ebook img

Delft University of Technology Autonomous Conflict Detection and Resolution for Unmanned Aerial ... PDF

143 Pages·2017·11.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Delft University of Technology Autonomous Conflict Detection and Resolution for Unmanned Aerial ...

Delft University of Technology Autonomous Conflict Detection and Resolution for Unmanned Aerial Vehicles On integration into the Airspace System Jenie, Yazdi DOI 10.4233/uuid:02965443-f1e5-440c-b9af-0e0648be9552 Publication date 2017 Document Version Final published version Citation (APA) Jenie, Y. (2017). Autonomous Conflict Detection and Resolution for Unmanned Aerial Vehicles: On integration into the Airspace System. https://doi.org/10.4233/uuid:02965443-f1e5-440c-b9af-0e0648be9552 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. AUTONOMOUS CONFLICT DETECTION AND RESOLUTION FOR UNMANNED AERIAL VEHICLES ON INTEGRATION INTO THE AIRSPACE SYSTEM Proefschrift terverkrijgingvandegraadvandoctor aandeTechnischeUniversiteitDelft, opgezagvandeRectorMagnificusprof.ir.K.C.A.M.Luyben, voorzittervanhetCollegevoorPromoties, inhetopenbaarteverdedigenopmaandag23januari2017om10:00uur door YazdiIbrahim JENIE MagisterTeknikinAeronauticsandAstronautics, InstitutTeknologiBandung,Indonesia geborenteSurakarta,Indonesia Ditproefschriftisgoedgekeurddoorde promotor:Prof.dr. ir.J.M.Hoekstra copromotor:Dr.ir.E.vanKampen Samenstellingpromotiecommissie: RectorMagnificus, voorzitter Prof.dr.ir.J.M.Hoekstra, TechnischeUniversiteitDelft,promotor Dr.ir.E.vanKampen, TechnischeUniversiteitDelft,copromotor Prof.dr.ir.J.A.Mulder, TechnischeUniversiteitDelft iOnafhankelijkeleden: Prof. dr. H. Muhammad, InstitutTeknologiBandung Prof. dr. D. Delahaye, ÉcoleNationaledel’AviationCivile F. J. L. Bussink,B.Sc. NederlandsLucht-enRuimtevaartcentrum Prof. dr. R. Curran, TechnischeUniversiteitDelft iReservelid: Prof.dr.D. G.Simons,ko TechnischeUniversiteitDelft Keywords: Airspace Management; Airspace Integration; Autonomous Collision Avoidance; Conflict Detection and Resolution; Monte Carlo Simu- lation; Safety Analysis; Unmanned Aerial Vehicle; Velocity Obstacle Method; Printedby: Proefschriftmaken,Vianen,TheNetherlands CoverdesignbyYazdiIbrahimJenie ISBN978-94-6186-779-7 Anelectronicversionofthisdissertationisavailableat http://repository.tudelft.nl/. Copyright©2017byYazdiIbrahimJenie.Allrightsreserved.Nopartofthispublication maybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyany means, electronics, mechanical, photocopying, recording, orotherwise, withoutprior permissioninwritingfromtheproprietor. S UMMARY AUTONOMOUSCONFLICTDETECTIONANDRESOLUTIONFORUNMANNED AERIALVEHICLES ONINTEGRATIONINTOTHEAIRSPACESYSTEM YazdiIbrahimJENIE Inthelastdecade, thecommercialvaluesofUnmannedAerialVehicles(UAV),de- fined as devices that are capable of sustainable flights in the atmosphere that do not requiretohaveahuman(pilot)on-board,becomewidelyrecognizedthankstothead- vancementoftechnologyinmaterials, sensors, computation, andtelemetry. AsUAVs are becoming cheaper and more user-friendly, many companies are motivated to in- corporatethemintheireverydaybusiness,suchasfordeliveryservices,journalisms,or providingInternetservices. AllofcommercialprospectiveapplicationsforUAVs,however,canonlybeachieved oncethevehiclesarefullyintegratedintotheairspacesystem. Thisisnotthecaseyet, sinceUAVoperations,inmostpartoftheworld,arestrictlyregulatedtoflyonlywithin thevisuallineofsight(VLOS)ofthegroundpilot,forbiddingtheotherwisebeyondvisual lineofsight(BVLOS)flight.Onemainreasonforsuchstrictregulationsistheapprehen- sionaboutthesafetyofUAVoperations,whicharelikelytobeheterogeneousduetothe possiblelargevariationofUAVsintheairspace,eachwiththeirownpreferenceonhow tointeractwithotherUAVsandwiththecurrent(manned)airtraffic. Hence,airspace management,especiallyinthemitigationofmid-airconflictsandcollisions,isexpected tobecomemuchmorecomplex,compromisingtheoverallsafety. Therefore,theproblemofsafeUAVintegrationintotheairspaceistheselectedtopic for this research, especially in the development of Conflict Detection and Resolution (CD&R)systems. Theparticularsystemdescribesanyproceduresanddevicesforvehi- clestomitigatepotentialmid-airconflictsandcollisions. ForaUAV,thissystemneeds toconsiderawiderangeofobstaclesitmightencounter,fromastaticunmovingobject toothervehicleswithcompletelydifferentcharacteristics.Moreover,therecanbeinter- actionsbetweentwoUAVswithdifferentlevelsofCD&Rsystemawareness. Onlywhen theirCD&Rsystemsarefullydefinedandregulatedtohandlesuchdiversescenarios,can UAVsbefullyintegratedintotheairspace. iii iv SUMMARY Themaingoalofthisresearchistodefineandevaluatesystemsfordetectingand resolving possible mid-air conflicts of Unmanned Aerial Vehicles, specifically to sup- portsafebeyondvisualline-of-sightoperationsinanintegratedairspace. Thisgoalis achievedbyaddressingthefourresearchproblems,i.e.theairspaceincompatibility,the CD&Rdiversity,thedoubtonUAVsafety,andtheUAVautonomousCD&Rinadequacy. Directlyfromthoseproblems,fourresearchquestionsareformulatedasfollows: 1. WhatstructurecanbedefinedtomanagetheCD&RsystemforUAVsoperatingin anintegratedairspace? 2. How can the diverse UAV CD&R approaches be classified into a comprehensive taxonomythatiscompatiblewiththecurrentairspace? 3. How can the safety parameters of the integrated airspace, under influence of a heterogeneousCD&Rapproaches,canbedetermined? 4. HowcananautonomousCD&RsystemforUAVsbedefinedtohandlepotential conflicts,seeingthevehicleaspartoftheintegratedtrafficintheairspace? Toaddressthefirstquestion,thisresearchproposesataxonomyofCD&Rapproaches forUAVoperatinginanintegratedairspace. PossibleapproachesforUAVsaresurveyed andbrokendownbasedontheirtypesofsurveillance,coordination,maneuver,andau- tonomy. Thefactorsarecombinedbackintoseveral‘genericapproaches’,forexample, theTrafficWarningandCollisionAvoidanceSystem(TCAS)inmannedflightcanbeseen asCD&Rthatusescombinationofadistributeddependentsurveillance,anexplicitco- ordination,anescapemaneuver,andconductedmanually. Theapproachesthatfitsthe schemeofUAVintegrationarethenselectedmethodically,resultinginanoveltaxonomy ofUAVCD&Rapproaches. Fromthegenericapproachesinthetaxonomy,amulti-layeredarchitectureisdevel- opedinthisresearch,managingCD&Rproceduresintheairspacethatarecompatible withthemannedflights,whilealsoembracingthosethatareuniquetoUAVs’.Themulti- layeredfeaturemeansthatinsteadofrelyingononlyoneCD&Rapproach,UAVscanim- plementmultipleapproachinafail-safeconcept,ensuringthateveninacasewhenone approachfails,therearestillavailablelayersthatcanpreventdirectcollisions.SixCD&R approachesfromthetaxonomyarefurtherselectedasthesafetylayers,whichincluded thelayerof(1)Procedural,(2)Manual,(3)Cooperative,(4)Non-cooperative(5)Escape, and(6)Emergencyapproaches. Abriefimplementationofthemulti-layeredCD&Rarchitecturesuggestingthatitus- agedependscloselyonthetypeofmission: inaparticularmissionsomelayersmight becomelessnecessary,whileinotherstheymightbeimportant.Theproposedarchitec- ture,however,islackingdefinitionsofphysicalthresholdsbetweenlayers,suchasthe distanceortime-to-collision,whichneedtobedefinedspecificallyforeachtypeofUAV. ThisiswarrantedforthefutureworkforUAVsairtrafficmanagement,butmightonlybe trulybedefinedoncetheBVLOSflightsofUAVsareallowedintheairspace. Answeringthesecondresearchquestion, thepreviouslyproposedtaxonomyisat- tributedtoavailableCD&Rmethodsintheliterature,inordertodeterminetheirfitness andwhethertheyarecomplementaryorinterchangeablefromonetoanother. Atotal of64CD&Rmethodsareevaluated,rangingfrompreflightcalculationsondeterminis- SUMMARY v ticmaps,suchasaGlobalPathPlanning,toreactiveavoidanceswithon-boardsensors, suchasbyusingtheVelocityObstaclemethod.Usingthetaxonomy,thepositionofeach approachesintheoverallsafetymanagementscheme,suchasbyusingamulti-layered architecture,canbedefined. The taxonomy attribution has shown that many of the available methods fall out- sidethetaxonomy,andsuggeststheneedtoconcentrateresearchmoretopartswhere representative methods are lacking. On further evaluation, it also becomes apparent thatthediversityofCD&Rpreferencesonlyexistedwithinthewallsoflaboratories,due to the current UAV flight limitation to only within VLOS. Nevertheless, the taxonomy potentiallycanaidbothdevelopersandauthoritiesindecidinganadequateCD&Rap- proach(es)toensuresafetyofanupcomingBVLOSflightinanintegratedairspace. ThethirdquestionisaddressedbysettingupaseriesofMonteCarlosimulationto derive two safety parameters, i.e. the frequencies of near mid-air collisions (NMAC), andofmid-aircollisions(MAC).TheformerrepresentshowoftentwoUAVsflycloser toeachotherthanacertainthresholds,whichissettobe50metersinmostofthedis- cussioninthisdissertation, whilethelaterdescribetheactualbody-to-bodycollision between vehicles. The use of the Monte Carlo simulations is meant to overcome the limitationofavailableanalyticalmethodsinliterature,byincorporatingtheeffectofdis- tributedCD&Rsystem, aswellastheheterogeneousconditionsetupfortheairspace. Themethod,however,hasrarelybeenpreferredinthesafetyparameterderivation,due toitssignificantlytime-consumingprocesstoobtainanymeaningfulresults.Thisprob- lemisaddressedinthisresearchbysimulatinginhigh-densitysetups,ofwhichresults arescaleddownlatteron,tomorerealisticdensitiesofanairspace. TwoCD&Rprotocolsaremodeledinthesimulations,firstoneisthecooperativepro- tocol,whereeachvehicleconductavoidancethatisimplicitlycoordinatedbycommon rules-of-the-air,andthesecondoneisthenon-cooperativeprotocol,whereeachvehicle avoidswithpreferencesthatarerandomlygiven. Acertaintargetlevelofsafety(TLS)is definedaswellinresearch, tomeasuredthecollectiveperformanceoftheCD&Rsys- tems,inwhichthefrequencyofNMACsandMACsshouldbelowerthan10−2and10−7 perhour,respectively. ThosevaluesofTLSareproposedonthebasisoftheequivalent valuesinmanned-flighthistoryforthelastdecade. Astheresults,whilemaintainingtheTLSoftheairspace,thedistributedcooperative CD&RprotocolisabletoincreasethemaximumnumberofoperatingUAVinoneflight leveltoalmosttentimesthenumberwhennoCD&Risapplied. Thiswouldmeanthat foracitylikeChicagothathasanareaofmorethanfive-thousandkilometer-square,a totalof45UAVscanoperateindependentlyinonealtitude. Itisalsoconcludedthata muchbetterresultsareobtainedwhileusingthecooperativeprotocol, whichjustifies thenecessityoforderintheairspace, whichinthiscaseistheimplementationofthe Right-of-wayrules. TheusefulnessofMonteCarlosimulationsmethodisdemonstratedinthisresearch, testingvariousCD&Ralgorithmsandprotocolsinavastnumberofpossibleconditions, includingthosethatarepreviouslyunpredicted. Thedownsideofthemethodstillap- pears, however, in which it cannot derive any meaningful results for the frequency of MACswithinthenumberofsamplestested,duetotherarenessofMACseveninahigh- vi SUMMARY densitysetups. Hence,moresamplesarerecommendedforthefuturework,alongwith furtherextensiontoincludeaircraftdynamicmodelinsidethesimulations. ThefourthquestionisaddressedinthisresearchbyintroducingtwonovelCD&Ral- gorithmswhichareadequatetofillinspecificlayersintheCD&Rarchitectureexplained before. ThefirstalgorithmistheSelectiveVelocityObstacle(SVO)method, anexten- sionoftheVelocityObstaclemethod(VO-method)withadditionalcriteriaforimplicit coordination. ThisCD&RmethodisdevelopedspecificallyfortheCooperativelayerin theCD&Rarchitecture,whichisbasedontheunlikelinessofthefutureairspacetoex- istwithoutsomesortoforderorcoordination,suchastheRight-of-wayrules. TheSVO isalsousedasthebasisofthecooperativeCD&Rprotocolinthepreviouslyexplained NMACfrequencyderivationusingMonteCarlosimulations. The second algorithm is the Three-dimensional Velocity Obstacle (3DVO) method thatrepresenttheVO-methodinthree-dimensionalspace,obtainingamuchwiderrange ofresolutionpossibilities. Thethree-dimensionalresolutionisperformedinarbitrary avoidanceplanes,whichnumberanddirectioncanbesetaccordingtotheUAVmaneu- verability.Furthermore,sinceitisdesignedtofilltheEscapelayerfromthearchitecture, the3DVOisequippedwithBufferVelocityZones,anadditionalalgorithmtoanticipate adversemovementsofuncoordinatedobstacles.Itisdiscovered,however,thattheaddi- tionoftheBufferVelocityzonesincreasesthealgorithmperformancemoresignificantly thanthenumberofAvoidancePlanesavailable. BoththeSVOand3DVOmethodhavebeenvalidatedbyseriesofMonteCarlosim- ulationsinastressfulheterogeneousairspacesetup,inwhichtheywereabletosignifi- cantlyreducethefrequenciesofNMACsandMACs,andhencearepromisingtosupport BVLOSoperationinanintegratedairspace. Bothmethod,however,arelackingofvehi- cledynamicmodel,whichcansignificantlychangetheresult,especiallyintheEscape layer,inwhichavoidancehappeninacloserange.Moreover,experimentstoproofboth conceptsisalsowarrantedforfutureworks,especiallyintestinganactualBVLOSflight wheretheUAVsautonomouslyinteractwiththeheterogeneousairspace. Furthermore, adequatealgorithmtofillotherlayersinthearchitectureisalsomandatorytosupporta completeBVLOSflight.ThiswillfurtherenrichtheavailableCD&Rapproachesthatcan beselectedforUAVoperationinanintegratedairspace. Therefore,onthebasisoftheresearchperformedinthisdissertation,itisconcluded thatsafeintegrationofUAVsintotheairspaceisverymuchfeasible. Theconclusionis supportedbynumeroussimulationsthathavebeenconducted,demonstratingthepos- sibilitytoreachtheairspaceTLSbyresortingtoanautonomousCD&Rsystem,which is distributed and works independently in each vehicles. The low risk of UAV opera- tions, eveninaheterogeneousairspaceconditions, isvalidatedevenmorebytherar- ityofNMACsandMACsoccurrencestothepointthatanartificiallyexaggeratedsetup, suchasasuperconflictorahigh-densityairspace,isrequiredtomeasuretheoperational safety. WhilemanyCD&RapproachesforUAVsinliteraturehavenotbeendesignedfora BVLOSflightinanintegratedairspace,theiralgorithmcanbeadjustedtoconformthe proposedtaxonomy.Anexampleofsuchadjustmentispresentedinthisdissertationby theextensionoftheVO-methodintoSVOmethodthatfitstheCooperativeapproach, SUMMARY vii and3DVOthatisdesignedfortheEscapeapproach. WiththelargediversityofCD&R approachinliterature,validationinaheterogeneoussetupisanecessity,eitherbysim- ulationsorbyactualflightexperiments. Comparedtobackinmid2011whenthisresearchwasinitiated,inthis2016com- mercialuseofUAVsareincreasinglygettingexposedtothegeneralpublic. Regulations are being updated to define UAVs’ airworthiness and widens their area of operations. Operatorawarenessoftheregulationsisalsoincreasingasitisshownbythebooming ofregisterednumberofdroneowners.Atthesametime,droneadvocacygroupsareas- sembledtopushregulatorypoliciestoallowUAVoperations,especiallyforBVLOSflight. TheseindicatesthatUAVintegrationintotheairspaceisinevitable,andthatCD&Rsys- temstosupportsafetyinsuchairspaceisurgentlyneeded. Therefore,atonepointper- haps it is best for the authorities to simply start to accommodate the BVLOS flight in theairspace,allowingbothUAVsandtheirCD&Rsystemtomaturebasedonexperience theycangaininarealsituation. Asithasbeenshowninthehistoryofmanned-flight deregulation,thiscancreateacompetitiveenvironmentthatpushesbothmanufacturer andoperatortocontinuouslystriveforsafetyimprovementsinanintegratedairspace system. C ONTENTS Summary iii 1 Introduction 1 1.1 UnmannedAerialVehiclesandtheAirspaceSystem . . . . . . . . . . . . 1 1.2 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 CurrentAirspaceIncompatibility . . . . . . . . . . . . . . . . . . 4 1.2.2 CD&RSystemDiversity . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 UAVCD&RSystemSafety . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 UAVAutonomousCD&RSystemInadequacy . . . . . . . . . . . . 7 1.3 ResearchObjective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 ResearchScopeandLimitations . . . . . . . . . . . . . . . . . . . . . . 8 1.5 MethodologyandDissertationOutline . . . . . . . . . . . . . . . . . . . 10 2 TaxonomyandArchitectureofCD&RApproaches 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 InventoryofApproachesforUAVCD&RSystem. . . . . . . . . . . . . . . 16 2.2.1 TypesofAirspaceSurveillance. . . . . . . . . . . . . . . . . . . . 16 2.2.2 TypesofCoordination . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 TypesofAvoidanceManeuver . . . . . . . . . . . . . . . . . . . . 19 2.2.4 TypesofAutonomy . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 TaxonomyofConflictDetectionandResolutionApproachesforUAV. . . . 20 2.3.1 UAVFlightintheFutureIntegratedAirspace. . . . . . . . . . . . . 21 2.3.2 CombinationProcessofCD&RMethods. . . . . . . . . . . . . . . 23 2.3.3 ApproachesAvailability . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 AMulti-layeredArchitecture . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 GenericApproachesArrangement. . . . . . . . . . . . . . . . . . 26 2.4.2 GeneralImplementation. . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 SafetyAssessmentofUAVCD&RSystem 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 HeterogeneousAirspaceModel. . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 HighDensityAirspacewithPeriodicBoundaryCondition . . . . . . 34 3.2.2 TheUncertaintyofConflictDetection . . . . . . . . . . . . . . . . 36 3.2.3 TheVariationofConflictResolution . . . . . . . . . . . . . . . . . 36 3.2.4 OrderintheHeterogeneousAirspace . . . . . . . . . . . . . . . . 38 3.3 MonteCarloSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 GeneralSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ix

Description:
distance or time-to-collision, which need to be defined specifically for each type of UAV. gorithms which are adequate to fill in specific layers in the CD&R architecture explained before. The first algorithm is the hardware and software concepts, have been proposed to handle that particular prob
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.