Astronomy&Astrophysicsmanuscriptno.zapartas_arxiv_submission_final (cid:13)cESO2017 January26,2017 Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction E.Zapartas1,S.E.deMink1,R.G.Izzard2,S.-C.Yoon3,C.Badenes4,Y.Götberg1,A.deKoter1,5,C.J.Neijssel1, M.Renzo1,A.Schootemeijer6,andT.S.Shrotriya6 1 AntonPannekoekInstituteforAstronomy,UniversityofAmsterdam,SciencePark904,1098XH,Amsterdam,TheNetherlands e-mail:[email protected], [email protected] 2 InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA,UK 3 AstronomyProgram,DepartmentofPhysicsandAstronomy,SeoulNationalUniversity,Seoul,151-747,Korea 4 DepartmentofPhysicsandAstronomy&PittsburghParticlePhysics,Astrophysics,andCosmologyCenter(PITT-PACC),Univer- 7 sityofPittsburgh,Pittsburgh,PA15260,USA 1 5 InstituteofAstronomy,KULeuven,Celestijnenlaan200D,B-3001Leuven,Belgium 0 6 Argelander-InstitutfürAstronomie,UniversitätBonn,AufdemHügel71,53121Bonn,Germany 2 AcceptedforpublicationinAstronomy&Astrophysics n a J ABSTRACT 4 2 Mostmassivestars,theprogenitorsofcore-collapsesupernovae,areinclosebinarysystemsandmayinteractwiththeircompanion throughmasstransferormerging.Weundertakeapopulationsynthesisstudytocomputethedelay-timedistributionofcore-collapse ] supernovae,thatis,thesupernovarateversustimefollowingastarburst,takingintoaccountbinaryinteractions.Wetestthesystematic E robustnessofourresultsbyrunningvarioussimulationstoaccountfortheuncertaintiesinourstandardassumptions. H Wefindthatasignificantfraction,15+9%,ofcore-collapsesupernovaeare‘late’,thatis,theyoccur50-200Myrsafterbirth,when −8 allmassivesinglestarshavealreadyexploded.Theselateeventsoriginatepredominantlyfrombinarysystemswithatleastone,or, . h inmostcases,withbothstarsinitiallybeingofintermediatemass(4−8M ).Themainevolutionarychannelsthatcontributeoften (cid:12) p involveeitherthemergingoftheinitiallymoremassiveprimarystarwithitscompanionortheengulfmentoftheremainingcoreofthe - primarybytheexpandingsecondarythathasaccretedmassatanearlierevolutionarystage.Also,thetotalnumberofcore-collapse o supernovaeincreasesby14+15%becauseofbinarityforthesameinitialstellarmass. r −14 t The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as s such.WearguethatφPerseiisalikelyprogenitorandthateccentricneutronstar–whitedwarfsystemsarelikelydescendants.Late a eventscanhelpexplainthediscrepancyinthedelay-timedistributionsderivedfromsupernovaremnantsintheMagellanicCloudsand [ extragalactictypeIaevents,loweringthecontributionofpromptIaevents.Wediscusswaystotestthesepredictionsandspeculateon 1 theimplicationsforsupernovafeedbackinsimulationsofgalaxyevolution. v Keywords. supernovae:general–binaries:close–stars:massive–stars:evolution 2 3 0 71. Introduction exchange of mass and angular momentum through Roche-lobe 0 overflow, common envelope evolution, and merging of the two .Core-collapse supernovae (ccSNe) are bright explosions that stars(Wellstein&Langer1999;deMinketal.2013;DeMarco 1 0mark the end of the lives of massive stars (e.g., Heger et al. &Izzard2016).Thisinteractioncandrasticallyaffectthefurther 2003;Smartt2009)andthebirthofneutronstarsorblackholes 7 evolution of both stars and thus the properties of their possible 1(e.g., Ertl et al. 2016). They play a crucial role as sources of supernovae.Pioneersinmodelingtheeffectson(samplesof)cc- chemical enrichment (e.g., Arnett 1973; Woosley et al. 2002) : SNeincludePodsiadlowskietal.(1992);DeDonder&Vanbev- vand feedback, driving the evolution of their host galaxies (e.g., eren(2003b);Yoonetal.(2010);Eldridgeetal.(2008,2013). XiHopkins et al. 2014). Their extreme brightness also allows us tousethemasprobesofstar-forminggalaxiesouttoappreciable Ourunderstandingoftheendpointsofmassivestarsisradi- r aredshifts(e.g.,Strolgeretal.2015).Theseexplosionsareusually callybeingtransformedbytheriseof(automated)transientsur- attributed to stars with birth masses larger than approximately veys, which enable the efficient detection of ccSNe and other 8M(cid:12) (Heger et al. 2003), although the exact value depends on transientsinlargenumbers.ExamplesaretheLickObservatory model assumptions concerning core overshooting, stellar-wind Supernova Search (LOSS, Filippenko et al. 2001), the Palomar mass-loss, and metallicity (e.g., Poelarends et al. 2008; Jones Transient Factory (PTF, Rau et al. 2009; Law et al. 2009), and etal.2013;Takahashietal.2013;Dohertyetal.2015). its near-future upgrade, the Zwicky Transient Facility, the All- Observing campaigns of young massive stars in our galaxy Sky Automated Survey for SuperNovae (ASAS-SN, Shappee andtheMagellanicCloudsshowthataverylargefractionhave et al. 2014), Pan-STARRS (Kaiser et al. 2002), and eventually oneormorecompanions,formingaclosebinarysystemwhere theLargeSynopticSurveyTelescope(LSST,Ivezicetal.2008). severe interaction between the stars during their lives is un- The datasets provided by these facilities will be large, but may avoidable (e.g., Kobulnicky & Fryer 2007; Mason et al. 2009; notnecessarilyprovideverydetailedinformationaboutindivid- Sanaetal.2012;Chinietal.2012).Suchinteractioncanbethe ual events, since this typically requires more intensive follow Articlenumber,page1of22 A&Aproofs:manuscriptno.zapartas_arxiv_submission_final up, to obtain spectra, for example. The large potential of these 2006,2009)withupdatesdescribedindeMinketal.(2013)and datasets will be the statistical constraints that they can provide, Schneider et al. (2015). The code employs rapid algorithms by allowingfornewconstraintsontheoreticalmodelsforbothcom- Tout et al. (1997) and Hurley et al. (2000, 2002) based on ana- monandrareevents.Fullyharvestingthesedatasetswillrequire lyticalfitstothedetailednon-rotatingsinglestellarmodelscom- adaptationsfromthetheorysideandthuspredictionsofthesta- putedbyPolsetal.(1998). tisticalpropertiesforlargesampleswillbeneeded. The code enables us to efficiently simulate the evolution of Motivated by the technological and observational develop- singlestarsandbinarysystemsfromthezero-agemainsequence ments,aswellastheinsightintothelargeimportanceofbinarity, until they leave behind compact remnants. This allows us to wehavestartedasystematictheoreticalinvestigationaimingto make predictions for an entire population of massive stars by quantify the impact of binarity on the statistical properties ex- spanningtheextensiveparameterspaceofinitialpropertiesthat pected for large samples of ccSNe. This paper is the first in a determinetheirevolution.Italsoallowsustoexploretherobust- seriesinwhichwedescribethemotivationandsetupofoursim- nessofourresultsagainstvariationsinourassumptions. ulations (section 2). In two papers that were completed ahead In subsection 2.1, we discuss the initial conditions and in ofthisone,theleadauthorsofthisteamdemonstratedtheearly subsection2.2,wediscussthephysicalassumptions.Fromnow applicationofthesenewsimulationsagainstobservationsoftwo on when we mention “standard models” or “standard simula- individualevents. tions”,werefertothesimulationswherewefollowedourmain In Van Dyk et al. (2016), we compared these simulations assumptions in all the key parameters that we discuss below. withnewdeepHubbleSpaceTelescopeobservationsofthesite Therearetwostandardmodelswithonesimulatingonlysingle ofthenowfadedstripped-envelopetypeIcsupernovaSN1994I stars and the other including binaries (discussed also below in in search of a surviving companion star. While no companion theparagraphforbinaryfraction).Asummaryofthekeyparam- wasdetected,thedataprovidednewstrongupperbrightnesslim- eters, their values for our standard assumptions and the model its, constraining the companion mass to less than 10M . This variationsthatweconsiderisprovidedinTable1. (cid:12) resultisconsistentwiththetheoreticalpredictionsofoursimu- lations and allowed a subset of formation scenarios to be ruled 2.1. Initialconditions out.InMarguttietal.(2016),weusedthesesimulationstointer- pret the multi-wavelength observations of supernova SN2014C Initialdistributions –Weassumethatthedistributionoftheini- whichoverthetimescaleofayearunderwentacompletemeta- tial mass, M , of primary stars (the initially most massive star 1 morphosis from an ordinary H-poor type Ib supernova into a inabinarysystem)andofsinglestarsfollowsaKroupa(2001) strongly interacting, H-rich supernova of type IIn. These sim- initialmassfunction(IMF), ulations helped us to estimate the possibility that the surround- inghydrogenshelloriginatedfromapriorbinaryinteraction(as dN opposed to ejection resulting from instabilities during very late ∝ Mα(cid:48), (1) burningphases,e.g., Quataertetal.2016). dM1 1 In this paper, we focus on the distribution of the expected where, delay time between formation of the progenitor star and its fi- n(2a0l0e3xbp)l.oWsioeni,nvexestetingdaitneghtohwebwinoarkryoifnDteeraDctoionndearff&ectVsathnebedveelareyn- α(cid:48) = −−01..33 00..0018<< MM11//MM(cid:12)(cid:12) <<00..05,8, (2) teixmpeecdteisdtrtiobubteio‘nlaotef’c,cthSaNteis.,AthseiygnoicficcuarnwtiftrhacdteiolanyotfimcceSsNloengareer −2.α3 0.51<< MM1//MM(cid:12) <<11,00. 1 (cid:12) thanapproximately50 Myr,whichisthemaximumdelaytime expectedforsinglestars.Weshowthattheselateeventsoriginate In our standard models, we adopt α = −2.3. When assessing fromprogenitorsinbinarysystemswithmostofthembeingof theuncertainties,weconsidervariationsinwhichα = −1.6and intermediatemass.WediscusstheselateccSNeinsection3and −3.0 following the uncertainty given in Kroupa (2001) as well describethevariousevolutionarychannelsthatproducethem. asonemodelinwhichα=−2.7(e.g.,Kroupaetal.1993). Wefurtherdescribetheoutcomeofanextensivestudyofthe Fortheinitialmassratioq≡ M2/M1,whereM2istheinitial robustnessofourresultsagainstvariationsinthemodelassump- massofthesecondarystar,wetake tionsandwecomparewithearlierworkinsection5.Insection6, dN wediscuss(possible)observationalevidence.Wearguethatthe ∝qκ. (3) wellknownbinaryφPerseiprovidesadirectprogenitorsystem dq that is expected to result in a late ccSN and we discuss how Weadoptauniformdistributioninourstandardsimulation,for the observed eccentric neutron star – white dwarf systems may example,κ =0forq∈[0.1,1],consistentwithKiminki&Kob- well provide the direct remnants. We then compare our results ulnicky(2012)andSanaetal.(2012).Wealsoconsiderthevari- directly with the inferred delay time measured from supernova ationsκ=−1and1. remnants in the Magellanic Clouds, showing that they are con- Fortheinitialorbitalperioddistribution,weassume sistent with our predictions. We finish with a brief discussion oganlapxoisessibblyesimhopwliicnagtiothnesdfoiffrefreeendcbeasckwiitnhstthaer-wfoirdmeliyngusreegdiosinnsgilne dlodgN P ∝(cid:0)log10P(cid:1)π. (4) star predictions by the STARBURST99 simulations (Leitherer 10 etal.1999).Weendwithasummaryofourfindingsinsection7. Weadoptπ = 0,alsoknownasÖpik’slaw(1924),forsystems withprimarymassesupto15M (Kobulnickyetal.2014;Moe& (cid:12) DiStefano2015).Toaccountforthestrongpreferenceofmore 2. Method massive stars to reside in short period systems, we adopt π = We use a binary population synthesis code, binary_c (ver- −0.55 when M > 15M as found by Sana et al. (2012). The 1 (cid:12) sion2.0,SVNrevision4105),developedbyIzzardetal.(2004, rangeofinitialperiodsweconsiderislog (P/day)∈[0.15,3.5] 10 Articlenumber,page2of22 E.Zapartas,S.E.deMink,R.G.Izzard,S.-C.Yoon,C.Badenesetal.:Delay-timedistributionofcore-collapsesupernovae asgivenbySanaetal.(2012).Whenassessingtheuncertainties, 106M . Forthis,weintegrate overthefullrange oftheIMFas (cid:12) weconsiderπ=−1and1overthefullmassrange. specified in Equation 2. For stars with masses above M , we low Fortheinitialspinperiodofthestars,wefollowHurleyetal. account for the mass contained in the companion star as speci- (2000). Although this does not account for the full distribution fied in Equation 3. Effectively, we assume that low-mass stars, (e.g., Huang et al. 2010; Dufton et al. 2013; Ramírez-Agudelo with M < M , do not have companions massive enough to 1 low et al. 2013, 2015), this is sufficient for investigating the role of significantly contribute to the mass of the stellar population. In binarityastheimpactoftheadoptedbirthspinisnegligiblecom- our standard assumptions we adopt M = 2M and we vary low (cid:12) paredtotheangularmomentumthestarlaterreceivesasaresult this parameter to 1 and 3M to check that this choice does not (cid:12) ofinteractionbytidesandmasstransfer(deMinketal.2013). havealargeinfluenceonourresults. Althoughweaccountfortheeffectsofeccentricity,wechose toadoptcircularorbitsatbirthtolimitthenumberofdimensions that our grid of models spans. This is justified as most systems Metallicity –Weassumesolarmetallicityinourstandardpop- circularize shortly before the onset of mass transfer by Roche- ulation, adopting a mass fraction of elements heavier than he- lobe overflow as a result of tides (Portegies Zwart & Verbunt lium of Z = 0.014 (Asplund et al. 2009) because present day 1996; Hurley et al. 2002). However, with this approach, we do transientsurveysfocusonlargergalaxieswithmetallicitiesthat not account for systems that are too wide to strongly interact are comparable to solar. We also consider low metallicities of when circular, but where eccentricity implies periastron sepa- Z = 2 × 10−4 relevant for metal-poor progenitors of globular rations small enough to trigger Roche-lobe overflow. We may clusters and populations formed at high redshift. We addition- thereforeslightlyunderestimatetheimpactofbinaryinteraction. ally test Z = 0.004 and Z = 0.008, relevant to nearby dwarf See, for example, the interacting systems arising from binaries galaxiessimilartotheSmallandLargeMagellanicClouds.We withinitialorbitalperiodswellinexcessof103.5 daysdepicted furtherprovideresultsfortheformercanonicalsolarabundance in Fig. 2 of de Mink & Belczynski (2015). We explore the un- ofZ =0.02(e.g.,Grevesseetal.1996)forcomparisonwithear- certaintiesarisingfromthisassumptionindirectlywhenwevary lierstudiesandonesupersolarmetallicity,Z =0.03,relevantto theinitialorbitalperioddistributionandthetotalbinaryfraction. thecentralregionsoflargegalaxies. Binaryfraction –Inourtwostandardmodelsweeithersimulate 104 only single stars or we adopt a binary fraction of fbin = 0.7. Mmin,cc≃ 7.5 M¤ This work Here,wedefineabinaryasasystemwithinitialmassratioq ∈ white dwarfs core-collapse MESA (αov=0.335) MESA (no overshooting) [0.1,1] and initial period log10(P/day) ∈ [0.15,3.5] based on r) 103 Schaller+92 Sanaetal.(2012)andconsistentwiththerangesadoptedabove. y M Weconsidervariationsof fbin =0.3and1.0. ( e The binary fraction for intermediate-mass stars is less well m 102 constrained.Wethereforeconsideramodelvariationwherewe feti τmax,cc≃ 48 Myr adopt a binary fraction that decreases with mass based on Moe Li &DiStefano(2013).Theseauthorsprovidetheinferredfraction 101 of systems with a companion in very close orbit, P = 2 − 10 τ ≃ 3 Myr days, and q > 0.1. They find that this fraction drops from 0.22 min,cc forearlyB-typeto0.16forlateB-typestars.Informationonsys- 100 temswithorbitslongerthan10daysarenotavailablefromthis 1.2 sdteucdrye.asTehsestoewreasrdusltslamteayspeeicthtrearlitnydpiecsatoerththaattthtehebrienaisrysifmrapcltyiona Δ τ / τ 1.0 preferenceforsystemswithorbitalperiodslongerthan10days 0.8 inthesestars.Weusetheseresultstoconstructamass-dependent 2 4 6 10 20 40 60 100 binary fraction assuming that the binary companions of B-type Initial mass (M ) stars still follow an (Öpik 1924) law over the full period range ¤ 0.15 < log P < 3.5. We construct a mass-dependent binary 10 Fig.1. Thelifetimeτ(untilthewhitedwarfphaseorcorecollapse)as fraction f (M) referring to the binary fraction for the full pe- bin a function of initial mass for single stars adopted in this work (black riodrange,suchthatthebinaryfractionforperiods P = 2−10 line) is compared with predictions that we obtained using the MESA daysareasinMoe&DiStefano(2013).Thisresultsin stellar evolutionary code (Paxton et al. 2011) with and without over- shooting(darkandlightbluedots)andwithGenevamodelsofSchaller etal.(1992,blackdots).SinglestarswithmasseslessthanM end min,cc fbin(M1)= 000...46741 156≤≤ MMM11///MMM(cid:12)(cid:12) <<615 ∼∼∼leOaat,relyBB, , tethoxeptiherecltilevidefesbtaiemstwweseheointfeτtdhmwein,amccrfoassnitdnasτntmedaaxld,eccaosf(tycmeclSlaoNswseivs(ehhaasdtsaherdedtroergueginoidonen)r,)gw.ochcciSocNhreerceaoferler- 1 (cid:12) lapse.Thebottompanelshowstherelativedifferenceinlifetimeswith (5) respecttothelifetimesusedinourwork(subsection2.2). whichweadoptasoneofthemodelvariations.Wewanttostress theimportanceoffurtherobservationalcampaignsaimedtocon- strain the initial binary distributions and the binary fraction for 2.2. Physicalassumptions thefullM ,qandperiodrange(e.g.,Moe&DiStefano2016). 1 Forafulldescriptionofthecode,werefertothereferencescited Normalization –Whenquotingabsoluterates,weexpressour atthestartofthissection.Herewediscussthemainassumptions results normalized by the total mass formed in stars in units of thatareofdirectrelevancetothisstudy. Articlenumber,page3of22 A&Aproofs:manuscriptno.zapartas_arxiv_submission_final Stellarlifetimes –Theevolutionarytracksandstellarlifetimes considerthevariationsη=3andη=0.33forallmass-lossrates (until reaching the white dwarf phase or core collapse) of sin- simultaneously. gle stars in our simulations originate from the grid of detailed non-rotating stellar evolutionary models of Pols et al. (1998) Tides – We account for the effect of tides on the stellar spins computed with an updated version of the STARS code (Eggle- andthestellarorbitsofstarsinbinarysystems(Zahn1977;Hur- ton1971,1972;Polsetal.1995).Forstarsupto20M ,weuse (cid:12) ley et al. 2002) and the transfer of angular momentum during thefittingformulaeofHurleyetal.(2000)forthesemodels.At masstransferviaanaccretiondiskorthedirectimpactoftheac- highermass,weswitchtoalogarithmictabularinterpolationof cretion stream onto the surface as described in de Mink et al. thelifetimesbyPolsetal.(1998),andabove50M ,weextrapo- (cid:12) (2013) following Ulrich & Burger (1976) and Packet (1981). lateasdescribedinSchneideretal.(2015). Weassumethatthestellarspinsarealignedwiththeorbit(Hut Ourresultingmass-lifetimerelationisshowninFigure1.We 1981). findgoodagreementwithsimulationswiththeevolutionarycode MESA, version 7184 (Paxton et al. 2011, 2013, 2015) for non- rotating stars when using our standard metallicity, Z = 0.014, Masstransfer –WhenastarfillsitsRochelobeandmasstrans- and the Schwarzschild criterion for convection with a step- ferisstable,wecomputethemass-lossratefromthedonorstar overshootingparameterα =0.335H ,whereH isthepressure byremovingasmuchmassasneededforthestartoremainin- ov p p scaleheight,ascalibratedbyBrottetal.(2011). sideitsRochelobe.Theresultingmasstransferratesarecapped bythethermaltimescaleofthedonor.Wedefinethemasstrans- The widely-used Geneva models of Schaller et al. (1992) ferefficiency,β,asthefractionofthemasslostbythedonorthat predictlifetimesthatare10-15%shorter,ascanbeseeninFig- isaccretedbythecompanion, ure1.Thesearemodelsofnon-rotatingstarswithametallicity Zass=um0i.n0g2.nOouorveMrsEhoSoAtinsigm,αuloavti=on0s.Ggiivveensitmheileavrildifeentcimefeosrwexhterna β≡ (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)MM˙˙acc(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12). (6) mixing processes beyond the convective core based on calibra- don tionsoftheovershootingparameterαov (e.g.,Ribasetal.2000; If mass is transferred on a timescale that is much shorter than Claret2007;Brottetal.2011),weconsiderthelifetimepredic- thethermaltimescaleoftheaccretingstarτ ,thestarwillbe th,acc tionsbyourmodelswithovershootingtobemorerealistic. drivenoutofthermalequilibriumandexpand(Neoetal.1977). Althoughoursimulationsdonotfollowthisphaseindetail,itis expected that the companion can only accrete a fraction of the Stellarwinds –Weincludeupdatedmass-lossprescriptionsas transferredmaterialwhen|M˙ |(cid:29) M˙ ≡ M /τ ,where don acc,th acc th,acc described in de Mink et al. (2013), which include the recipes M isthemassoftheaccretingstar.Inlinewiththisphysical acc of Vink et al. (2000). At luminosities in excess of 4000L , we (cid:12) picture,welimitthemassaccretionrateto switchtotheempiricalmass-lossratesofNieuwenhuijzen&de Jager(1990)whentheseratesexceedthosebyVinketal.(2000). (cid:32) (cid:33) Toaccountfortheempiricalboundaryofstarsintheupperpart |M˙ |=min |M˙ |, f Macc , (7) oftheHertzsprung-RusselldiagramasdescribedinHumphreys acc don τ th,acc &Davidson(1994),weaddafactorinthemasslossasdescribed in Hurley et al. (2000) to simulate the enhanced mass loss of where f isanefficiencyparameterforwhichweadopt10inour LuminousBlueVariables(LBV)thatarethoughttoresidenear standardsimulation(toreproducethemasstransferefficiencyof thisboundary.Forstarsthatarestrippedfromtheirhydrogenen- Schneideretal.2015).Themasstransferefficiencyinthiscase, velopes, we adopt the Wolf-Rayet (WR) mass-loss prescription whichwerefertoasβth,variesbetween0and1dependingonthe by Hamann et al. (1995) and Hamann & Koesterke (1998) re- physicalpropertiesofthedonorandtheaccretor.Theefficiency ducedbyafactorof10toaccountfortheeffectofwindclumping of mass transfer is poorly constrained (see, e.g., the discussion (Yoon 2015). For post-main-sequence stars, Asymptotic Giant in de Mink et al. 2007). We therefore also explore the extreme Branch(AGB)stars,andthermallypulsatingAGBstars,weuse casewherenoneofthetransferredmassisaccreted,β = 0,the Kudritzki & Reimers (1978), Vassiliadis & Wood (1993), and caseofveryinefficientmassaccretion,β = 0.2,aswellasfully Karakas et al. (2002) respectively, as described in Izzard et al. conservativemasstransfer,β=1. (2009). Our mass-loss prescriptions scale with metallicity as M˙ ∝ Angular momentum loss – Mass that is lost from the system (Z/Z(cid:12))m where m = 0.69 in main-sequence stars (Vink et al. also takes away angular momentum. The specific angular mo- 2001; Mokiem et al. 2007). In post-main-sequence phases, we mentum h, carried away from the system during mass loss, is adopt m = 0.5 (Kudritzki et al. 1989). In the WR phase, mass parametrizedby, lossscaleswithmetallicityassumingapower-lawindexof0.86 (Vink&deKoter2005).IntheLBVphase,masslossisassumed J tobeinvariantformetallicity. h=γ orb , (8) M +M Themass-lossratebystellarwindsaswellaseruptiveevents acc don isuncertain,inparticularforthelatephasesandthemostmas- whereJ isthetotalorbitalangularmomentum,M andM orb acc don sivestars(Smith2014).Inthemassrangewearemostinterested are the masses of the accretor and donor star respectively and in,masslossduringthelatephasesonlyaffectsthestellarenve- γ is a free parameter. In our standard simulation, we assume lope. It does not have a large impact on the core of the stars that mass lost from the system is emitted in a spherical wind and thus on the remaining lifetimes, which are the main focus or bipolar outflow originating from the accreting star (van den ofthiswork.Nevertheless,weexploretheimpactofchangesin Heuvel1994).Thus,thespecificangularmomentum,h,thatthe themass-lossratebymultiplyingthemasslossbyanefficiency lostmasscarriesisequaltothespecificorbitalangularmomen- factor,η,whichwesettounityinourstandardsimulations.We tumoftheaccretingstar,whichyieldsγ=γ ≡ M /M . orb,acc don acc Articlenumber,page4of22 E.Zapartas,S.E.deMink,R.G.Izzard,S.-C.Yoon,C.Badenesetal.:Delay-timedistributionofcore-collapsesupernovae Wealsoconsidertheextremelimitingcaseofnegligiblean- ing.Thisalgorithmusestwoparameters,µ =0.1,whichisthe loss gular momentum transported by the mass lost from the system fractionofthetotalmasslostfromthesystemduringthemerger, duringmasstransfer(γ=0).Wefurtherconsiderthecasewhere andµ = 0.1,whichisthefractionoftheremainingenvelope mix mass is lost through the outer Lagrangian point, forming a cir- massthatismixedintotheconvectivecore.Thevaluesaboveare cumbinarydisk.BasedonsimulationsbyArtymowicz&Lubow adoptedinourstandardsimulation.Wevaryµ between0and loss (1994),weconsiderthatthebinarysystemwillclearoutthein- 0.25andµ between0and1. mix nerportionofthediskbyresonancetorques.Weexplorethecase Weaccountfortherejuvenatingeffectofmixingoffreshhy- thataninnerregionofsizermin =2aiscleared,whererministhe drogen into the central regions of accreting stars and mergers. inner radius of the circumbinary disk and a the separation of Forthis,weusefitstotheeffectivemassoftheconvectivecore the binary system. This is consistent with typical values found byGlebbeek&Pols(2008)asdescribedindeMinketal.(2013) byArtymowicz&Lubow(1994).Wethusconsiderthecaseof andSchneideretal.(2015). γ=γ , disk (cid:114) (M +M )2 r Minimum mass for core-collapse supernovae – We predict γ ≡ acc don min. (9) disk M M a the final fate of the stars in our simulation using our estimate acc don of the final metal core mass, that is, the mass of the core con- sisting of elements heavier than helium, sometimes referred to Contact and common envelope evolution –Todecidewhich ascarbonoxygen(CO)coremass.Weadoptaminimummetal systemscomeintocontactorexperiencecommonenvelope(CE) core threshold of M = 1.37M for a collapse (Nomoto min,metal (cid:12) evolution, we consider a critical mass ratio, qcrit. In binary sys- 1984, 1987; Podsiadlowski et al. 2004; Takahashi et al. 2013). temswithapost-main-sequencedonor,weassumethatsystems Inourstandardsimulations,thiscorrespondstoaminimumsin- with Macc/Mdon <qcrit enteracommonenvelopephase.Wefol- glestarinitialmassof Mmin,cc = 7.53M(cid:12).Wealsoconsiderthe lowtheprescriptionsofHurleyetal.(2002)forqcrit,exceptfor variationsMmin,metal =1.30and1.40M(cid:12)whenexploringthesen- thecasewhenthedonorfillsitsRochelobewhileexperiencing sitivityofourresults.Insinglestars,thesevaluescorrespondto hydrogenshellburningandcrossingtheHertzsprunggap(HG), aminimuminitialmassof M ≈ 7and8 M ,respectively, where we use qcrit,HG = 0.4 (de Mink et al. 2013). We use the inourstandardmetallicity.Wmeind,coc notexplicitly(cid:12)distinguishbe- samevalueforthenakedheliumstardonorsthatexperiencehe- tween electron capture and iron ccSN (e.g., Tauris et al. 2015). liumshellburning(HeHG). Wealsodonotconsidertheaccretion-induced-collapseofwhite Commonenvelopeevolutionmayeitherleadtotheremoval dwarfs. oftheenvelopeor,iftheejectionisnotsuccessful,amerger.In It is uncertain whether or not the collapse of the core leads ourtreatmentofcommonenvelopeevolutionweusetheformal- toasuccessfulsupernovaexplosioninallcasesandwhetheror ism described in Tout et al. (1997) based on Webbink (1984), notthisexplosionisabrightevent.Especiallyinmassivestars, Livio & Soker (1988) and de Kool (1990). In this formalism, the explosion may fail to eject the outer layers resulting in fall twoparametersareintroduced,theefficiencyparameterofejec- backofmaterial.Thispossiblyleadstofainterexplosions(e.g., tion,α ,andλ whichparametrizesthebindingenergyofthe CE CE O’Connor & Ott 2011; Ugliano et al. 2012; Nadezhin 1980; envelope(seeeq.73and69inHurleyetal.2002,respectively). Lovegrove & Woosley 2013; Piro 2013), or even the simple Inourstandardmodel,weassumethatα isunity(e.g.,Web- CE disappearance of a star without any electromagnetic signature bink 1984; Iben & Tutukov 1984; Hurley et al. 2002), but we (e.g.,Kochaneketal.2008).Inourstandardsimulations,weas- alsorunmodelswitharangeofvalues(0.1,0.2,0.5,2,5,10)to sume that all core collapses result in an observable event. We probe the large uncertainties associated with this phase of evo- also run model variations in which we exclude all supernovae lution. By varying the efficiency parameter, we also implicitly from stars with metal cores more massive than a single star of considertheeffectofuncertaintiesinthebindingenergyλCE as M = 35M and M = 20M wouldproduce,mimick- αCEλCEappearsasaproductintheexpression.ValuesofαCE >1 ingm,axin,ccasimplifi(cid:12)edway,mthaxe,cceffectof‘(cid:12)failed’explosions. accountforpossibleextraenergysourcesusedtounbindtheen- velopeapartfromtheorbitalenergy(e.g.,DeMarcoetal.2011; Ivanova&Nandez2016).Tocomputetheenvelopebindingen- Supernova kick – We account for the effect of sudden mass ergyparameter,λCE,weusefitstodetailedmodels(Dewi&Tau- lossduringthesupernovaexplosionontheorbit(Blaauw1961; ris2000,2001;Tauris&Dewi2001).Wealsoconsideramodel Boersma 1961; Hurley et al. 2002). In addition, at the onset of variation where we adopt a constant value λCE = 0.5 (e.g., de the supernova, asymmetries in the explosion mechanism may Kool1990).Foradiscussionofthelimitationsofthisformalism leadtoanatalkicktothecompactremnant.Weassumeanatal werefertoIvanovaetal.(2013b). kickforthecompactobjectasinequation(A15)ofHurleyetal. Insystemswithamain-sequencedonor,weadoptqcrit,MS = (2002),wheretheremnantreceivesakickinarandomdirection 0.65 to account for systems that come into contact during the andwithascalarvelocitydrawnfroma1-DMaxwelliandistri- rapid thermal timescale mass transfer phase, which is consis- butioncharacterizedbya1-Drootmeansquareofσ=265km/s tent with the detailed models by de Mink et al. (2007). Alter- (Hobbs et al. 2005). We also examine the effect of the extreme natively,binarysystemsmaycomeintocontactbecauseoftheir caseswithnosupernovanatalkickattheremnant(σ )andwith 0 ownnucleartimescaleevolution.Inmain-sequencestars,weas- kicksstrongenoughtoalwaysdisruptabinarysystemafterthe sumethatcontactleadstoamerger. explosion. Mergers and rejuvenation – In case a merger occurs, we fol- 2.3. Simulationsetup low Table 2 of Hurley et al. (2002) to determine the outcome. Whentwomain-sequencestars(MS+MS)merge,wefollowthe Inourstandardassumptions,weevolve104singlestarsandmore updated algorithm by de Mink et al. (2013, 2014), based on than3×106 binarysystemswithvaryingprimarymasses,mass Glebbeeketal.(2013),toaccountformasslossandinternalmix- ratios, and orbital periods on a grid of 150 × 150 × 150 sys- Articlenumber,page5of22 A&Aproofs:manuscriptno.zapartas_arxiv_submission_final Table1.Summaryofthekeyparametersadoptedinourstandardsimulationsandthevariationsthatweconsider.Seesection2foradescription ofthesymbolsandfurtherassumptions. Symbol Standardmodels(a) Modelvariations Physicalassumptions - masstransferefficiency β β 0,0.2,1 th - angularmomentumloss γ γ 0,γ orb,acc disk - masslossduringmergeroftwoMSstars µ 0.1 0,0.25 loss - mixingduringmergeroftwoMSstars µ 0.1 0,1 mix - natalkickcompactremnant(kms−1) σ 265 σ ,∞ 0 - commonenvelopeefficiency α 1 0.1,0.2,0.5,2,5,10 CE - envelopebindingenergy λCE λDewi+00 0.5 - criticalmassratioforcontactforMSdonor q 0.65 0.25,0.8 crit,MS - criticalmassratioforunstablemasstransferforHGdonor q 0.4 0,0.25,0.8,1 crit,HG - stellar-windmass-lossefficiencyparameter η 1 0.33,3 - maximumsingle-starequivalentbirthmassforccSN(M ) M 100 20,35 (cid:12) max,cc - minimummetalcoreforccSN(M ) M 1.37 1.3,1.4 (cid:12) min,metal Initialconditions - slopeinitialmassfunction α −2.3 -1.6,-2.7,-3.0 - slopeinitialmassratiodistribution κ 0 -1,1 - slopeofinitialperioddistr. π πOpik24,Sana+12 -1,1 - metallicity Z 0.014 0.0002,0.004,0.008,0.02,0.03 - binaryfraction(a) f 0.7,0.0(a) 0.3,1, f (M ) bin bin 1 - normalizationparameter(M ) M 2 1,3 (cid:12) low Notes.(a)Thedifferencebetweenourtwostandardmodelsisthatinonewesimulateonlysinglestarsandintheotherweassumeabinaryfraction of0.7. tems. Test simulations indicate that these resolutions are suffi- Equivalentsinglestarinitialmass(M ) cient for the purpose of this work. The difference between our 70 35 20 15 10 8 6 4fl 1600 two standard models is that in one we take into account only single stars singlestarsandintheotherweassumeabinaryfractionof0.7. 1400 We take primary masses spaced at equal logarithmic intervals between M = 3 and 100M . The lower limit encompasses all 1200 1 (cid:12) 1 systemsinoursimulationswiththepotentialtoresultinacore- − ) collapse event within a safe margin. We take mass ratios lin- Mfl1000 earlyspacedbetweenq=0.1and1andorbitalperiodsspacedat 6 equal logarithmic intervals between log P(d) = 0.15 and 3.5. 10 800 10 ( Weweigheachsystemaccordingtotheinitialdistributionfunc- e N 600 tionsspecifiedinsubsection2.1.Whencomputingvariationsin S c theassumptions,wereducetheresolutionofthegridsineachdi- c 400 mensionbyafactoroftworesultinginapproximately4.2×105 systemsineachmodelvariation. 200 0 1 2 5 10 20 50 100 200 500 1000 3. Results Time after starburst (Myr) The lifetime of a star is determined by the amount of nuclear Fig. 2. The delay-time distribution of core-collapse supernovae based fuel available and the rate at which it burns this fuel. In single onoursinglestarmodels.Thediagramshowsthenumberofeventsper stars, both of these properties are primarily a function of the logarithmic time bin for a starburst of 106M in our standard model. (cid:12) initial mass, as shown in Figure 1. The lifetime approximately Thetopaxisshowstheinitialmassofsinglestarswiththecorrespond- scales with mass as τ(M) ≈ M−x. The relation is steeper for inglifetimegiveninthebottomaxis,computedwithbinary_c.Themost intermediate-massstars(x ≈ 2.4near M = 5M )andflattensat massivestarsevolvemostrapidlyandendtheirlifeafterapproximately (cid:12) highermasses(x≈0.6nearM =50M ).Atthehighestmasses, 3Myr. There are no core-collapse events after approximately 48Myr (cid:12) when the least massive single star that can undergo core collapse ex- thelifetimeconvergestoafinitevalueofapproximately3Myr. plodes. For stars in binary systems, the lifetime is no longer a simple functionoftheirinitialmassalone,duetopossiblemasstransfer ormerging. Inthissection,wediscussthedistributionofstellarlifetimes of single stars and binary systems that produce a core-collapse supernova. The lifetime sets the time-delay between formation SNe.Wefirstdiscussthecaseofapopulationofsinglestarsin ofthestarandthemomentitscorecollapses.Wethereforerefer subsection3.1,followedbythecaseofapopulationthatcontains to this distribution as the delay-time distribution (DTD) of cc- arealisticfractionofbinarysystemsinsubsection3.2. Articlenumber,page6of22 E.Zapartas,S.E.deMink,R.G.Izzard,S.-C.Yoon,C.Badenesetal.:Delay-timedistributionofcore-collapsesupernovae 3.1. Delay-timedistributionofsinglestars The most striking feature that distinguishes the binary star distribution from that of single stars is the prominent excess of In a population of single stars formed in an instantaneous star- eventsbetween50and200Myr.Theseoccurafterthelastsingle burstatτ=0,weexpectccSNebetweenτmin,cc ≈3Myr,corre- starexplodedatτmax,cc ≈48Myr.Werefertothemas“latecore- spondingtothelifetimeofthemostmassivestarinoursimula- collapse supernovae” and discuss them in detail in section 4. tion, and τmax,cc ≈ 48Myr, corresponding to the lifetime of the These late events account for 15.5+8.8% of the total number of −8.3 leastmassivestarthatundergoescorecollapseinoursimulation, ccSNe. The main value quoted here corresponds to the relative with Mmin,cc = 7.53M(cid:12) (Figure1).ThiscanbeseeninFigure2 contributionoflateeventswithrespecttoallcore-collapseevents whereweshowtheDTDforsinglestarsfora106M(cid:12) starburst. asfoundinourstandardsimulation.Theerrorsreflectthemini- The diagram shows the number of ccSNe per logarithmic time mumandmaximumwefindwhenconsideringmodelvariations, bin. aswediscussinsection5.TheaboveratiooflateccSNetototal The distribution rises steadily between τ and τ . ccSNewillbereferredtoas f fromnowon. min,cc max,cc late TheslopeofthedistributionisdictatedbytheslopeoftheIMF Theaveragedelaytimeforapopulationincludingarealistic and the derivative of τ−1(M), the inverse of the lifetime-mass fraction of binaries is τ = 21.6Myr, around 20% longer than av relation. The IMF favors less massive stars that contribute in inoursinglestarsimulation.Themediantimedelayisτ = 50%,all the later time bins. The flattening of the lifetime-mass relation 22.1Myr,nearly10%longerthaninoursingle-starsimulation. for the highest masses leads to a relative pile-up of ccSNe in We observe a tail of very late events with delay times > the early time bins. The net effect is a distribution that rises 300Myr.Theyareextremelyrareinourstandardsimulationac- steadily, when expressed in the units chosen here, with a slope counting for less than 0.01% of all core-collapse events. How- that is slightly steeper at early times, τ (cid:46) 5Myr. The average ever,insomeof thevariationsthatweconsider,wefind higher delay time of the distribution is τ = 17.5Myr, the median is fractions of 0.03%. These very late events result from a vari- av τ =19.6Myr. ety of rare binary evolutionary paths. They typically originate 50%,all The units and axes used here have the advantage that an fromsystemswithalow-masssecondary(<4M(cid:12))inaninitially equalnumberofsystemsoccupyanequalareainthisdiagram, wide orbit (∼ 1000 days). The systems usually evolve through which is useful as a visualization of the discussion in the para- multipleCEandmasstransferepisodes,eventuallyleadingtoa graphsthatfollow.Forconvenience,wealsoshowtheevolution mergerofamassivewhitedwarf(theprimary)withaheliumstar oftheccSNrate(thenumberofeventsperyearpermass)inAp- secondary.Someofthesemayresultinanaccretion-inducedcol- pendixA.Therateforsinglestarspeaksaround5.1Myrinour lapse,buttodeterminethefateofthesemergersrequiresdetailed simulation to a value of approximately 4.75×10−10 events per modelingbeyondthescopeofthiswork. yrperM ,asshowninFigureA.1. (cid:12) 3.3. Totalnumberofcore-collapsesupernovae 3.2. Delay-timedistributionincludingbinaries Accounting for binaries increases the number of ccSNe for the same total stellar mass of a population. We find a rela- The picture changes when we account for a realistic fraction tive increase of 14+15% when accounting for a realistic binary of binary systems. Some intermediate-mass stars, with M < −14 population. The increase is due to the added contribution of M , can accrete mass from their companions and become min,cc intermediate-masssystems,whicharefavoredbytheIMF.How- massive enough to experience the advanced nuclear burning ever, the increase is limited by the fact that we normalize our stages. As a result, they end their lives as supernovae leaving simulationsbythetotalstellarmass;iftheaveragemassofsin- neutron stars as remnants instead of becoming white dwarfs. gle stars is (cid:104)M(cid:105) then that of a binary systems is (cid:104)M + M (cid:105) = Mintaossthaecccreentitoranlablsuornreinjugvreengaitoenssa,setffarebcteicvaeulysepfrroelsohnfguienlgisitmsilxifeed. (cid:104)M(cid:105) + 1/2(cid:104)M(cid:105)=3/2(cid:104)M(cid:105),assumingthatsingleandpri1mary2stars follow the same IMF and taking into account that the typical However,massaccretionalsoacceleratesaging.Makingthestar mass ratio is q ≈ 0.5. Thus, in a population of the same total moremassiveincreasesitsluminosityandthustherateatwhich mass, the number of systems is lower when binary systems are itburnsitsremainingfuel.Conversely,massstrippingcan,under included.Wefindthatthenetresultofboththeaboveeffectsis certainconditions,preventamassivestarfromendingitslifeas anincreaseinthenumberofccSNeinapopulationthatcontains asupernova.Thisisonlytrueifmasslossoccursearlyinitsevo- binarysystems. lution,beforethestarhasafullydevelopedcore.Weinvestigate ThetotalnumberN ofccSNeina106M stellarpopulation howallthesebinaryevolutionprocessesinterplayandcompete (cid:12) is less well constrained because of uncertainties in the normal- inaffectingtheDTD. izationofthemasscontainedinlow-massstars.Inourstandard InFigure3weshowthedistributionofccSNeresultingfrom simulations, we find N = 1.14×104 for single stars and N = a106M(cid:12)starbursteventinourstandardsimulationthataccounts 1.30×104 for a realistic binary fraction. Variations in the IMF for binaries. The single star DTD is over-plotted for compari- slopealone(α=−3.0and−1.6)leadtoN =0.28−2.53×104,re- son.Bothdistributionsareremarkablysimilaratearlytimes.The spectively,inthesingle-starpopulationandN =0.35−2.53×104 differencesbecomeevidentataround20Myr,wherethebinary in the simulation that includes binaries. All other model varia- distributionpeaks.Ataround30-50Myr,thebinarydistribution tions considered in Table 2 lead to changes in the total number shows a deficit with respect to the single star distribution. The ofeventsbylessthan25%. deficitresultsfromclosesystemsinwhichtheprimarystarhasa massjustabovebutcloseto M .Ifitisstrippedofitsenve- min,cc lope early in its evolution, that is, before the completion of hy- 4. Latecore-collapsesupernovaeandtheir drogen burning, this can prevent its core from growing enough progenitors inmasstoreachtheadvancedburningstages.Thus,interaction withacompanionpreventsthesestarsfromendingtheirlivesas Late ccSNe occurring around 50-200Myr after star formation ccSNe. arenotpredictedinsinglestellarevolution.Theyareexclusively Articlenumber,page7of22 A&Aproofs:manuscriptno.zapartas_arxiv_submission_final Equivalent single star initial mass (M ) 70 35 20 15 10 8 6 4 fl 1600 single stars u incl. binaries a 1400 t 1200 1 − ) 1000 fl M 6 0 800 1 ( e N S 600 c c 400 200 0 1 2 5 10 20 50 100 200 500 1000 Time after starburst (Myr) Fig.3.Thedelay-timedistributionofcore-collapsesupernovaeforapopulationconsistingof70%binarysystems(greenhistogram)compared tothedistributionforapopulationofonlysinglestars(blackdashedline).Itshowsthenumberofeventsperlogarithmictimebinforastarburst of106M forourstandardmodels.Thetopaxisshowstheinitialmassofsinglestarswiththecorrespondinglifetimegiveninthebottomaxis, (cid:12) computedwithbinary_c.Themoststrikingdifferenceisthefractionof‘late’core-collapsesupernovae(f = 15.5+8.8%),afterthelastmassive late −8.3 singlestarexplodesatτ ≈48 Myr.Theerrorsinthefractionaboveresultfromvariationsofourstandardassumptions. max,cc 0.18 0.40 0.25 3.0 0.7 00..1146 00..3305 0.20 2.5 00..56 x) 00..1102 0.25 0.15 2.0 0.4 f( 00..0068 00..1250 0.10 11..05 0.3 00..0024 00..0150 0.05 0.5 00..12 0.00 0.00 0.00 0.0 0.0 6 8 10 12 14 16 18 20 4 6 8 10 2 4 6 8 0.2 0.4 0.6 0.8 1.0 0 1 2 3 M (M ) M (M ) M (M ) q logP (days) tot 1 2 (cid:12) (cid:12) (cid:12) Fig.4. Theprogenitorpropertiesof‘late’core-collapsesupernovaeforourstandardsimulationwithbinarystars.Thenormalizedhistograms showthedistributionoftheinitialtotalmassM ,theinitialmassoftheprimary,M ,andsecondary,M ,theinitialmassratio,q≡ M /M ,and tot 1 2 2 1 theinitialorbitalperiodPofbinarysystemsthatproduceatleastonecorecollapseafterthelastsinglestarhasexplodedataround48 Myr. the product of interacting binaries and, as mentioned, they ac- tialmassoftheprimaryandsecondary,M andM respectively, 1 2 countfor f =15.5+8.8%ofallccSNe.Almostallsystemsthat the initial mass ratio, q ≡ M /M , and the initial orbitalperiod late −8.3 2 1 leadtoalateeventhaveatleastoneintermediate-massstarwith log P. 10 M < M = 7.53M , the threshold mass for a single star min,cc (cid:12) The distribution of initial total mass for the progenitor sys- to undergo core collapse. Approximately three out of four late temspeaksat9M (leftmostpanelofFigure4).Itextendsupto eventsresultfromsystemsinwhichbothstarshaveinitialmasses (cid:12) around15M ,thatis,approximately2M ,rapidlydeclining below M .Bothstarsinthesesystemsweredestinedtoend (cid:12) min,cc min,cc forhighermasses.Thedistributiondropsoffsteeplyformasses theirlivesaswhitedwarfs,ifitwerenotfortheinteractionwith lowerthanthepeakwithaminimumapproaching M . their companion. This can be seen in Figure 4, where we show min,cc the normalized distributions of the initial properties of the pro- The typical mass of the primary star is in the range 5–8M (cid:12) genitorsystems.Weprovidetheinitialtotalmass, M ,theini- (secondpanelofFigure4).Starsinthismassrangetakearound tot 50-200Myrtoevolveoffthemainsequenceandstartinteracting. Articlenumber,page8of22 E.Zapartas,S.E.deMink,R.G.Izzard,S.-C.Yoon,C.Badenesetal.:Delay-timedistributionofcore-collapsesupernovae quentmergerchannelsthatwedonotdiscussareresponsiblefor Evolu6onary channels for “late” core-‐collapse Supernovae acombinedcontributionof16%ofthelateevents. Forward mergers 9% 15% Figure5providesasummaryoftherelativeratescontributed (24%) MS MS HG MS bythemainchannels.Whileoursimulationscannotreliablyfol- low the details of the merger process and the interior structure ofthenewlyformedstellarobject,wecanpredictrelativerates Reverse mergers 20% 10% ofthedifferentchannelsandassestheevolutionarystatusatthe (47%) HG HG onsetofthemerger.Thisinformationcanguidefuturenumerical HeStar COWD experiments. 11% 6% Forward mergers – Inourstandardsimulations,wefindthat HG AGB 24% of the late ccSNe come from systems that experience a ONeWD COWD merger in which the expansion of the primary star beyond its Rochelobeinitiatesthemergerprocess.Wedistinguishthefol- Other merger channels Non-‐merger channels lowingcases. combined (16%) combined (13%) MS⇒MS: The merger between two main-sequence stars con- tributes 9% of the late ccSNe in our standard simulations; Fig. 5. The main channels for ‘late’ core-collapse supernovae in our they result from intermediate-mass primaries with initial standard simulation and their relative contribution to the number of masses of 5–8M(cid:12) in tight binaries with initial orbital peri- lateevents(onlyshowingthosethatcontribute>5%ofthenumberof odsthataretypicallyshorterthanapproximately3days.The late ccSNe, i.e., >0.75% of the total number of ccSNe). For merger maincontributioncomesfromsystemswithinitialmassra- channels, we indicate the evolutionary state of the primary and sec- tiosq<0.65.Insuchsystems,theinitialrapidphaseofmass ondary star at the onset of merging. Arrows indicate the direction of transfer drives the accreting star out of thermal equilibrium mass transfer preceding the merger, which can be forward (from pri- causingittoswellup.Suchsystemscomeintocontactdur- marytosecondary)orreverse(fromsecondarytoprimary).MS:main ingtheinitialrapidmasstransferphase,denotedasCaseAR, sequence,HG:Hertzsprunggap,COWDandONeWD:carbon-oxygen withAreferringtothefactthatthedonorstarstillresideson andoxygen-neon-magnesiumwhitedwarf,HeStar:nakedheliumstar, themainsequenceandRreferringtotherapidmasstransfer AGB:AsymptoticGiantBranch. phaseintheclassificationbyKippenhahn&Weigert(1967) andNelson&Eggleton(2001).Asecondcontributioncomes from systems with initial mass ratios q ≈ 1 in periods of Hence, it is mainly the relatively slow evolution of the primary less than approximately 2 days, in which both stars evolve that causes the eventual explosions in these systems to be late. onasimilartimescale.Thestarscomeintocontactwhenthe Asecondaryreasonforlongerdelaytimesisrejuvenationofthe secondarystaralsofillsitsRochelobeduetoitsownevolu- accretingstar(ormergerproduct). tionaryexpansion.Thisoccursduringtheslownucleartime The distribution of secondary masses ranges from approxi- scalemasstransferphase(denotedasCaseAS). mately 1 - 8 M and peaks near 4.5M , as can be seen in the (cid:12) (cid:12) The primary has typically already completed over 80% of thirdpanelofFigure4.Thereisapreferenceforsystemsthatini- its main sequence evolution at the moment of coalescence. tiallyhavemassratiosnearunity,asshowninthefourthpanel. ThesecondaryisinasimilarevolutionaryphaseinCaseAS, Mostprogenitorsystemsoriginatefromsystemswithinitialor- whereasitisquiteunevolvedinCaseAR,havingonlycom- bitalperiodslessthanapproximately30days,ascanbeseenin pleted10–30%ofitsmain-sequenceevolution.InCaseAR therightmostpanel.Systemswithinitialmassratiosnearunity mergers,themoreevolvedprimarystaristhemoremassive andorbitalperiodsbelow∼30daysgenerallyexperienceamore component at the onset of the merger, at 5−8M , whereas conservative first phase of mass transfer in our simulations (cf. (cid:12) the secondary mass is 1−4M . In Case AS mergers, mass Figure3ofSchneideretal.2015).Thismeansthatasignificant (cid:12) transferleadstoareversalofthemassratio.Asaresult,the fraction of the mass lost by the primary star is accreted by the massoftheprimaryisapproximately2–4M attheonsetof secondary and is thus retained in the system. This is necessary (cid:12) merging and that of the secondary is 6–9M (see also Fig- for an intermediate-mass binary system to produce a ccSN be- (cid:12) ureB.1intheappendix). cause in most cases neither of the stars is individually massive In both cases, the stars come into a deep over-contact con- enoughtoproduceacollapse. figuration (Pols 1994; Wellstein et al. 2001; de Mink et al. 2007). In our simulations, contact results in merging of the stars as this is the most likely outcome (see also discussion 4.1. Evolutionarychannels by de Mink et al. 2014). The simulations of Gaburov et al. Theevolutionarychannelsthatleadtolateeventsofteninvolve (2008) and Glebbeek et al. (2013) suggest that the merger multiple phases of mass transfer. The majority of late events, productthatformswillinitiallybeapuffedupandredobject 87% in our standard simulation, result from binary channels in (Tylenda et al. 2011; Pejcha et al. 2016), but as it radiates whichthetwostarscoalesce.Wedistinguishbetween‘forward’ awaytheexcessenergy,itwillrecoverathermalequilibrium and ‘reverse’ mergers depending on whether it is the primary, structure. The core of the primary is thought to sink to the thatis,theinitiallymoremassivestar,orthesecondarythatfills center of the new object with the core of the less evolved itsRochelobeandinitiatesthemergerprocess,respectively.Be- secondarysettlingabove(Glebbeeketal.2013).Theroleof low,weelaborateonthesemergerchannelsandafterwediscuss mixing and mass loss during this stage is highly uncertain. the non-merger scenarios. We limit the discussion to channels Tofirstorder,thefurtherevolutionmaybeapproximatedby thatcontributeatleast5%ofthelateevents(i.e.,morethanap- that of a rejuvenated (rotating) single star. It will continue proximately0.75%ofthetotalcore-collapserate).Thelessfre- with the subsequent burning stages and, if massive enough, Articlenumber,page9of22 A&Aproofs:manuscriptno.zapartas_arxiv_submission_final enditslifeasitscorecollapses.Whetherornottheabnormal Nomoto1984;Habets1986;Nomoto1987)andcanproduce interiorchemicalprofileorenhancedbudgetofangularmo- ametalcoremassofatleastM . min,metal mentumleavessignificantimprintsonthefinalpre-explosion The typical progenitor system involves two intermediate- structureandleadstoobservablesignaturesremainstobein- mass stars with similar initial masses (q>0.6) and an ini- vestigated. tial period shorter than approximately 10 days. The typical HG⇒MS: Forward mergers involving a post-main-sequence massofthenakedHeprimarystaratthemomentofmerging primarystararedominatedbycaseswheretheprimarystar ranges from 0.4 to 1.3M , while the secondary star ranges (cid:12) iscrossingtheHertzsprunggap(HG).Theseso-calledCase from6to13M andhasdevelopedaHecoreof1.5to3M (cid:12) (cid:12) B mergers account for 15% of the late ccSNe. They orig- (seealsoFigureB.1intheappendix). inate from systems with unequal masses (q < 0.4 in our COWD⇐HG: Wefindthat10%oflateccSNeresultfromthe standard simulations). The systems come into contact as a mergerofamassiverecentlyformedCOwhitedwarf,being resultoftheexpansionofthesecondaryinresponsetorapid massaccretionand/or,forthemostextrememassratios,be- theremnantoftheprimary,whichisengulfedbyaHGsec- ondarystar.ThetypicalmassoftheCOWDisapproximately causemasstransferisunstable(seehoweverPavlovskiietal. 0.9M ,beingtheremnantofastarwithinitialmassaround 2016). This leads to a common envelope phase that may (cid:12) 5-8M ,althoughthereisasmallcontributionofprogenitors lead to the ejection of (part of) the envelope while the or- (cid:12) with masses of 9-12M that results in more massive white bitshrinks.Iftheejectionfails,weareleftwithamergerof (cid:12) dwarfs(seealsoFigureB.1intheappendix).Thefirstgroup apartiallystrippedpost-main-sequenceprimarywithitsless originatesfromwidesystemswithperiodsP>100daysex- evolved main-sequence secondary. The typical mass of the periencing almost non-conservative mass transfer. The sec- primaryis6–7M attheonsetofthemerger.Atthisstage,it (cid:12) ond group involves systems in tighter orbits, P (cid:46) 30 days, hasaninertheliumcoreof1–1.4M .Thetypicalsecondary (cid:12) thatevolvedfairlyconservatively,allowingthesecondaryto star has a mass of 1–3M in our standard simulations (see (cid:12) almostdoubleitsmass. alsoFigureB.1intheappendix). Simulations by Glebbeek et al. (2013) indicate that the he- Assessing the outcome of these mergers will require fu- lium core of the original primary will sink to the center. turededicatedsimulations.Sabach&Soker(2014)havead- Thesteepmeanmolecularweightgradientwilllikelyinhibit dressed the question of what is the result of these reverse mixingbetweenthecoreandlayersabove.Afterthemerger common envelope channels involving a white dwarf. Here product has radiated away the excess energy and restores we speculate on some of the possible outcomes. We expect thermalequilibrium,ithasthestructureofagiantwithacore the white dwarf to spiral in and sink to the center of the massthatisabnormalforitstotalmasscomparedtoaregu- merger product, where it will find itself surrounded by the largiantcreatedthroughsingle-starevolution.Afractionof formerheliumcoreofthesecondary,thatis,by1–3M(cid:12)ofhe- theseobjectsareexpectedtoappearasbluesupergiants.The lium.Thestructureofthestarisapost-core-helium-burning heliumcoregrowsasaresultofshellhydrogenburningand, star,withanabnormalratioforthecoreandshellmass.Nu- whenmassiveenough,continueswiththeadvancedburning clear burning will proceed in a hydrogen burning shell (if stages. The final pre-explosion properties are uncertain but hydrogenisleftafterthespiralinphase)andaheliumburn- someofthesemaygiveriseto1987-likeevents(e.g.,Podsi- ingshell.TheCOcorewillgrowduetoashesofthehelium adlowskietal.1990);seealsoVanbeverenetal.(2013)and burningshell.Thismayleadtooff-centerignitionofcarbon. Justhametal.(2014). Carbonignitionmayoccurinnon-degenerateconditionsand lead to the formation of an ONeMg core, which may even- tually collapse as a result of electron capture (e.g., Nomoto Reverse mergers – Approximately half of the late ccSNe 1984). (47%) in our standard simulation (equivalent to 7.5% of all cc- Alternatively, if carbon ignition occurs under degenerate SNe) originate from mergers following a reverse mass-transfer conditions,itcould,inprinciple,leadtoeitheradeflagration, phase from the initially less massive secondary back to the ini- leavinganeutronstarremnant,oradetonationoftheentire tially more massive primary. Nearly all these systems experi- core,similartoatypeIathermonuclearexplosion(Nomoto enced one or more semi-conservative phases of mass transfer &Kondo1991).ThemaindifferencefromnormalIasuper- from the primary to the secondary before, allowing the sec- novae is that it would occur inside a hydrogen envelope. In ondary to grow beyond the mass threshold M . The sec- min,cc the case of the detonation of the core without leaving any ondarywouldhaveexplodedasaccSNasaresultofthis.How- remnant, it may be similar to the “type 1.5” supernova that ever, as it evolves and expands, it encounters the stripped rem- Iben&Renzini(1983)proposed,whichisthedetonationof nant core of the primary, which is still in orbit, triggering a re- theCOcoreofanAsymptoticGiantBranch(AGB)starthat versemass-transferphase.Thedonorstarisnowtypicallyafew reachesamassclosetotheChandrasekharlimit.Ithasbeen timesmoremassivethantheremainingcoreoftheprimary,lead- suggested that this can also be the final outcome of single ing to common envelope. The secondary engulfs the primary. intermediate-massstarsinverylowmetallicityenvironments Theorbitshrinkswhilepartoftheenvelopeofthesecondaryis (e.g.,Zijlstra2004;Lauetal.2008)wherethewindmassloss ejected. If complete ejection is unsuccessful, the two stars will islowenoughtoallowtheformationofsuchamassiveCO coalesce.Wedistinguishdifferentcasesdependingontheevolu- core.Asweshowhere,binaritymayallowsimilarstructures tionarystageoftheprimaryandsecondary. evenathighermetallicities.Thetheoretical“type1.5”super- HeStar⇐HG: In our standard simulation, 20% of the late nova mechanism is suggested as a possible explanation for events are produced by the merger of the naked helium theobservedclassofthermonuclearexplosionsthatshowin- core of the initially more massive primary star and a post- teraction with circumstellar material, sometimes referred to main-sequence secondary after a common envelope phase. asIa-CSMsupernovae(e.g.,SN2002ic,Hamuyetal.2003). Thesearecaseswherethecombinedheliumcoremassafter A third possibility that we cannot exclude at present is that the merger exceeds the single star threshold for ccSN (e.g., the effects of mass loss and possible dredge-up prevent the Articlenumber,page10of22