclude that both oxide surface- and adhesive chemistries play a role in the formation and long-term stability of the oxide/resin interface. In the second part of this thesis industrial porous oxides were applied. Fundamental investigations show that changing the voltage during anodizing can produce morphological variations across the oxide thickness. The effect of the initial voltage sweeps, however, was limited by the oxide dissolution action of phosphoric acid in PSA, since prolonged anodizing in this electrolyte not only leads to an increase of the pore diameter, but also completely dissolves the upper most part of the oxide. Morphological changes were distinguished between geometrical modifications that affect the pore size and changes in the surface roughness that was caused by extended chemical dissolution at higher anodizing temperatures and/or phosphoric acid concentration. Measured carbon concentration profiles within the pores using high-resolution transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS) indicated that resin penetration is affected by both aspects. Moreover, mechanical performance in peel tests indicates that these parameters, rather than the oxide layer thickness are critical for moisture-resistant adhesion. Both adhesion mechanisms: adsorption and mechanical interlocking seem to contribute to the adhesion in these structural bonds. A higher degree of dissolution during anodizing is beneficial for the adhesion, facilitating a composite-like interphase. Too much dissolution, however, reduces the resistance to bondline corrosion. Overall, the presented results illustrate the need to consider both chemical and morphological changes in the selection of Cr(VI)-free alternatives for structural adhesive bonding. VIII Samenvatting Al meer dan zes decennia lang is chroomzuur anodiseren (CAA) de belangrijkste stap in de oppervlakte-voorbehandeling van aluminium panelen in de Europese vliegtuigbouw. Helaas bevat chroomzuur zeswaardig chroom (Cr(VI)), een zeer giftige en kankerverwekkende stof. Het aanstaande verbod op het gebruik van deze stof maakt de eliminatie ervan een hoge prioriteit binnen de luchtvaartindustrie en het Cr(VI)- tijdperk zal op afzienbare termijn tot een einde moeten komen. Het anodiseren van aluminium in zure elektrolyten resulteert in een poreuze oxidelaag met daaronder een dunne barrièrelaag. Dit type oxide is uitermate geschikt voor lijmhechting en beschermt bovendien het substraat tegen corrosie. Hoewel anodiseren in Cr(VI)-vrije alternatieven zoals zwavelzuur (SAA), fosforzuur (PAA) en mengsels van fosfor- en zwavelzuur (PSA) kunnen worden gebruikt om een dergelijke structuur te creëren, is de uitzonderlijk goede hechting en corrosiebestendigheid van CAA moeilijk te evenaren. Om een beter begrip van de onderliggende fysische en chemische mechanismen die bijdragen aan de hechting en de duurzaamheid van deze structuren te verkrijgen, is in deze studie het verband tussen de kwaliteit van adhesie en de chemische en morfologische kenmerken van het oxide onderzocht. De nadruk is gelegd op de invloed van het elektrolyt op de hechting en duurzaamheid van lijmverbindingen. De grootste uitdaging bestaat erin de verschillende bijdragen aan hechting in deze gelijmde panelen te onderscheiden. Het eerste deel van dit proefschrift richt zich erop de rol van de oppervlaktechemie te bestuderen. Om de bijdrage van de mechanische hechting tussen het oxide en de lijm uit te sluiten, is gebruik gemaakt van modeloxiden. Deze zijn bereid door het anodisatie- proces te stoppen tijdens de vorming van de barrièrelaag. Oppervlaktekarakterisering door middel van Fourier transform infrared (FTIR) spectroscopie en X-ray photoelectron spectroscopie (XPS) vertoonde geen significante veranderingen in de zuur-base eigenschappen van de verschillende anodische oxiden. Lokale chemische veranderingen komen echter voort uit de opname van elektrolyt-afhankelijke anionen. Het ontwikkelde model om de relatieve hoeveelheden van O2-, OH-, PO 3- en SO 2- 4 4 te kwantificeren, bracht significante verschillen in type en hoeveelheid anionen aan het licht. Aanvullende metingen hebben aangetoond dat de voorbehandeling en het type organisch molecuul de interacties aan het grensvlak tussen molecuul en oxide sterk beïnvloeden. Om de bijdrage van adsorptie in de praktijk te evalueren, zijn pelproeven met commerciële lijmen uitgevoerd. Resultaten toonden aan dat een goede initiële (droge) hechting met FM 73 epoxy lijm kan worden bereikt zonder mechanische verankering en onafhankelijk van het type elektrolyt. Desalniettemin, de gevormde binding is niet waterbestendig en de mechanische belasting nodig voor het doen bezwijken van de lijmverbinding neemt lineair toe met de hydroxylfractie aan het oppervlak. Wanner IX

Description:
Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys. Ph.D. thesis. Shoshan Tamar Abrahami acid anodizing (PSA) can be used to create this type of structure, the excellent adhesion . Het eerste deel van dit proefschrift richt zich erop de rol van de oppervlaktechemie te.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.